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The electrical conductivity for an electron gas is computed when a strong quantizing magnetic field is
present. This strong field (=210% G) is thought to exist in the interior of a neutron star. The knowledge of
the conductivity is of primary importance for the evaluation of the decay time of the magnetic field due to
Ohmic dissipation. This is a critical quantity in most of the recent developments of pulsars as magnetized
neutron stars. The chief scattering process is Coulomb scattering by ions. For magnetic field of the order
of 108 G, the conductivity is higher by a factor 10-10% with respect to the case without a magnetic field.
The ion-ion correlation is included through the use of the static pair-correlation function. Its effect is that

of increasing the conductivity by a factor of 2.

1. INTRODUCTION

HE relativistic transport properties of an electron

gas imbedded in a system of ions has been studied

in a previous paper,! taking into account the ion-ion
interaction. In the present paper the electrical con-
ductivity is studied when the electrons are also im-
bedded in a strong homogeneous and constant magnetic
field. Only the problem of the longitudinal conductivity
is studied in this paper. As we see later, the electron
moves freely in the direction parallel to the magnetic
field; this circumstance allows the application of the
Boltzmann equation. When the electric field E is parallel
to H, there is no need to diagonalize the Hamiltonian
with both fields included as one ought to do when the
transverse conductivity is studied. This last problem is
treated in a separate paper.? We proceed to compute the
electrical conductivity and then, through the use of the
Wiedemann-Franz law, we can deduce the thermal con-
ductivity. The conductive opacity is then easily com-
puted. The Weidemann-Franz law has been shown to
hold in the presence of a quantizing magnetic field by
Zyrianov.? All of the transport properties depend on a
dimensionless function f(¢,u,0), where u is the chemical
potential (plus the rest mass of the electron in units of
mc?), §=H/H, is the magnetic field in units of
H.=m?c/eh=4.414X10" G, ¢=FkT/mc®. The results
are arranged in tables for the function f(¢,u,0) for
degenerate and nondegenerate cases as function of the
density p (or, equivalently, the chemical potential) for
two different values of 6: 0.1 and 1.0. Figures 1-3 show
the behavior of the function f when u varies. The dis-
continuities present in the degenerate case are caused by
the density of final states which is a discontinuous
function of the energy.? The behavior of f(¢,u,0) is
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considerably smoother at high temperatures, i.e.,
T~10" °K. As seen from Figs. 1 and 2, the number of
discontinuities considerably increases with decreasing
magnetic field. For that reason it was not possible to
include values lower than §=0.1. The problems involved
in the computation of the function f(¢,u,0) were quite
complex, and in the Appendix a sketch of the procedure
we used is outlined.

The knowledge of the electrical conductivity allows
us to compute the decay time of # due to Ohmic dis-
sipation. This quantity has become of primary im-
portance in problems related to pulsars which are now
accepted to be magnetized neutron stars. Using
Maxwell’s equations and Ohm’s law, one can easily
prove that the diffusion equation for a magnetic field
Hisb

OH /1= (¢*/4woy) VI,
which indicates that an initial configuration of H will
decay in a diffusion time 7 given by

r=4nopgl?*?,

where L is a length which characterizes the spatial
variation of H. The main contribution to oz is thought
to be the Coulomb scattering of electrons by ions. The
elastic scattering of an electron by a Coulomb potential,
taking place in a magnetic field, is computed in analogy
with the Mott scattering by using the exact wave-func-
tion solution of the Dirac equation.

2. DIRAC EQUATION WITH
MAGNETIC FIELD

As discussed in a previous paper,* an electron of mass
m, charge e, in an external electromagnetic field 4, is
described by

[ywdutme/h+ (ie/hic)y, A, Jp=0. €]

In the special case of a pure magnetic field H, constant
in time and homogeneous in space, we have

A=1HXr, A4=0 )

5 J. D. Jackson, Classzcal Electrodynamzcs (John Wiley & Sons,
Inc., New York, 1962), p
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If H is directed along the z axis, i.e., H,=H,=0, then
A,=—3yH, A,=3cH, A,=0. 3)

Because of the nature of the problem we treat later, it is
more convenient to work with a different ¢, gauge
transformed in the following way:

Y=y cire, ®
with f(xy) chosen in such a way that
As=—yH, Ay=A4,=0. ©)
Clearly,
Jey)=—3(e/hc)xyH . (6)

The solution to the Dirac equation can be written as®

‘l/:.‘P(r)e—imcgrletIh ,

VD)=t (e tamtize),

chn(E) (7)
= [0 |
st n1(8)
e(x)= (1+x242n0)1/2,
n=0,1,...,0, x=p,/mc, 0=H/H,, ®)
H =m*?/eh=4.414X 108 G,
E=yy' PRy, y=0R7;
Re=h/mc, c1=ad, ca=saB, ©
cs=nsbA, cs=nbB;
F=i(tne), A=l a0,

P*=31—ne), B*=3[1—sx(x®+2n0)12].

The two indices n==1, s==1 stand for positive and
negative energies and the sign of the projection of the
momentum component along the spin. H,(x) are the
Hermite polynomials normalized to 1 in the interval
— to ®:

Hﬂ= 7 I47—1/4)—n/2 (n !)—1/2 H .

(11)

The wave functions ¥p were used to construct the
equations of state for an electron gas in a magnetic field
by calculating the energy-momentum tensor T,,.*

A simplified derivation of the same equation of state
by only using the expression for the quantized energy
eigenvalues was given in a recent paper.$

3. MOTT SCATTERING IN
MAGNETIC FIELD

In analogy with the case H=0, we start with the
interaction-Hamiltonian density

ICint= —iel,Z’(t)'y,,lﬁ(r)A“(Ra— I, (12)
where r and R, represent the position vectors of the

6V. Canuto, H.-Y. Chiu, and L. Fassio-Canuto, Astrophys.
Space Sci. 3, 258 (1969).
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electron and of the ath ion, respectively, ¢ is given by
Eq. (7), and 4 ,(R,—1) is given by

Ze? 4drwZe? ]
A=0, A= - R (13)
|Re—1| L,L,L., ¢ @
The interaction energy is now (Y =y'ys)
N; 4welZ N .
Hin(‘.E Z Jcintd37= Z q"2[1.fe—“1'Ra 1) (14)
a=1 yloz a=1
IilEfds’ ¥ (e mgs(r), (15)

where ¢ and f mean the set of all quantum numbers,
namely, s, 1, #,  [see Egs. (7)-(10)7], describing the
initial and final states of the electrons. In our case
ni=7ny=-1, and from now on we drop these indices.
Substituting Eq. (7) into Eq. (15), we obtain

Iif= akl—k1’+q1aks—ka’+qs(‘*’1(”l %’)-I—wz(%— 1 l n'— 1>)
= 6k1~k1’+q16k3—-ka+qu n,n’y

with

(16)

7 ’
wi=ci61'Fcs0s’,  wa=cacs'Fcacd,
and, in general,

(n ] W'y =y 2112 (g ! )12 (2=t 12
o0
X / dy Ho(y)Ha(32) expligny—tyi—3y#),

V= Ptk (17)

The integration can be performed only after specifying

the sign of (n—#»'). When #2>#’, we denote (n|n')

by I(#n'|#). The result is

I |m)=[(n—n") T (nln'1)"12gtI2g(n—n")]2
X1F1(—n'; n—n'41; f)e-itnnég—id

yi=yy"P k2,

(18)
with
t=(2v)(¢l+¢"), ¢=arccot(gs/q1),
A=ga(qutk1) (2v)72;

1F1 is the hypergeometric function. The result (18) can
be brought into a more symmetric form by changing
1F1 to oF, (which is symmetrical in its parameters)
using the relation

Fr(=n'; n—n'+1; 5)=[(n—n') /n!]
X (=)"a™ oFo(—n', —n; —1/x),
which gives
I(n, | n) = (n'n' !)_1l2e_”2t("+7b’)/2
XoFo(—=n', —n; —1/f) (=) e imDdemit,  (19)
or
T | 0) =" (1| ') (— )W e—itg=itn—n"26 (20)
with
\I/(%ln’)=\1/(n/[n) .
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If n’>n, we have from Eqgs. (19) and (20),

I(n|w)=1(n'|n)(—)r"e 2ot —m) (21)
In general, for any # and »’, we have
(n|n')=¥(n|n")[e"r¢(=)"0(n—n)

e (= )0 =) (=) o], (22)

with 6(x)=1 for x20 and 6(x)=0 for x<0. For com-
pleteness we give the definition of »[7,

M ONGES

2F0(a”b;x)=1+z ' (23)
k=1 k!
where (a); is the Pockhammer symbol defined as
k
(@)i=II(a+s—1). (24)

s=1

The next step is to calculate the transition rate per unit
time, W (4,f), given by the equation

W (i, f)= 2/ %) (m*) ™ | Hine|*8(ei—¢7) .
Using Egs. (14) and (15), we get

) 2 A7 \? N;
WEn=—mer(——-) ¥ )
7 L.L,L.) «pm
X (I (q)e @Rt Re) | (25)

Because the ions are unaffected by the presence of the
magnetic field (because of their mass), the ion system is
homogeneous, and we can therefore write
Ni Ni N;
39 e—i«x-Rr«'-Rﬂ)=5q—qrzvi<1+-g(q>)
Q

a=1 B=1

=0q_qN:P (q) N (26)

with

gl@)= f gr)ev=d’r,

where g(7) is the two-body correlation function defined
in Ref. 1:

-1
g(rlrz)=QzN(N_1)N—2</d,1. . .drNe—U/kT>

X(/d?’g’ . ‘[ZTNG_U“"T).

() =143 / (x6) sin(e8)d,

As shown in Ref. 1, we have

@7

with
£=qa= (3/4m) *(Q/N )" q] .

If we make use of the é function of Eq. (25), the quantity
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£ becomes
g__. (3/4#)1/3(9/1\7,‘)”3

X[ (k1—ky )4 (ks— k' )+ g2 2. (28)
We have, finally,
. [Ann|?8(ei—es)
W(/”:f) =W0 Z
g2 [(kl—k1’)2+(ka—ks’)2+q22]2 (29)

X®(ky—ky', ks—ky', q2)
Wo= (2m/ 1) (me) - (4r Z&Y (N o/ Q) (LaLy L)

From Eq. (29) we can obtain the relaxation time r
defined as (g=25+1=2)

=S/ G, ST TS

L.L,L,

(30)

00 +o0 o0
XY | dge / dky' / dks' (1 =k [ks)
|An,n’|2@5(5i—ef)
[(ea— P+ (= ks P02

where the summations have been converted into
integration through the usual relation

L
> —— / dq.
¢« I
Before proceeding to the integration, we have to study
the functional dependence of 4 ,,.+. From the definition

(16) and the general formula (22) we have, after some
algebra,

| Annr|?=[wr¥(n]n")—ws¥(n—1|n"—1)]
X[O(n—n")+0(n'—n)—bnn] (31)

for any # and #’. The last square bracket is identically
equal to 1 for any combination of 7 and #'. It is now
clear that the ¢,A dependence cancels and |4, |2
depends only on the variable i=[(ky'—k1)?+¢*]/2v
and ks, ks’ through w; and ws. Introducing the new
variables

Cy)YVeur=k1—ky',
u—u'= kg—kgl y

(27) Pus= g5,
t=ul4u?,

and writing explicitly the variables that |4, .|?
depends on, we have

77 1= (4gZ%"*) (hmc®) " (V ;/2) (2v) ™ Z,: f duy / dus

A | 208 (s,

X/du’(l—u’/u) | (g(uu)) ,
Lu+u+ (u—u')*]

() = (1+-2020+-2n8)1 12— (14200 + 20612

(32)
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The functional form of @ is still given by Eq. (27), with
the variable ¢ defined as
£=212(3/4m) 13(Q/ N A,5)1 %12

X[ul+ult+ (w—u')? 2. (33)

Because the 7 integrand depends on #; and %, only via
the combination #2+u.?, we can use the relation

/_ + & /_ +°° dy fts) = / " fshis

to obtain

o0 u’
=rrl Y d“'<1‘_)Rw')atg(u,u')], (34)

with “
= (dn /g2 (N Q)R (35)
JAna ) *
R ! . 36
(') = / v CHED

Splitting Eq. (34) into two integrations, from — o to 0
and from 0 to «, changing from # to —u in the first,
and then shifting again from the variable « to  defined
as

E*=1+42n0+200=a,’+24%0 ,

and, finally, using in each integral the § function on the
energy, we can perform the integration obtaining as a
final result

T0 = E2—q, 2\
—=3 E(E2~an:2)“1/2[1+<———) }R+
n'/=0

Tn E*—a,?

w [2—a, 2\
+> E(Ez—a,,,Z)—llz[x—(EZ 2) :|R_, (38)
a,

n/=0
with
Ry=R(u,Fu'), o'=(20)"2(E2—a,2)'",
roi= 2mga?Z (N /DA

(39)
(40)

As we see later [Eq. (55)7, 4 (#,4”) is an even function
in the variables # and #'. Although #’ could, in principle,
take any value 0<#'<®, the requirement that
E2—q,2>0 (for a given energy E) imposes an upper
limit chosen to satisfy this condition.

4. LONGITUDINAL ELECTRICAL
CONDUCTIVITY

We now calculate the current induced by an electric
field F in the z direction. As explained in Ref. 7, the
Boltzmann equation can be used in this case essentially
because the part of the electron wave function in the
direction of the field is still a plane wave [Eq. (7)] like
the case of zero magnetic field. Without entering in

7A. H. Kahn and H. P. R. Frederikse, Solid State Phys. 9,
257 (1959).
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5.7 -

4.7 |-

0.65

Fic. 1. The function f(u6), Eq. (4.9), as a function of the
matter density pg=10"% for §=H/H.=1. As explained in the
text, pe3=u2—1. The undulating behavior is related to the
density of the final states.

details which are fully explained in the previous refer-
ence, we give only the results. If f, is the probability of
occupation of state |#), the solution of the Boltzmann
equation is

fn= fn0+ eh_IFT"af’”o/ak:)' ) (41)

where F is the electric field, £, is the Fermi distribution,
fd= (14elenmi®)L ¢=kT/mc®. By definition, the

3.60

277 |-

.95 |

8 =0.l
2

0.30 [ -1
1 1

1 .25 1.50

Fi1G. 2. The function f(u,0) as a function of u for H/H.=6=0.1.
The number of discontinuities is enormously increased compared
with the case H/H.=60=1, also shown in the figure.
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TaBLE 1. The function f(pe8), Eq. (4.9), as a function of the
density ps, for =1. Each group defined the values of the function
inside of a jump. In this table, #=1; see Eq. (50).

logiops  f(ps,8) logiops  f(ps,8) logiops  f(ps,8) logiops  f(ps,0)
0.359 2.8 1.064 15.4 1.287 25.7 1.422 33.9
0.391 3.6 1.069 15.8 1.290 26.1 1.424 34.4
0.422 4.7 1.075 16.2 1.293 26.4 1.426 34.7
0.477 3.5 1.085 16.2 1.298 26.2 1.430 34.6
0.501 4.3 1.089 16.7 1.301 26.7 1.431 35.0
0.525 5.3 1.094 17.0 1.304 27.0 1.433 35.3
0.567 4.3 1.104 17.1 1.309 26.6 1.437 35.1
0.587 5.0 1.108 17.5 1.311 27.1 1.439 35.5
0.606 5.9 1.113 17.8 1.314 27.4 1.440 35.9
0.640 5.1 1.122 17.8 1.319 27.3 1.444 35.6
0.656 5.8 1.126 18.2 1.321 27.7 1.446 36.1
0.672 6.6 1.130 18.6 1.324 28.0 1.447 36.4
0.702 5.9 1.139 18.5 1.329 28.0 1.451 36.2
0.715 6.6 1.143 19.0 1.331 28.4 1.452 36.6
0.729 7.3 1.147 19.3 1.334 28.7 1.454 37.0
0.754 6.7 1.155 19.3 1.338 28.5 1.457 36.8
0.766 7.4 1.159 19.8 1.341 28.9 1.459 37.2
0.778 8.1 1.163 20.1 1.343 29.2 1.461 37.5
0.800 7.5 1.171 20.0 1.348 29.2 1.464 37.1
0.811 8.2 1.175 20.5 1.350 29.6 1.466 37.5
0.821 8.9 1.179 20.8 1.352 29.9 1.467 37.9
0.841 8.4 1.186 20.7 1.357 29.7 1.471 37.6
0.850 9.0 1.190 21.1 1.359 30.1 1.472 38.1
0.860 9.7 1.193 21.5 1.361 30.4 1.474 38.4
0.878 9.2 1.200 21.3 1.366 30.3 1.477 38.2
0.886 9.9 1.204 21.8 1.368 30.7 1.479 38.6
0.895 10.5 1.207 22.1 1.370 31.0 1.480 39.0
0.911 10.1 1.214 21.9 1.374 30.8 1.483 38.8
0.919 10.7 1.218 22.4 1.377 31.2 1.485 39.2
0.927 11.3 1.221 22.7 1.379 31.5 1.486 39.5
0.942 11.0 1.228 22.6 1.383 31.4 1.489 39.3
0.949 11.6 1.231 23.1 1.385 31.8 1.491 39.7
0.956 12.2 1.234 23.4 1.387 32.1 1.493 40.0
0.970 119 1.240 23.2 1.391 31.9 1.496 39.8
0.976 12.5 1.244 23.7 1.393 32.4 1.497 40.2
0.983 13.1 1.247 24.0 1.395 32.7 1.499 40.5
0.996 12.8 1.253 23.8 1.399 32.5 1.501 40.2
1.002 134 1.256 24.2 1.401 32.9 1.503 40.7
1.008 13.9 1.259 24.6 1.403 33.2 1.504 41.0
1.020 13.7 1.265 24.4 1.407 32.9 1.507 40.9
1.026 14.3 1.268 24.9 1.409 33.4 1.509 41.3
1.032 14.8 1.271 25.2 1.411 33.7 1.510 41.6
1.043 14.6 1.276 25.0 1.415 33.5 1.513 41.3
1.048 15.0 1.279 25.4 1.417 33.9 1.514 41.7
1.054 15.4 1.282 25.8 1.418 34.2 1.516 42.0

current J is found by averaging the z component of the
current

jumiec / PO (D (42)

over the distribution function f, in the following way:

J=Ji=—% f JofudhN (k). 43)

where N (k.)dk, is the density of states between %, and
k.+dk, and is given by*

N (k,)dk,= g(2w) 2R ;%dk., (44)

where g=2. Using Eq. (43) and Ohm’s law, J=¢4F, we
obtain

|00

3f.0
jon——dkzN (kz) . (4:5)

J
op=—=—egh™1y.
F —o ok,

n

V. CANUTO AND H.-Y. CHIU

188

Using the eigenfunctions ¢ [Eq. (7)], it is easy to show
that

Jem ool (B2 —a 2y, (46)

as expected from the relativistic definition of velocity.
Substituting Egs. (38), (44), and (46) into Eq. (45), we
obtain the final expression for the conductivity as

on/ca=0"f(¢.u9), (47)
with
Fa=4[ (2rYRSZN /T (@Zh/me) 1, (48)
foun)= L5 ey /
1 B2 n=0 oF
o B—g, A\
{ nZ=0 (E2—a,2)7 Y 2,:1 +<m> :IR_
o Er—a,A\'?
+ & e 1-( ) Joof
(49)

dt| A (LE) |22, (4E)

Ia:‘l:=/oo ’
o () L= 0T (B, P
(50)

(1)

By=1+3 f (w£a) " sin(xta)de,
0

£, =2.69547 5718 Z1I3g12{ 14 (20) [ (E2—a,2)!/2

F(B—a, )P, (52)
[ Anur|2=0202(n]n)+w2¥2(n—1|n —1)
— 20105V (|0 )¥ (n—1|n'—1), (53)
V(n|n')=(nln' )y 12e 2 ntn) 12
XoFo(—n', —n; —1/t). (54)
The spin average is easily performed; we have
w?— Y wl(s,s)=3[1+E2
R s |
of = ¥ 0 (s,s) =3[1+F (55)

+ B2 (2 —a ) 2 (F2—a, )],

wiws— 3, wi(ss)wa(ss’) =0E2(nn')2.

s,s’

5. CONDUCTIVE OPACITY COEFFICIENT

The thermal-conductivity coefficient \ is usually
defined through the relation

Q= —\udT/dx, (56)

where Q has the dimensions of erg cm™2 sec™! and \ of
erg cm™! sec™ deg—. The Wiedemann-Franz law relates
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the parameter N with the electrical conductivity ¢ via
the relation®

A= (§7%) (k/e)’on T, (57)
when £=1.38024X 107 erg deg™ is the Boltzmann
constant. This equation has been shown to hold in a
quantizing magnetic field by Zyrianov.? The conductive
opacity coefficient k.2, defined as

kM= (4a./3p)\e T, (58)

after using Egs. (57) and (47), becomes
kA =k0%f(po,0) , (59)
R =32y SR L (60)

In Eq. (60), a is the fine-structure constant (a=1/137),
¢=FkT/mc?, my is the proton mass, and u; enters in
because of the relation between N,/Q and total density

TaBLE II. The function f(pe8) for #=0.1 as a function of u.
Because of too many jumps (as explained in the text), the com-
putation was stopped at u~5. In Fig. 2 only the first four jumps
are shown. Here, too, ¢ =1 [Eq. (50)].

log1ops f(ps,0) logiops  f(ps,0) logiops f(p6,8) logiops  f(ps,8)
—0.820 1.1 0.095 12.2 0.370 22.4 0.532 30.8
—0.777 1.5 0.101 12.6 0.374 22.8 0.534 31.2
—0.737 2.0 0.107 12.9 0.377 23.1 0.537 31.6
—0.666 1.6 0.120 13.0 0.384 23.0 0.541 31.5
—0.634 2.1 0.126 13.4 0.387 23.4 0.543 31.9
—0.603 2.6 0.132 13.7 0.390 23.7 0.545 32.2
—0.548 2.2 0.144 13.8 0.396 23.4 0.549 32.0
—0.522 2.7 0.150 14.2 0.399 23.8 0.551 32.4
—0.497 3.2 0.155 14.5 0.402 24.2 0.554 32.7
—0.452 2.8 0.166 14.5 0.409 24.1 0.558 32.5
—0.431 3.3 0.172 14.9 0.412 24.5 0.560 33.0
—0.410 3.8 0.177 15.2 0.415 24.8 0.562 33.3
—0.372 3.5 0.188 15.2 0.420 24.8 0.566 33.1
—0.354 4.0 0.193 15.6 0.423 25.2 0.568 33.5
—0.336 4.5 0.198 16.0 0.426 25.5 0.570 33.8
—0.303 4.2 0.208 16.0 0.432 25.2 0.574 33.7
—0.288 4.7 0.213 16.4 0.435 25.7 0.576 34.1
—0.273 5.2 0.218 16.7 0.438 26.0 0.578 34.4
—0.244 4.9 0.228 16.7 0.443 25.9 0.582 34.0
—0.230 5.4 0.233 17.1 0.446 26.3 0.584 34.5
—0.216 5.9 0.237 17.4 0.449 26.6 0.586 34.8
—0.191 5.7 0.246 17.4 0.454 26.5 0.589 34.6
—0.178 6.2 0.251 17.8 0.457 26.9 0.591 35.0
—0.166 6.7 0.255 18.1 0.460 27.2 0.593 35.3
—0.143 6.4 0.264 18.0 0.465 27.1 0.597 35.2
—0.132 6.9 0.268 18.4 0.467 27.5 0.599 35.6
—0.121 7.4 0.273 18.7 0.470 27.8 0.601 35.9
—0.100 7.2 0.281 18.6 0.475 27.6 0.604 35.7
—0.090 7.7 0.285 19.0 0.478 28.0 0.606 36.1
—0.080 8.2 0.289 19.3 0.480 28.3 0.608 36.4
—0.061 8.0 0.297 19.3 0.485 28.2 0.612 36.2
—0.052 8.5 0.301 19.7 0.488 28.6 0.613 36.6
—0.043 9.0 0.305 20.0 0.490 28.9 0.615 36.9
—0.025 8.8 0.313 19.9 0.495 28.8 0.619 36.7
—0.017 9.4 0.317 20.3 0.498 29.2 0.620 37.1
—0.008 9.9 0.321 20.7 0.500 29.5 0.622 37.4
0.008 9.7 0.328 20.5 0.505 29.3 0.626 37.2
0.016 10.2 0.332 20.9 0.507 29.7 0.627 37.6
0.024 10.7 0.336 21.2 0.509 30.0 0.629 37.9
0.039 10.5 0.343 21.2 0.514 29.8 0.632 37.9
0.046 11.0 0.346 21.6 0.516 30.2 0.634 38.3
0.053 11.5 0.350 219 0.519 30.5 0.636 38.6
0.068 11.4 0.357 21.7 0.523 30.4 0.639 38.3
0.075 11.8 0.360 22.1 0.525 30.8 0.641 38.7
0.081 12.1 0.364 22.4 0.528 31.1 0.642 39.0

8R. E. Marshak, Ann. Acad. Sci. (N. Y.) 41, 49 (1941).
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TasLE II1.Co mparison between the conductivities in units of
u [see Eq. (48)]with and without the magnetic field, for =1 and
®=1; ox>o00.

log1ops 300 on,0=1 on/ao, 0=1
0. 0.155 3.53 68.32
0.6 0.286 5.79 60.73
0.8 0.573 7.44 43.51
1.0 0.895 13.71 45.95
1.2 1.531 22.85 44.77
14 2.570 35.60 41.55
1.6 4.266 60.48 42.48

p. For the completely ionized system and when only one
type of ion is present, u;=A. Numerically, Eq. (60)

becomes
kHA=20.26T¢(22/A)X108 cm? g1, (61)

where Te=10"¢XT in °K.

TasLE IV. The function f(pe8) including the ion-ion correla-
tion ®, for =1 and Z=20. The parameter I'=[(Ze)?/kT]
X [%r (V;/2) M3 which measures the strength of the ion-ion correla-
tion is taken equal to 100. Compared with Table I, i.e., =1, the
function f(pe,) is increased up to a factor of 2.

log1os S(ps,0) log1ops F(oe,9)

0.35869 2.65077 1.06433 23.65639
0.39114 3.50828 1.06946 24.65825
0.42204 4.60602 1.07456 25.46954
0.47683 3.49817 1.08451 25.49251
0.50117 433834 1.08936 26.50386
0.52464 5.35837 1.09418 27.31723
0.56729 4.44158 1.10360 27.26363
0.58669 5.27978 1.10820 28.28908
0.60553 6.26141 1.11277 29.10674
0.64035 5.47310 1.12171 28.91310
0.65645 6.31962 1.12609 29.96494
0.67216 7.28090 1.13043 30.79442
0.70153 6.58780 1.13894 30.53162
0.71526 7.44959 1.14311 31.60017
0.72870 8.40082 1.14725 32.43800
0.75406 7.78230 1.15536 31.86873
0.76602 8.66409 1.15934 32.96918
0.77776 9.61211 1.16330 33.82063
0.80005 9.05432 1.17105 33.54079
0.81063 9.95980 1.17486 34.61751
0.82104 10.90955 1.17864 35.45503
0.84092 10.40237 1.18607 35.28603
0.85040 11.33491 1.18972 36.34979
0.85975 12.29074 1.19334 37.17818
0.87766 11.82560 1.20047 36.32027
0.88625 12.78871 1.20397 37.40823
0.89472 13.75377 1.20745 38.24104
0.91103 13.32390 1.21430 37.95444
0.91887 14.32039 1.21766 39.02263
0.92662 15.29583 1.22101 39.84346
0.94157 14.89740 1.22760 39.15213
0.94879 15.93048 1.23084 40.25760
0.95592 16.91925 1.23407 41.09760
0.96972 16.54680 1.24041 40.36420
0.97640 17.62074 1.24354 41.50366
0.98301 18.62857 1.24665 42.35660
0.99583 18.27303 1.25277 41.65547
1.00204 19.39587 1.25579 42.76546
1.00820 20.43629 1.25879 43.60252
1.02015 20.06915 1.26471 43.01193
1.02596 21.24089 1.26762 44.10635
1.03172 22.31667 1.27052 4492992
1.04293 21.80699 1.27625 44.09698
1.04838 22.80507 1.27907 45.17487
1.05379 23.62039 1.28187 45.98706
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TasLE V. Numerical solution of Eq. (64). The table gives u as a function of pe, ¢, for #=1. The few zeros in the corner mean that no

solution was found for this range of the variables.

&gwﬁ —1.2 —1.0 —0.8 —0.6 —04 —0.2 0.0 0.2
Iogwps
—0.523 1.0156 0.9766 0.8984 0.7031 0.2344 0.0 0.0 0.0
—0.423 1.0352 1.0156 0.9375 0.7813 0.3125 0.1563 0.0 0.0
—0.323 1.0547 1.0352 0.9766 0.8203 0.4297 0.1732 0.0 0.0
—0.223 1.0937 1.0742 1.0547 0.8984 0.5469 0.1732 0.0 0.0
—0.123 1.1328 1.1328 1.1328 0.9766 0.6250 0.1758 0.0391 0.0
—0.023 1.2109 1.2109 1.2109 1.0742 0.7422 0.2236 0.1732 0.0
+0.077 1.2891 1.3086 1.3086 1.1523 0.8398 0.2734 0.1732 0.0
0.177 1.4258 1.4453 1.4453 1.2500 0.9570 0.3516 0.1732 0.1563
0.277 1.6016 1.6211 1.6406 1.3574 1.0742 0.4688 0.1732 0.1732
0.377 1.8750 1.8750 1.8750 1.4648 1.2109 0.6055 0.2236 0.1732
0.477 2.2266 2.2266 2.2266 1.5820 1.3379 0.7813 0.2646 0.1732
0.577 2.6953 2.6953 2.6953 1.6895 1.4746 0.9473 0.3000 0.1732
0.677 3.3203 3.3203 3.3203 1.8262 1.6211 1.1230 0.3606 0.2236
0.777 4.1016 4.1016 4.1016 1.9629 1.7676 1.3086 0.4395 0.2236
0.877 5.1172 5.1172 5.1172 2.1240 1.9287 1.4990 0.5750 0.2646
0.977 6.4062 6.4062 6.4062 2.2998 2.0898 1.6992 0.7813 0.3000
1.077 8.0078 8.0078 8.0078 2.5098 2.2632 1.9043 1.0449 0.3606
1.177 0.0 0.0 0.0 2.7881 2.4561 2.1265 1.3135 0.4123
1.277 0.0 0.0 0.0 3.1641 2.6562 2.3584 1.5967 0.5000
1.377 0.0 0.0 0.0 3.6914 2.8760 2.6001 1.8896 0.6250
1.477 0.0 0.0 0.0 4.4141 3.1201 2.8564 2.1948 0.8185

t6. NUMERICAL RESULTS AND CONCLUSIONS

The set of equations (49)-(55) define the electrical
conductivity and the conductive opacity. The follow-
ing successive steps have to be performed. Given the
implicit relation between the density p and the chemical
potential p# valid for a degenerate magnetized electron
gas, we have

s "
10~ “pEpe=30I:%C4(u)+Z dnC4—],

n=1 [12%

(62)

Ca= (2 —1)12,

075 1.47 2.19

p—

F16. 3. For a nondegenerate electron gas, the function f(¢,u,0)
has a smoother behavior than in the case of complete degeneracy
(Figs. 1 and 2). )

We have determined p for values of p in the interval
10<p<10% g/cm? and =1, and 6=0.1. For =1 and
u=~=2, Eq. (62) gives almost the same value for ps as
the formula for a free relativistic degenerate electron
gas, 1.e., u?— 1= pg*®, We have therefore used this simple
relation for §=1, and the function f(u,d) for the degen-
erate case is therefore listed in Table I as f(pg,0) for
values of pg in the range 0.3<logips<1.75. Unfor-
tunately, because of the many jumps in the f function,
any extension to higher densities would imply a time
problem, although in principle there is no extra diff-
culty. For 6=0.1, the function f(ped) is listed as a
function of pg in Table II. Figures 1 and 2 show the
function f(u,0) for 6=1 and 0.1. The discontinuities are
related to the behavior of the density of final states.

TaBLE VI. Same as Table V for §=0.1.

\logiop —1.4 —1.2 —1.0 —0.8 —~0.6 —0.4 —0.2
logiops™\

—0.523 2.1875 2.1875 2.1875 1.0547 0.8203 0.3125 0.1367
—0.423 2.8125 2.8125 2.8125 1.0937 0.8984 0.3906 0.1514
—0.323 3.4375 3.4375 3.4375 1.1523 0.9375 0.5078 0.1660
—0.223 4.0625 4.0625 4.0625 1.2109 1.0156 0.6250 0.1807
—0.123 5.0000 5.0000 5.0000 1.2695 1.0937 0.7031 0.2051
—0.023 6.2500 6.2500 6.2500 1.3281 1.1719 0.8203 0.2344
0.077 8.1250 8.1250 8.1250 1.4062 1.2500 0.9180 0.2930
0.177 0.0 0.0 0.0 1.5039 1.3281 1.0156 0.3711
0.277 0.0 0.0 0.0 1.6016 1.4160 1,1328 0.4883
0.377 0.0 0.0 0.0 1.7383 1.5137 1.2500 0.6445
0.477 0.0 0.0 0.0 1.9141 1.6113 1.3770 0.8105
0.577 0.0 0.0 0.0 2.1484 1.7187 1.5137 0.9766
0.677 0.0 0.0 0.0 2.5000 1.8457 1.6504 1.1523
0.777 0.0 0.0 0.0 2.9687 1.9775 1.7920 1.3281
0.877 0.0 0.0 0.0 3.5937 2.1289 1.9434 1.5137
0.977 0.0 0.0 0.0 4.4141 2.2998 2.1045 1.7139
1.077 0.0 0.0 0.0 5.4687 2.5049 2.2754 1.9189
1.177 0.0 0.0 0.0 6.8164 2.7588 2.4609 2.1387
1.277 0.0 0.0 0.0 8.5156 3.1006 2.6611 2.3657
1.377 0.0 0.0 0.0 0.0 3.5840 2.8809 2.6074
1.477 0.0 0.0 0.0 0.0 4.2432 3.1250 2.8589
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TasLE VIL The function f(¢,u,6) as a function of u for = 1. The chemical potential depends on the temperature and density through
Table V. Each group of values of ¢ and f correspond to one column of Table V, starting with the right column of Table V.

© f 7 f
0.156 3.685 0.469 0.734
0.173 3.715 0.605 0.863
0.224 3.804 0.781 1.048
0.265 3.878 0.947 1.237
0.300 3.942 1.123 1.446
0.361 4.054 1.309 1.666
0.412 4.152 1.499 1.881
0.500 4,321 1.699 2.086
0.625 4.570 1.904 2.272
0.818 4976 2.126 2.452

u f 7 f
0.039 1.235 0.234 0.151
0.173 1.369 0.313 0.182
0.224 1.422 0.430 0.238
0.265 1.466 0.547 0.309
0.300 1.504 0.625 0.365
0.361 1.572 0.742 0.465
0.439 1.663 0.840 0.563
0.575 1.826 0.957 0.697
0.781 2.091 1.074 0.845
1.045 2.455 1.211 1.025
1.313 2.848 1.338 1.187
1.597 3.283 1.475 1.339
1.890 3.752 1.621 1.461
2.195 4.262 1.768 1.536

1.929 1.575

" f 2.090 1.588
0.156 0.491
0.173 0.503 u f
0.176 0.504 0.703 0.128
0.224 0.537 0.781 0.170
0.273 0.574 0.820 0.196
0.352 0.634 0.898 0.257

u f n f
0.977 0.334 1.035 0.031
1.074 0.455 1.074 0.040
1.152 0.570 1.133 0.057
1.250 0.733 1.211 0.092
1.357 0.916 1.309 0.216
1.465 1.072 1.445 0.712
1.582 1.174 1.621 0.936
1.689 1.192 1.875 0.299
1.826 1.139 2.227 0.359
1.963 1.061 2.695 0.371
2.124 0.988 3.320 0.493
2.300 0.948 4.102 0.702

5.117 1.083

u 7 6.406 1.704
0.898 0.062
8.3357; 0.07573 u f

. 0.09 1.016 0.009
1.055 0.148 1.035 0.012
1.133 0.225 1.055 0.015
1211 0.336 1.094 0.023
1.309 0.538 1.132 0.029
1.445 0.880 1.211 0.017
1.641 1.022 1.426 0.346
1.875 0.679 1.602 0.894
2.227 0.560 1.875 0.111
2.695 0.597 2.227 0.225
3.320 0.776 2.695 0.225
4.102 1114 3.320 0.327
5.117 1.722 4.102 0.460
6.406 2.701 5.117 0.675

6.406 1.079

© f 8.008 1.566
0.977 0.019
1.016 0.026

For magnetic fields much lower than 6=0.1, the
numerical computations become prohibitively hard; the
function  f(¢,u,f) has discontinuities whenever
w2—an,?=0. Take as an example §=10"2; we would

then have ¢,2=14-0.02%". If u is even only of the order
of 3, the upper limit #’ would be higher than 3X 102
For the case §=0.1, we stopped the computation for
u~5 because of the tremendous number of discon-

TasLE VIII. Same as in Table VII for §=0.1. The chemical potential depends on the temperature and density through Table VI,

K f u f
0.137 0.900 0.918 0.819
0.151 0.920 1.016 0.994
0.166 0.939 1.133 1.243
0.181 0.960 1.250 1.538
0.205 0.995 1.377 1.908
0.234 1.038 1.514 2.372
0.293 1.129 1.650 2.899
0.371 1.261 1.792 3.513
0.488 1.486 1.943 4.234
0.644 1.840 2.104 5.073
0.810 2.294 2.275 6.029
0.977 2.833 2.461 7.130
1.152 3.509 2.661 8.369
1.328 4.303 2.881 9.791
1.514 5.273

u f

u f 0.820 0.176

0.898 0.228
8‘2}5 8‘%‘7L 0.938 0.259

) ' 1.016 0.329
0.508 0.337 1094 0414
0.625 0.439 1172 0514
0.703 0.521 1.250 0.631
0.820 0.669 1.328 0.765

© 7 © f
1.416 0.937 1.914 1.388
1.514 1.154 2.148 1.956
1.611 1.399 2.500 2.867
1.719 1.699 2.969 4.107
1.846 2.093 3.504 5.870
1.977 2.540
2. é(z)g §.089 " f
2. 749
2505 4570 28 25
2.759 5.622 3.437 3.420
3.101 7.076 4.062 4.620
3.584 9.251

u f u f

1 )
1055 0137 The 1
1.094 0.162 3.437 2.158
1.152 0.203 4.062 2.919
1.211 0.252
1.229 8.307 u f
1.328 369
1.406 0.463 2187 rons
1.504 0.601 3.437 1.363
1.602 0.758 1062 1843
1.738 1.011 - .
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tinuities already involved in this interval. Unlike the
free case, we have to use very small intervals for g,
otherwise we lose the discontinuities. Tables I and II
do not include the ion-ion correlation, i.e., ®— 1. In
Table IIT we compare ox with oo, the conductivity in
the case of zero magnetic field.! The ratio still shows the
undulating behavior of ¢z and the general conclusion
is that op is much higher than ¢o. This phenomenon is
known as negative magnetoresistance. This conclusion
remains unchanged when the ion-ion correlation is
included. As explained in a previous paper,! the inclu-
sion of the function & causes many difficulties, especially
in the present problem where it becomes a function of
the indices # and #/. As explained in Ref. 1, the strength
of the ion-ion correlation is determined by the parame-
ter I'= (Z2%/kT) 47 (N;/Q) JH/3, which is the ratio of
the potential energy to the kinetic energy. We have
computed one case, namely, Z=20, and I'=100 which
is the highest set of values for which the function & is
known. The results are given in Table IV. The general
effect is that the conductivity increases as in the case
of zero magnetic field and it reaches almost a value of
2forlogiope=~1.28. The tendency is that o (®) /oy (P=1)
increases with density. For the nondegenerate case, the
situation is much more complicated in the following
two respects. First, the integral on E in Eq. (49) can-
not be easily performed as in the degenerate case where
df/0E=—5(E—u), but it has to be performed exactly.
A second problem arises because of the implicit relation
between u, ps, and ¢= (kT/mc?). They are related via
the equation

s ¢ u
pe=30[—%C d(@u)+ 2 al 4('—,—‘)] ) (63)
n=1 An Ay,
where
anC4(— —>= / (14etem o)1y, (64)
Qpn Qn 0

In Tables V and VI we give u as a function of pg, ¢
for 6=1 and 0.1. These values of u are then used to
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compute f(¢p,u,0) and the results are quoted in Tables
VII and VIIIL. Figure 3 shows the function f(¢,u,0)
as a function of u for 6=1 and ¢=1.
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APPENDIX

Given the two integrals
I=/ G(E)IE, R:t=/ f(s)ds,
1 0

the following steps were followed. The R, were com-
puted by use of a 16-point Gaussian quadrature
formula.®

Because of the jump discontinuities of G(E) at
E?*=14-2(N—1) for all positive integers N>1, the
computation of 7 required separate integration over each
panel (E;E;.1), j=1, k, where £ was chosen so that
three-place convergence was obtained for 7. A five-
point open-type quadrature formula was applied over
each panel.

The order of the quadrature formulas used has been
increased until three-place convergence was obtained
in the final results.

As for the computer program to evaluate 7, we found
that in order to prevent ‘“overflow” and ‘“underflow”
it was necessary to make use of Stirling’s formula and
logarithms. It was also necessary to vary the order of
arithmetical computations in evaluating the integrand
f(s) of Ry according to whether s was less than or
greater than 1.

To speed up the program, we found that we could
truncate series at =18 without affecting the three-
place significance of our final results.

9 This computation was made by N. Rushfield, Computer
Applications Inc., New York, N. Y.



