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Longitudinal Electrical Conductivity of a Relativistic Gas
in an Intense Magnetic Field
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(Received 26 May 1969)

The electrical conductivity for an electron gas is computed when a strong quantizing magnetic field is
present. This strong field ( 10"G) is thought to exist in the interior of a neutron star. The knowledge of
the conductivity is of primary importance for the evaluation of the decay time of the magnetic field due to
Ohmic dissipation. This is a critical quantity in most of the recent developments of pulsars as magnetized
neutron stars. The chief scattering process is Coulomb scattering by ions. For magnetic field of the order
of 10'3 G, the conductivity is higher by a factor 10-10' with respect to the case without a magnetic field.
The ion-ion correlation is included through the use of the static pair-correlation function. Its eBect is that
of increasing the conductivity by a factor of 2.

1. INTRODUCTIOÃ

'HE relativistic transport properties of an electron
gas imbedded in a system of ions has been studied

in a previous paper, taking into account the ion-ion
interaction. In the present paper the electrical con-
ductivity is studied when the electrons are also im-
bedded in a strong homogeneous and constant magnetic
field. Only the problem of the longitudinal conductivity
is studied in this paper. As we see later, the electron
moves freely in the direction parallel to the magnetic
field; this circumstance allows the application of the
Boltzmann equation. When the electric Geld Z is parallel
to II, there is no need to diagonalize the Hamiltonian
with both fields included as one ought to do when the
transverse conductivity is studied. This last problem is
treated in a separate paper. ' We proceed to compute the
electrical conductivity and then, through the use of the
Kiedemann-Franz law, we can deduce the thermal con-
ductivity. The conductive opacity is then easily com-
puted. The Weidemann-Franz law has been shown to
hold in the presence of a quantizing magnetic field by
Zyrianov. 3 AQ of the transport properties depend on a
dimensionless function f(g, tt,0), where ts is the chemical
potential (plus the rest mass of the electron in units of
mcs), 0=H/H, is the magnetic Geld in units of
H, =m'cs/ePt= 4.414&&10" G g= kT/mc' The results
are arranged in. tables for the function J'g, tt,0) for
degenerate and nondegenerate cases as function of the
density p (or, equivalently, the chemical potential) for
two different values of 8:0.1 and 1.0. Figures 1-3 show
the behavior of the function f when tt varies. The dis-
continuities present in the degenerate case are caused by
the density of Gnal states which is a discontinuous
function of the energy. ' The behavior of f(g,ts, 0) is
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considerably smoother at high temperatures, i.e.,
7~10" K. As seen from Figs. 1 and 2, the number of
discontinuities considerably increases with decreasing
magnetic field. For that reason it was not possible to
include values lower than 8=0.1.The problems involved
in the computation of the function f(g, ts,0) were quite
comp1ex, and in the Appendix a sketch of the procedure
we used is outlined.

The knowledge of the electrical conductivity allows
us to compute the decay time of H due to Ohmic dis-
sipation. This quantity has become of primary im-
portance in problems related to pulsars which are now
accepted to be magnetized neutron stars. Using
Maxwell's equations and Ohm's law, one can easily
prove that the diffusion equation for a magnetic field
B is'

0H/0t = (cs/4n. a JI) PH,
which indicates that an initial configuration of II will
decay in a diffusion time r given by

r= erg. III.'c ',
where 1. is a length which characterizes the spatial
variation of II. The main contribution to o-~ is thought
to be the Coulomb scattering of electrons by ions. The
elastic scattering of an electron by a Coulomb potential,
taking place in a magnetic field, is computed in analogy
with the Mott scattering by using the exact wave-func-
tion solution of the Dirac equation.

2. DIRAC EQUATION WITH
MAGNETIC FIELD

As discussed in a previous paper, ' an electron of mass
m, charge e, in an external electromagnetic field 2„, is
described by

fy„B„+mc/Pt+ (i e/Itc)y„A „)fz&=0. (1)

In the special case of a pure magnetic Geld H, constant
in time and homogeneous in space, we have

&= ~HXr, A4 ——0. (2)
5 J. D. Jackson, Ctassica/ E/ectrodynanzics (John Wiley R Sons,

inc. , New York, 1962), p. 313.
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If H is directed along the 2 axis, i.e., H, =B„=O, then

A, = ——,'yH, Ay ———2'xH, A.=0. (3)

Because of the nature of the problem we treat later, it is
more convenient to work with a different P, gauge
transformed in the following way:

P—P~ e'f (*tt)

A=0,
Ze' 4~Ze'

A4 ——— (Rn-r) (13)
)R.—r( L,L„L. , q

The interaction energy is now (/=i'&4)

electron and of the (2th ion, respectively, p is given by
Eq. (7), and A„(R —r) is given by

with f(xy) chosen in such a way that

A.= —ylI, A, =A, =O.
Clearly,

(5)
+int=

a=1
+lntd r

47r82Z Ns

P q-2I. e
—i2 Rn (14)

L+„L,n=l

f(2:y) = ,' (e/hc—)x—yH.
The solution to the Dirac equation can be written as'

Iit=d'r A—(r)e'&'P;(r)

p(r)e imcrcz—t/tt

p(r) —
24 (()e—rrttei(ktz+k2z)

clH„(&)
C2Hn —1($)
ctH (&).C~=l(k).

.(*)= (1+x2+2W)»2,

n=0, 1, . . . , ~, @=p,/mc, 8=H/H. ,

H, =m2C2/e~= 4.414X 10» G,
yyl/2+Itc y 1/2 p 8$ 2

K,= )tt/mc, cl= aA, c2 saB, ——
c3=gsbA, c4= gbB;

where 2 and f mean the set of all quantum numbers,
namely, s, r/, n, x Lsee Eqs. (7)—(10)5, describing the
initial and final states of the electrons. In our case

(7) t);=r/r=+1, and from now on we drop these indices.
Substituting Eq. (7) into Eq. (15), we obtain

I;r= 4,-k, p„A,-k, i„(~1(n
~

n )+~2(n —1jn —1))
=41—kl'+2142-kt+tttA n, n' ) (1(.)

with
l I I(dl= C1C1 +CSC2 r (02= C2C2 +C4C4

and, in general,

(ni n') =y' 'lr—'"(n n")-'"(2—"—"')' '

dy H-(yl)H-(y2) exp(tq2y —2yl' —2y2')

(t'= -'(1+1)4 ') A'= 2$1+s-x(x2+2n8) '/'5

t '= —,'(1—1)2-') It'= -'(1—sx(x'+2n8) —'"5 (10)

The two indices q=&1, s= ~1 stand for positive and
negative energies and the sign of the projection of the
momentum component along the spin. H„(x) are the
Hermite polynomials normalized to 1 in the interval
—~ to:

H ~1/4~ 1/42 n/2 (n ))
—1/2H— —

The wave functions pl& were used to construct the
equations of state for an electron gas in a magnetic 6.eld
by calculating the energy-momentum tensor T„„.4

A simplified derivation of the same equation of state
by only using the expression for the quantized energy
eigenvalues was given in a recent paper. 6

3. MOTT SCATTERING IN
MAGNETIC FIELD

yl yyl/2+Ply 1/2 y y~l/2+/ r~ 1/2 (17)

The integration can be performed only after specifying
the sign of (n —n'). When n&~n', we denote (n~n')
by I(n'~n). The result is

I(n'( n) = L(n n')!5—1(nln'!)—»2e—«2t(n —n')/2

X,F,(—n'; n n'+1; —t)e '(=n'»e '4, (18)--
with

t= (2p)
—'(ql'+ q2'), tt = arccot(q, /ql),

A= q2(ql+kl)(2y) ';
1F1 is the hypergeornetric function. The result (18) can
be brought into a more symmetric form by changing
1F1 to 2FO (which is symmetrical in its parameters)
using the relation

1F1( n'; n —n—'+1;x) = C(n —n') /n!5
X(—)"'*"' Fo(—n', —n; —1/*),

which givesIn analogy with the case II=0, we start with the
interaction-Hamiltonian density I(n'~ n) = (n!n'!) '/'e '/'t("+"'»2--

X,F(t(—n', —n; 1/t)( )"'e —'(" "')4—e 'A, (19)sc; t—— 2ep(r)y„—p(r)A„(R r), —(12)

where r and R represent the position vectors of the
or

(20)I(n'
~
n) =4'(n

~

n') (—)"'e 'ke '(" "')4'

4 (n) n') =4 (n'~ n).
1'V. Canuto, H.-Y. Chiu, and L. Fassio-Canuto, Astrophys.

Space Sci. 3, 258 (1969).
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—1 ~ 1 d ' 1——&(, ')~Lg( ')3 (34
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3.7—
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(46)~~E—1(E2 g 2)l. /P

logic pe f(pe, 9) log tope f(pe, 8) iog tope f(pe, 8) log lope f(pe,~)

TABLE I. The function f(P&,//), Eq. (4.9), as a function of the Using the eigenfunctions f LEq. (7)], it is easy to show
density p6, for 9=1.Each group defined the values of the function
inside of a jurnp. In this table, C = 1; see Eq. (50).

0.359
0.391
0.422
0.477
0.501
0.525
0.567
0.587
0.606
0.640
0.656
0.672
0.702
0.715
0.729
0.754
0.766
0.778
0.800
0.811
0.821
0.841
0.850
0.860
0.878
0.886
0.895
0.911
0.919
0.927
0.942
0.949
0.956
0.970
0.976
0.983
0.996
1.002
1.008
1.020
1.026
1.032
1.043
1.048
1.054

2,8
3.6
4.7
3.5
4.3
5.3
4.3
5.0
$.9
5.1
5.S
6.6
5.9
6.6
7.3
6.7
7.4
8.1

7.5
8.2
8.9
8.4
9.0
9.7
9.2
9.9

10.5
10.1
10.7
11.3
11.0
11.6
12.2
11.9
12.5
13.1
12.8
13.4
13.9
13.7
14.3
14.8
14.6
15.0
15.4

1.064
1.069
1.075
1.085
1.089
1.094
1.104
1.108
1.113
1.122
1.126
1.130
1.139
1.143
1.147
1.155
1.159
1.163
1.171
1.175
1.179
1.186
1.190
1.193
1.200
1.204
1.207
1.214
1.2 18
1.221
1.228
1.231
1.234
1.240
1.244
1.247
1.253
1.256
1.259
1.265
1.268
1.271
1.276
1.279
1.282

15.4
15.8
16.2
16.2
16.7
17.0
17.1
17.5
17.8
17.8
18.2
18.6
18.5
19.0
19.3
19.3
19.8
20.1

20.0
20.5
20.8
20.7
21.1
21.5
21.3
21.8
22.1
21.9
22.4
22.7
22.6
23.1
23.4
23.2
23.7
24.0
23.8
24.2
24.6
24.4
24.9
25.2
25.0
25.4
25.8

1.287
1.290
1.293
1.298
1.301
1.304
1.309
1.311
1.314
1.319
1.321
1.324
1.329
1.331
1.334
1.338
1.341
1.343
1.348
1.350
1.352
1.357
1.359
1.361
1.366
1.368
1.370
1.374
1.377
1.379
1.383
1.385
1.387
1.391
1.393
1.395
1.399
1.401
1.403
1.407
1.409
1.411
1.415
1.417
1.418

25.7
26.1

26.4
26,2
26.7
27.0
26.6
27.1
27.4
27.3
27.7
28.0
28.0
28.4
28.7
28.5
28.9
29.2
29,2
29.6
29.9
29.7
30.1
30.4
30.3
30.7
31.0
30.8
31.2
31.5
31.4
31.8
32.1
31.9
32.4
32.7
32.5
32.9
33.2
32.9
33.4
33.7
33.5
33.9
34.2

1.422
1.424
1.426
1.430
1.431
1.433
1.437
1.439
1.440
1.444
1.446
1.447
1.451
1.452
1.454
1.457
1,459
1.461
1.464
1.466
1.467
1.471
1.472
1.474
1.477
1.479
1.480
1.483
1.485
1,486
1.489
1.491
1.493
1.496
1.497
1.499
1.501
1.503
1.504
1.507
1.509
1.510
1.513
1.514
1.516

33.9
34.4
34.7
34,6
35.0
35.3
35.1
35.5
35.9
35.6
36.1
36.4
36.2
36,6
37.0
36.8
37.2
37.5
37.1
37.5
37.9
37,6
38.1
38,4
38.2
38.6
39.0
38.8
39.2
39.5
39.3
39.7
40.0
39.8
40.2
40.5
40.2
40.7
41.0
40.9
41.3
41.6
41.3
41..7
42.0

with
~n/0Ir =0'f(4,/I, /i), (47)

o.lr 4p——(2n.)'X,'ZN;/Q] '(n—ZA/mc') ',
"dE Bfp

f(4,/, //) = E (E'—g-')'"
1 +2 n=o

(4g)

g,p) &/2-

Q (E'—g„')—'/' 1+I(E' g„'i—
(E2 g, 2 1/2-

+Q (E'—„') '" 1—
I g'—

dt
I
A."'(&,E)

I

'c ~(t,E)

(/+(2g) 1L(E2 g 2)1 2~ (E2 g '2)1/2]2)2

(5o)

C'~=1+3 (x)~) ' sin(x4. )dx,

8 =2.&9547p '"Z'"/i'"(/'+(28) 'L(E' — ')'"

~ (E2 g, 2)1/2]2}l/2 (52)

I'=~ '+'(nI n')+~2'+'(n —1I n' —1)

—2~,~,e(nI n')e(n —1I n' —1), (53)

X2Pp( —n', n; —1/—/) .. (54)

as expected from the relativistic definition of velocity.
Substituting Eqs. (38), (44), and (46) into Eq. (45), we
obtain the Anal expression for the conductivity as

f(~)vA (~)d'» (42) 8, 8

~E—2(E2 g 2)1/2(E2 g 2)l/2]

cu~~ent J is found by averaging the s comPonent of the &h
.

e as l erformed we havee spin average is easi y per orme; we avecurrent

/dP ~ P p/P(s s') = ~I 1+E-P

over the distribution function f, in the following way:
p&p'~ Q pp(p, s)s=-', L1+E '

8, 8'
(55)

J=—Jp= —Q j.f dk, N(k, ), (43) ~E—2(E2 g 2)1/2(E2 g,2)l/2]

N(k, )dk, =g(2n.) 'X. Pedk„ (44)

where g=2. Using Eq. (43) and Ohm's law, J=&rnF, we
obtain

where N(k, )dk, is the density of states between k, and
k,+dk, and is given by4

p/gu2 ~ P &o/(ss')ppp(ss') =gE '(nn')'".
8, 8'

5. CONDUCTIVE OPACITY COEFFICIENT

Q = XIrd T/dx, — (56)

The thermal-conductivity coeQicient A. is usually
dehned through the relation

~fnj,r dk,N (k,) .
Bk,

(45) where Q has the dimensions of erg cm ' sec ' and X of
erg cm ' sec ' deg '. The Kiedemann-Franz law relates
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the parameter X with the electrical conductivity 0 via
the relation'

Xrr = (-,'w') (k/e)'o rr T, (37)

when k=1.38024XI.O ' erg deg ' is the Boltzmann
constant. This equation has been shown to hold in a
quantizing magnetic fieM by Zyrianov. ' The conductive
opacity coefficient k,~, defined as

kg = (4a,/3p) hrr 'T', — (38)

after using Eqs. (57) and (47), becomes

k FI k Hgsf(yp g) (59)
)'c ~= s(2x--)'mrr 'n'gPX 'Z'fi (60)

In Eq. (60), n is the fine-structure constant (u= 1/137),
rk=kT/mc', err is the proton mass, and p; enters in
because of the relation between 1V,/0 and total density

TABLE III.Co mparison between the conductivities in units of
o'rr /see Eq. (48)jwith and without the magnetic Geld, for e=1 and
+=1; 0.11))00.

loglop6

0.4
0.6
0.8
1.0
1.2
1.4
1.6

0.155
0.286
0.573
0.895
1.531
2.570
4.266

3.53
5.79
7.44

13.71
22.85
35.60
60.48

o-~//0. 0, 8= 1

68.32
60.73
43.51
45.95
44,77
41,55
42.48

p. For the completely ionized system and when only one

type of ion is present, p, =A. Numerically, Eq. (60)
becomes

E,H=20. 26Ts'(Z'/A)&&10 s cm'g ' (61)

where T6=—10 ')&T in 'K.

TABLE II. The function f(pe, e) for 8=0.1 as a function of ju.
Because of too many jumps (as explained in the text), the com-
putation was stopped at lM~S. In Fig. 2 only the first four jumps
are shown. Here, too, 4 = 1 LEq. (50)g.

»giope f(pe 8) 1og1ope f(pe, 8) log 1ope f(pe, 8) 1ogiope f(pe, 8)

TAnrz IV. The function f(pq, g) including the ion-ion correla-
tion 4, for 8=1 and Z=20. The parameter I'—=L(Ze)'/k2'j
&& pw (llr~/fl) g'll which measures the strength of the ion-ion correla-
tion is taken equal to 100. Compared with Table I, i.e., C =1, the
function f(p6,8) is increased up to a factor of 2.

—0.820
—0.777
—0.737
—0.666
—0.634
—0.603
—0.548
-0.522
—0.497
—0.452
—0.431
—0.410
—0.372
—0.354
—0.336
—0.303
—0.288
—0.273
—0.244
—0.230
—0.2 16
—0.191
—0.178
-0.166
—0.143
—0.132
—0.121
—0.100
—0.090
—0.080
—0.061.
—0.052
—0.043
—0.025
—0.017
—0.008

0.008
0.016
0.024
0.039
0.046
0.053
0.068
0.075
0.081

1.1
1.5
2.0
1.6
2.1

2.6
2.2
2.7
3.2
2.8
3.3
3.8
3.5
4.0
4.5
4.2
4.7
5.2
4.9
5.4
5.9
5.7
6.2
6.7
6.4
6.9
7.4
7.2
7.7
8.2
8.0
8.5
9.0
8.8
9.4
9.9
9.7

10.2
10.7
10.5
11.0
11,5
11.4
11,8
12.1

0.095
0.101
0.107
0, 120
0, 126
0.132
0.144
0, 150
0.155
0.166
0.172
0.177
0.188
0.193
0.198
0.208
0.213
0.218
0.228
0.233
0.237
0.246
0.251
0.255
0.264
0.268
0.273
0.281
0.285
0.289
0.297
0.301
0.305
0.313
0.317
0.321
0.328
0,332
0.336
0.343
0.346
0.350
0.357
0.360
0.364

12.2
12.6
12.9
13.0
13.4
13,7
13.8
14.2
14.5
14.5
14.9
15.2
15.2
15.6
16.0
16.0
16.4
16.7
16.7
17.1
17.4
17.4
17.8
18.1
18.0
18.4
18.7
18.6
19.0
19.3
19.3
19.7
20.0
19.9
20.3
20.7
20.5
20.9
21.2
21.2
2 1.6
21.9
21.7
22.1

22.4

0,370
0.374
0.377
0.384
0.387
0.390
0,396
0.399
0,402
0.409
0.412
0.415
0.420
0.423
0.426
0.432
0.435
0.438
0.443
0.446
0.449
0.454
0.457
0.460
0.465
0.467
0,470
0.475
0.478
0.480
0.485
0.488
0.490
0.495
0.498
0.500
0.505
0.507
0.509
0.514
0.516
0.519
0,523
0.525
0.528

22.4
22.8
23.1
23.0
23.4
23.7
23.4
23.8
24.2
24.1

24.5
24.8
24.8
25.2
25.5
25.2
25.7
26.0
25.9
26.3
26.6
26.5
26.9
27.2
27.1

27.5
27.8
27.6
28.0
28.3
28.2
28.6
28.9
28.8
29.2
29.5
29.3
29.7
30.0
29.8
30.2
30.5
30.4
30.8
31.1

0.532
0.534
0.537
0.541
0.543
0.545
0.549
0.551
0.554
0.558
0.560
0.562
0.566
0.568
0.570
0.574
0.576
0.578
0.582
0.584
0.586
0.589
0.591
0.593
0,597
0.599
0,601
0.604
0.606
0.608
0.612
0.613
0.615
0.619
0.620
0.622
0.626
0.627
0.629
0.632
0.634
0.636
0.639
0.641
0.642

30.8
31.2
31.6
31.5
31.9
32.2
32.0
32.4
32.7
32.5
33.0
33.3
33.1
33.5
33.8
33.7
34.1
34.4
34.0
34.5
34.8
34,6
35.0
35.3
35.2
35.6
35.9
35.7
36.1
36.4
36.2
36.6
36.9
36.7
37.1
37.4
37.2
37.6
37.9
37.9
38.3
38.6
38.3
38.7
39.0

logiope

0.35869
0.39114
0.42204
0.47683
0,50117
0.52464
0.56729
0.58669
0.60553
0.64035
0.65645
0.67216
0.70153
0.71526
0.72870
0.75406
0.76602
0.77776
0.80005
0.81063
0.82104
0.84092
0.85040
0.85975
0.87766
0.88625
0.89472
0.91103
0.91887
0.92662
0.94157
0.94879
0.95592
0.96972
0.97640
0.98301
0.99583
1.00204
1.00820
1.02015
1.02596
1.03172
1.04293
1.04838
1.05379

f(p,~)

2,65077
3.50828
4.60602
3.49817
4.33834
5.35837
4.44158
5.27978
6.26141
5.47310
6.31962
7.28090
6.58780
7.44959
8.40082
7.78230
8.66409
9.61211
9.05432
9.95980

10.909SS
10.40237
11.33491
12.29074
11.82560
12.78871
13.75377
13.32390
14.32039
15.29583
14.89740
15.93048
16.91925
16.54680
17.62074
18.62857
18.27303
19.39587
20.43629
20.06915
21.240g9
22.31667
21.80699
22,80507
23.62039

logiop6

1.06433
1.06946
1.07456
1.08451
1.08936
1.09418
1.10360
1.10820
1.11277
1.12171
1.12609
1.13043
1.13894
1.14311
1.14725
1.15536
1.15934
1.16330
1.17105
1.17486
1.17864
1.18607
1.18972
1,19334
1.20047
1,20397
1.20745
1.21430
1.21766
1.22101
1.22760
1.230g4
1 ~ 23407
1.24041
1.24354
1.24665
1.25277
1.25579
1.25879
1.26471
1.26762
1.27052
1.27625
1.27907
1.28187

f(ps 8)

23.65639
24.65825
25.46954
25.49251
26.50386
27.31723
27.26363
28.28908
29.10674
28.91310
29.96494
30.79442
30.53162
31.60017
32.43800
31.86873
32.96918
33.82063
33.54079
34.61751
35.45503
35.28603
36.34979
37.17818
36.32027
37.40823
38.241.04
37.95444
39.02263
39.84346
39.15213
40.25760
41.09760
40.36420
41.50366
42.35660
41.65547
42.76546
43.60252
43.01193
44.10635
44.92992
44,09698
45.17487
45.98706

s R. E. Marshak, Ann. Acad. Sci. (N. Y.) 41, 49 (1941).
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TABLE V. Numerical solution of Eq. (64). The table gives p as a function of ps, p, for 9=1. The few zeros in the corner mean that no
solution was found for this range of the variables.

logy

—0.523—0.423—0.323—0.223—0.123—0.023
+0.077

0.177
0.277
0.377
0.477
0,577
0.677
0.777
0.877
0.977
1.077
1.177
1.277
1.377
1.477

—1.2

1.0156
1.0352
1.0547
1.0937
1.1328
1.2109
1.2891
1.4258
1.6016
1.8750
2.2266
2.6953
3.3203
4.1016
5.1172
6.4062
8.0078
0.0
0.0
0.0
0.0

—1.0

0.9766
1.0156
1.0352
1.0742
1.1328
1.2109
1.3086
1.4453
1.6211
1,8750
2.2266
2.6953
3.3203
4.1016
5.1172
6.4062
8.0078
0.0
0.0
0.0
0.0

—0.8

0.8984
0.9375
0.9766
1.0547
1.1328
1.2109
1.3086
1.4453
1.6406
1.8750
2.2266
2.6953
3.3203
4.1016
5.1172
6.4062
8.0078
0.0
0.0
0.0
0.0

—0.6

0.7031
0.7813
0.8203
0.8984
0.9766
1.0742
1.1523
1.2500
1.3574
1.4648
1.5820
1.6895
1.8262
1.9629
2.1240
2.2998
2.5098
2.7881
3.1641
3.6914
4.4141

—0.4

0.2344
0.3125
0.4297
0.5469
0.6250
0.7422
0.8398
0.9570
1.0742
1.2109
1.3379
1,4746
1.6211
1.7676
1.9287
2.0898
2.2632
2.4561
2.6562
2.8760
3.1201

—0.2

0.0
0.1563
0.1732
0.1732
0.1758
0.2236
0.2734
0.3516
0.4688
0.6055
0.7813
0.9473
1 ~ 1230
1.3086
1.4990
1.6992
1.9043
2.1265
2.3584
2.6001
2.8564

0.0

0.0
0.0
0.0
0.0
0.0391
0.1732
0.1732
0.1732
0.1732
0.2236
0.2646
0.3000
0.3606
0.4395
0.5750
0.781.3
1.0449
1.3135
1.5967
1.8896
2.1948

0.2

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.1563
0.1732
0.1732
0.1732
0.1732
0.2236
0.2236
0.2646
0.3000
0.3606
0.4123
0.5000
0.6250
0.8185

6. NUMERICAL RESULTS AND CONCLUSIONS

8 p
10 'p=—ps=38 -', C4(p,)+Q a„Cs—

—(pz 1)ils
(62)

4.2

The set of equations (49)—(55) define the electrical
conductivity and the conductive opacity. The follow-
ing successive steps have to be performed. Given the
implicit relation between the density p and the chemical
potential p4 valid for a degenerate magnetized electron
gas, we have

We have determined p for values of p in the interval
10'(p(10' g/cm' and 8=1, and 8=0.1. For 8=1 and

p 2, Eq. (62) gives almost the same value for ps as
the formula for a free relativistic degenerate electron
gas, i.e. , p' —1=p6'". We have therefore used this simple
relation for 8= 1, and the function f(p,8) for the degen-
erate case is therefore listed in Table I as f(ps, 8) for
values of p6 in the range 0.3&log10p6&1.75. Unfor-
tunately, because of the many jumps in the f function,
any extension to higher densities would imply a time
problem, although in principle there is no extra diffi-

culty. For 8=0.1, the function f(ps,8) is listed as a
function of p6 in Table II. Figures 1 and 2 show the
function f(p,8) for 8= 1 and 0.1.The discontinuities are
related to the behavior of the density of final states.

TABLE VI, Same as Table V for 8=0.1.

3.2

2.2

l.2

0.0 3
I

0.75 l.47 2.I9

FIG. 3. For a nondegenerate electron gas, the function f(@,p, ,o)
has a smoother behavior than in the case of complete degeneracy
(Figs. 1 and 2).

Qlog toP
log1OpoX

—0.523
—0.423
—0.323
—0.223
-0.123
—0.023

0.07 7
0.177
0.27 7
0.377
0.477
0.577
0.677
0.777
0.877
0.97 7

1.07 7

1.177
1,277
1.377
1.477

—1..4

2.1875
2.8125
3.4375
4.0625
5.0000
6.2500
8.1250
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

—1.2

2.1875
2.8125
3.4375
4.0625
5.0000
6.2500
8.1250
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

—1.0

2.1875
2.8125
3.4375
4.0625
5.0000
6.2500
8.1250
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

1.0547
1.0937
1.1523
1.2109
1,2695
1.3281
1,4062
1.5039
1.6016
1.7383
1.9141
2.1484
2 ~ 5000
2.9687
3.5937
4.4141
5.4687
6.8164
8.5156
0.0
0.0

—0.6

0.8203
0.8984
0.9375
1.0156
1.0937
1.1719
1,2500
1.3281
1.4160
1.5137
1.6113
1.7187
1,8457
1.9775
2.1289
2,2998
2.5049
2.7588
3.1006
3.5840
4.2432

—0.4

0.3125
0.3906
0.5078
0.6250
0.7031
0.8203
0.9180
1.0156
1,1328
1.2500
1.3770
1.5137
1.6504
1.7920
1.9434
2.1045
2.2754
2.4609
2.6611
2.8809
3.1250

—0.2

0.1367
0, 1514
0.1660
0.1807
0,2051
0 ~ 2344
0.2930
0.3711
0.4883
0.6445
0.8105
0.9766
1.1523
1.3281
1.5137
1.7139
1.9189
2, 1387
2.3657
2.6074
2.8589
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TABr.E p&&. &he function f(y,~,8) as a function Of p for s = i. The chemical potential depends on the temperature and density through
Table V. Each group of values of p and f correspond to one column of Table V, starting with the right column of Table V.

0.156
0.173
0.224
0.265
0.300
0.361
0.412
0.500
0.625
0.818

0.039
0.1/3
0.224
0.265
0.300
0.361
0.439
0.575
0.781
1.045
1.313
1.597
1.890
2.195

0.156
0.173
0.176
0.224
0.273
0.352

f
3.685
3.715
3.804
3.878
3.942
4.054
4.152
4.321
4.570
4.976

f
1.235
1.369
1.422
1.466
1.504
1.572
1.663
1.826
2.091
2.455
2.848
3.283
3.752
4.262

f
0.491
0.503
0.504
0.537
0.574
0.634

0.469
0.605
0.781
0.947
1.123
1.309
1.499
1.699
1.904
2.126

0.234
0.313
0.430
0.547
0.625
0.742
0.840
0.957
1.074
1.211
1.338
1.475
1.621
1.768
1.929
2.090

0./03
0.781
0.820
0.898

0.734
0.863
1.048
1.237
1.446
1.666
1.881
2.086
2.272
2.452

0.151
0.182
0.238
0.309
0.365
0.465
0.563
0.697
0.845
1.025
1.187
1.339
1.461
1.536
1.575
1.588

f
0.128
0.170
0.196
0.257

0.977
1.074
1.152
1.250
1.357
1.465
1.582
1.689
1.826
1.963
2.124
2.300

0.898
0.938
0.977
1.055
1.133
1.211
1.309
1.445
1.641
1.875
2.227
2.695
3.320
4.102
5.117
6.406

0.977
1.016

f
0.334
0.455
0.570
0.733
0.916
1.072
1.174
1.192
1.139
1.061
0.988
0.948

0.062
0.078
0.097
0.148
0.225
0,336
0.538
0.880
1.022
0.679
0.560
0.597
0.776
1.114
1.722
2.701

f
0.019
0.026

P
1.035
1.074
1.133
1.211
1.309
1.445
1.621
1.875
2.227
2.695
3.320
4.102
5.117
6.406

1.016
1.035
1.055
1.094
1~ 132
1.211
1.426
1.602
1.875
2.227
2.695
3.320
4.102
5.117
6.406
8.008

0.031
0.040
0.057
0.092
0.216
0.712
0.936
0.299
0.359
0.371
0.493
0.702
1.083
1.704

0.009
0.012
0.015
0.023
0.029
0.017
0.346
0.894
0.111
0.225
0.225
0.327
0.460
0.675
1.079
1.566

For magnetic 6elds much lower than 8=0.1, the
numerical computations become prohibitively hard; the
function f(g,p,g) has discontinuities whenever
p' —a„'=0. Take as an example 8=10 '; we would

then have a„'= 1+0.02''. If p is even only of the order
of 3, the upper limit e' would be higher than 3)&10'.
For the case 0= 0.1, we stopped the computation for
p~5 because of the tremendous number of discon-

TABI,E VIII. Same as in Table VII for 8=0.1. The chemical potential depends on the temperature and density through Table VI.

0.137
0.151
0.166
0.181
0.205
0.234
0.293
0.371
0.488
0.644
0.810
0.977
1.152
1.328
1.514

0.313
0.391
0.508
0.625
0.703
0.820

f
0.900
0.920
0.939
0.960
0.995
1.038
1.129
1.261
1.486
1.840
2.294
2.833
3.509
4.303
5.273

f
0.214
0.257
0.337
0.439
0.521
0.669

0.918
1.016
1.133
1.250
1.377
1.514
1.650
1.792
1.943
2.104
2.275
2.461
2.661
2.881

0.820
0.898
0.938
1.016
1.094
1.172
1.250
1.328

f
0.819
0.994
1.243
1.538
1.908
2.372
2.899
3.513
4.234
5.073
6.029
7.130
8.369
9.791

f
0.176
0.228
0.259
0.329
0.414
0.514
0.631
0.765

1.416
1.514
1,611
1.719
1.846
1.97/
2.129
2.300
2.505
2.759
3.101
3.584

1.055
1.094
1.152
1.211
1.269
1.328
1.406
1.504
1.602
1 ~ 738

f
0.937
1.154
1.399
1.699
2.093
2.540
3.089
3.749
4.570
5.622
7.076
9.251

f
0.137
0.162
0.203
0.252
0.307
0.369
0.463
0.601
0.758
1.011

1.914
2.148
2.500
2.969
3.594

2.187
2.812
3.437
4.062

2.187
2.812
3.437
4.062

2.187
2.812
3.437
4.062

f
1.388
1.956
2.867
4.107
5.870

f
1.291
2.328
3.420
4.620

f
0.814
1.470
2.158
2.919

f
0.513
0.928
1.363
1.843
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where

f»b
p6=38 2G4(4»p)+& a G41 ——

I

ka. a„i

a.C4( ——
~

= (1+e&»«) 'dx. -/4 p)
ka. a.i

(64)

In Tables V and VI we give p, as a function of p6, p
for 8=1 and 0.1. These values of p are then used to

tinuities already involved in this interval. Unlike the
free case, we have to use very small intervals for p, ,
otherwise we lose the discontinuities. Tables I and II
do not include the ion-ion correlation, i.e., 4 ~ 1. In
Table III we compare crII with 0-0, the conductivity in
the case of zero magnetic field. ' The ratio still shows the
undulating behavior of 0-~ and the general conclusion
is that rII is much higher than a-0. This phenomenon is
known as negative magnetoresistance. This conclusion
remains unchanged when the ion-ion correlation is
included. As explained in a previous paper, the inclu-
sion of the function 4 causes many difhculties, especially
in the present problem where it becomes a function of
the indices e and e'. As explained in Ref. 1, the strength
of the ion-ion correlation is determined by the parame-
ter I'=—(Z'e'/kT)P3s. (1V;/Q)$+'", which is the ratio of
the potential energy to the kinetic energy. We have
computed one case, namely, Z=20, and I'=100 which
is the highest set of values for which the function 4 is
known. The results are given in Table IV. The general
effect is that the conductivity increases as in the case
of zero magnetic field and it reaches almost a value of
2 for log~opg —1.28.The tendency is that 0 II (4 )/0& (4 = 1)
increases with density. For the nondegenerate case, the
situation is much more complicated in the following
two respects. First, the integral on E in Eq. (49) can-
not be easily performed as in the degenerate case where
Bf/BE= —8(E—p), but it has to be performed exactly.
A second problem arises because of the implicit relation
between p, p&, and g—= (kT/mc'). They are related via
the equation

compute f(g,p,8) and the results are quoted in Tables
VII and VIII. Figure 3 shows the function f(g,p,8)
as a function of p for 8= 1 and P= 1.
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APPENDIX

Given the two integrals

G(E)dE, Rg= f(s)ds,

the following steps were followed. The R+ were com-
puted by use of a 16-point Gaussian quadrature
formula. 9

Because of the jump discontinuities of G(E) at
E'=1+2(X—1) for all positive integers 1V)1, the
computation of I required separate integration over each
panel (E;,E;+~), j=1, k, where k was chosen so that
three-place convergence was obtained for I. A five-
point open-type quadrature formula was applied over
each panel.

The order of the quadrature formulas used has been
increased until three-place convergence was obtained
in the final results.

As for the computer program to evaluate I, we found
that in order to prevent "overflow" and "underflow"
it was necessary to make use of Stirling's formula and
logarithms. It was also necessary to vary the order of
arithmetical computations in evaluating the integrand
f(s) of R+ according to whether s was less than or
greater than 1.

To speed up the program, we found that we could
truncate series at m=18 without affecting the three-
place significance of our final results.

'This computation was made by N. Rush6eld, Computer
Applications Inc. , New York, N. Y.


