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Static Model Using Crossing-Symmetric 08-Shell Equations
Satisfying Two-Particle Unitarity~
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Og-shell equations for the ~ p and x+p elastic scattering amplitudes are derived for a static model, based
on charged scalar theory. These amplitudes satisfy elastic unitarity below the three-particle cut and are
related by crossing symmetry. The equations are solved numerically in the bound-state region for the
entire range of coupling, and the results compared with the known results of charged scalar theory. In
particular, calculations of the bound-state N~ are reasonable. Possible extensions to more realistic models
are discussed.

I. INTRODUCTION

ECEXTLY, a number of people have been inter-
ested in studying crossing-symmetric off-shell

equations. This interest stems in part from attempts to
find bootstrap solutions in quantum field theory' and in
part from the ancient desire to find any way of making
dynamical calculations. ' In this paper our motivation is
the latter of these two reasons. It is hoped that by
solving a set of equations for off-shell two-particle
scattering amplitudes which incorporate elastic uni-

tarity and crossing symmetry, we can obtain a reason-
able first approximation to the exact scattering ampli-
tudes for a field theory.

Our starting point is the venerable charged scalar
static model. ' As always, this model is chosen because it
is the simplest nontrivial model available. In addition,
there is an extensive literature dealing with various
approximate solutions to this model which provide us a
basis for comparison with our numerical results. Our
procedure, carried out in Sec. II, is to derive a pair Of

Lippmann-Schwinger equations describing sr p and Ir+p

elastic scattering. The solutions of these equations are
required to satisfy elastic unitarity below the lowest
production threshold and to be related to each other
through ofI'-shell crossing symmetry.

The general properties of these solutions are well

known. %'e review them in Sec. III, paying particular
attention to the specific properties engendered by the
approximations required to set up our equations.

The aim of this work is to obtain detailed numerical
solutions to the equations derived in Sec. II. In order to
make headway, we restricted ourselves to studying our
equations in the bound-state region of the energy vari-
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able. The numerical procedure is discussed in Sec. IV.
In Sec. V, we display and analyze our results.

T ~ (E) TX ~ ~(E co co) (2.1)

In addition to Eq. (2.1), T and Tx must separately
satisfy two-particle unitarity below the three-particle
threshold.

The equations for T and Tx are derived as follows. 4 '
T is first written as a sum of three terms,

T(E) =V(E)+I.(E)+Z(E), (2.2)

where V(E) is a potential term which is assumed to be
known, I-(E) has no pole terms or two-particle cuts, and
E(E) has the two-particle unitary cut. An equation for
R(E) may be derived by formally considering any dia-
gram that can contribute to it. Starting from the left of
any such diagram, proceed toward the right until you
reach the first two-particle intermediate state. To the
left of this intermediate state only V or I can occur,
while to the right the full T matrix can occur. Thus,

~(E)=LV(E)+~(E)3~(E)T(E) (2 3)

where G(E) =(E—Hs) ' is the free Green's function.
Combining (2.1) and (2.3) gives the Lippmann-
Schwinger equation for T, with V+I serving as an
effective potential. In the language of the Sethe-
Salpeter equation, I.+V corresponds to the irreducible
kernel for T. Tx is treated in exactly the same manner as

4 I.T. Diatlov and K. A. Ter-Martirosian, Zh. Eksperim. i Teor.
Fiz. 50, 416 (1956) )English transl. :Soviet Phys. —JETP 8, 454
(1956)j; also see R. WV. Haymaker and R. Blankenbecler, Phys.
Rev. 171, 1581 (1968).

~ Our normalization is specified in Appendix A.
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D. MODEL

The model we work with is dined in terms of
Lippmann-Schwinger equations for the scattering ampli-
tudes T„„(E) describing sr p elastic scattering and
Tx„„(E)describing sr+p elastic scattering. co (&o ) is the
energy of the outgoing (incoming) pion and E is the
total energy of the system. The on-shell amplitude is
T(co) =T„„(co).T and TX are to be related through the
oG-shell crossing relation
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T) 1.e.)
px(jv) =Vx(g)+gx(g)+Rx(g) (2 4)

RX(+i) —(VX(jV)+IX(g~))G(g) pX(g) (2 5)

Order' 90

Xn/
In order to satisfy Eq. (2.1), it is required that

V~„„.(E) =V „(Z—(o —co'),

Ix"",(g) —R „, „(g " "')
",(jv) —Rx ", "(jv—a) —co').

(2.6)

Order 9O

R=hnnf ++~~+~~
The last two equations are consistent with our require-
ments on the singularity structure of L, LX, E, and E&.
This is easily seen by studying perturbation-theory

diagrams. The general result follows upon noting that
the unitarity cut in E of R(RX) goes over to a left-hand
"potential" cut in L,X(I.) for cv, &u'&1. On the en-

ergy shellL&&„„(co+is) =R „„(—&u
—ie) andL„„(~+is)

=R& „„( ~ —ie)—as usual.
To complete the model it is only necessary to specify

V. In this work we take V to be the neutron-pole term,

Order 9eo

L~ &X'

FIG. 1. Lowest-order perturbation diagrams for m p and ~+p
elastic scattering.

V„„(E)=f(k') f(k),
E—mo

(2.7)

III. PROPERTIES OF MODEL

A. Perturbative Solution

Starting with V and Vx, we can generate a pertur-
bation series for T and T&. The lowest orders of this
series are shown in Fig. 1. Elastic unitarity is satisfied

up to sixth order, while three-particle unitarity is not.
To achieve the latter, it would be necessary to add
Figs. 2(a) and 2(b) to Rx and Fig. 2(c) to R&&. These
three diagrams and their crossing-related partners are
the lowest-order ones omitted in the present model.
While including these diagrams would not violate
crossing symmetry and two-particle unitarity, neither
are they necessary to satisfy these conditions. It is in
this sense that the model of Sec. II is the "simplest" of
those possible under the given restrictions.

Figure 2(a) is absent simply because it is never
generated by two-particle unitarity. Figures 2(b) and
2(c) differ from diagrams that do appear in the pertur-
bation series by the appearance of a bubble on the

where go is the unrenorrnalized pion-nucleon coupling
constant, mo is the unrenormalized neutron mass, and

f(k) is a form factor (which is an even function of ~).
The relation of this notation to the charged scalar static-
model Hamiltonian is given in Appendix A.

Equations (2.3)—(2.7) provide coupled nonlinear inte-
gral equations which we have solved numerically for the
choice of f given by'

f'(k) =2~'/(n' k+1),

where 0' ' is a cutoK momentum. The limit n —+ 0
corresponds to a point nudeon.

proton line. In fact, in contrast to the neutron, proton
modifications are never generated. This is one important
aspect of the model being "simplest. "The consequence
of this unsymmetric treatment of nucleons is discussed
below.

It is clear from Fig. 1 that each order of perturbation
theory adds inelastic states with more and more mesons.
These states increase the attraction of the effective
potential; since multiparticle unitarity is not imposed,
this attraction may grow inordinately large. In par-
ticular, it could produce some inelastic bound states
known to be absent in charged scalar theory, 6 ~ but
occurring in related models.

B. General Features

L and LX are both real symmetric operators below the
three-particle cut. This is suggested by perturbation
theory (see Fig. 1) and can be proved from the equa-
tions of Sec. III. Consequently T and T& satisfy elastic
unitarity below the three-particle cut, as is desired.

p ~~-pLI
(a)

(c)
FzG. 2. Lowest-order perturbation diagrams omitted from model.

6 A. Pais and R. Serber, Phys. Rev. 105, 1636 (1957).This paper
contains references to earlier work.' C. J. Goebel, Phys. Rev. 109, 1846 (1958).

8 J. B.Bronzan, Phys. Rev. 154, 1545 (1967).
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It is useful to consider the formal solution to the
equation for T assuming L is l~nown. Equations (2.2)
and (2.3) then yield a two-potential Lippmann-
Schwinger equation with one of the potentials being
separable. The solution to this type of equation is well
known, and is only briefly reviewed here. T has the
general form

N

N

P ~ P

+
+ X &X + Y'x-rx- +

T(E) =Z(E)+gp'I'(E)Giv(E)1'(E)t,

&(E)=I:I-L(E)G(E)3 'L(E),

Giv '(E) =E—mp —A(E)

(3 1)

(3.2)

(b)

FIG. 3. (a) Diagrams contributing to the E++ isobar inter-
mediate state. (b) Diagrams contributing to the inelastic two-
particle intermediate state.

—gp'(f I G(E)~(E)G(E) I f&, (3.3)

dpi kf'(k)
~(E)=go'(fIG(E)

I
f&=go'

(2z)' E—pp

k = (o~' —1)"' (3.4)

I (E)=LI-~(E)G(E)jlf&. (3.5)

C. Comparison with Charged Scalar Theory

When the isobar E++ appears as a, bound state of s.+p
for sufficiently large coupling, it opens up the possibility
of charge-exchange scattering, vr p —+ s-+X, where E

9 C. J. Goebel and B.Sakita, Phys. Rev. Letters 11, 293 (1963);
Y. S. Jin and S. W. MacDowell, Phys. Rev. 13?, 8688 l1964l.

Z(E) is sometimes referred to as the "potential scat-
tering term. "

Giv (E) is the modified neutron props, gator,
while A(E) represents the modification due to bubbles.
Finally, I'(E) is the modified form factor. mp is fixed by
requiring Giv '(0) =0, which makes the renormalized
neutron mass equal to the proton mass. It may happen
that G~ ' has zeros other than that at E=0. It is known
that the charged scalar model does not have a neutral
isobar'; therefore, such extra zeros in G~ ' would indi-
cate that we had mutilated the original theory too badly.
Note that poles of 2 do not appear in T, ' and hence
cause no such diKculties.

Proton lines could be modified by replacing the
propagator G(E) =(E—Hp) ' by Dvson's expression
Zs '$E—Hp+Z(E —Hp)$ ', where Z(z) is zero at s=0
and is analytic in the z plane cut from 1 to ~.This form
ensures that the only changes occur above the three-
particle cut, since G occurs only between states of one
proton and one or more mesons.

From the general theory of the Lippmann-Schwinger
equation, we know that T~ has the same structure as T.
For suKciently small go' there is no bound state and the
perturbation series for Tx converges. As go' increases, a
bound state, the E++ isobar, develops just below the
elastic threshold and moves along the real E axis
toward the origin. The trajectory of this pole in Tx is of
some interest, since its behavior is understood in
strong-coupling theory. 7 Again it is possible to develop
too many poles in this channel.

is the charge-symmetry partner of 2V++. Therefore, there
should be an inelastic two-particle cut in ~ p elastic
scattering resulting from the x+E intermediate state.
In charged scalar theory this cut emerges from the
three-particle cut at the value of the coupling constant
for which X++ just becomes bound. In the strong-
coupling limit this cut exactly covers the elastic cut, and
the elastic and charge-exchange cross sections become
equal.

As pointed out above, however, in our model the
scattering matrix always satisfies elastic unitarity below
the three-particle cut and charge-exchange scattering,
therefore, does not take place. The source of this
difference between the model of Sec. II and charged
scalar theory can be traced to the omission in R of
diagrams without two-particle cuts. In Fig. 3 this is
illustrated. Figure 3(a,) shows the 1V++ and a few of the
diagrams which contribute to it. Figure 3 (b) shows tha, t
the related diagrams only appear in vr p elastic scat-
tering as terms with no two-particle cuts.

This omission means that our model must certainly
disagree with charged scalar theory in the energy region
of charge-exchange scattering. A difficult question is
whether the omission of such charge-exchange effects is
consistent with the calculation of the isobar in the
bound-state region. The only way for this to be con-
sistent is for the inelastic sta, tes above the three-particle
threshold to compensate for the binding effect of the
(omitted) charge-exchange intermediate sta. te. In our
model these inelastic sta, tes do contribute large binding
effects.

The above objection is valid for any model with only
elastic unitarity. A second departure of the model from
charged scalar theory stems from the more technical
feature of treating protons and neutrons asymmetrically.
The renormalized propagators and vertex functions are
defined by

G (E)=Zs G "(E), n=m, p

I'(E,&v) =(~p
i
I'(E) =Zi 'I"(E,p~),

limEG "(E)=1, P'(0, 1)=1.
E~O

The coupling-constant renormalization is g/gp
= (Z2"Zs")'"Zi ', where g is the renormalized coupling
constant. In charged scalar theory Z&"=Z2"=Z2, so
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g/go=ZsZi '. In our model Zsi'= 1, so g/go
——(Zs")'fsZi '.

This means that the renormalized coupling constant
may well be quite diQerent in charged scalar theory and
in our model.

r. „(E)=
p(~)

d r (E)+l(E)7-"
E—v

kf'(k) k
p &) =go = sgo ~

(2z)' u'k'+1

(4 1)

Next, integrals are replaced by Gaussian sums, so that
Eq. (4.1) becomes

lV„
r- -(E)=2 b(E)+l(E)7-" t-(E), (4 2)

Y p

where the v's are the coordinates associated with the
Gaussian quadrature and S'„ is the product of the
associated Gaussian weight and p(i ).

If a(E) and l(E) are known, Eq. (4.1) is a Fredholm
integral equation (for E( 1, i.e., below elastic threshold).
Equation (2.2) now gives

p(~)
r- -(E)= d~L~(E)+l(E)7-" b(E)+l(E)7-

p

p(~)
+ d~L~(E)+l(E)7-" ~-(E) (4 3)

1 E—v

The approximate form (4.2) is solved by matrix in-
version to give

r- -(E)=2 L~(E)+l(E)7- -S-p(E)

XP.(E)+l(E)7,
(4.4)

S p(E)=g (1—G(E)Ln(E)+l(E)7} ' „G,p(E),

G-p(E) =~-pII'pl (E P)—
rx(E) has a similar solution in terms of vx(E) and
$x (E)

Equation (4.4) and crossing symmetry suggest an
iterative procedure for solving the system. Starting
with a known v—which fixes the model —and an ap-
proximate l, Eq. (4.4) generates an approximate r. This
r specifies l&& through crossing, which is then used in the
analog of Eq. (4.4) to obtain rX. Crossing rX then gives a
new approximation for l. The crucial question is
vlhether this iterative scheme converges.

IV. NUMERICAL METHODS

A. Iterative Scheme

In order to solve the system (2.3)—(2.7), it is con-
venient to let R„(E)=go'f(k')r (E)f(k), L ~ (E)
=go'f(k')l„.„(E)f(k), etc. Then (2.3) becomes

If the iterative procedure outlined above is used with
Eq. (4.3), the perturbation series for t and tx is gener-
ated. While Eq. (4.4) is simply an algebraic rearrange-
ment of Eq. (4.3), it is known that algebraic manipula-
tion of nonlinear equations can markedly improve the
convergence of the resulting iterative procedure. " In
fact, with certain technical modifications described
below, the iterative procedure based on Eq. (4.4)
converges in the presence of weakly bound states, where
the perturbation series diverges. In terms of diagrams,
this procedure corresponds to regrouping the pertur-
bation series by summing over infinite subsets of
diagrams related by unitarity. For example, the first
step in this iterative procedure gives r as the sum of
bubbles (the chain approximation).

When the coupling constant is increased significantly
beyond the value needed to form the E++ isobar, other
more powerful methods are needed to obtain a con-
vergent iterative procedure. These methods, which are
described in Appendix 3, lack any simple diagrammatic
interpretation. Their justification is solely in terms of
improved convergence.

B. Complications due to Crossing

Crossing as given by Eq. (2.6) is most easily put into
the system by eliminating r and r. We write

l"--(E)=Z 9(E ~ ~')+l(E ~ ~')7-

XS p(E —to —co')Pa(E —to —co')

+l(E—co —to')7p „, to, co') 1 (4.5)

and its charge-symmetric partner.
From Eq. (4.5), we see that we need to calculate

L„(E), co, n) 1; since L(E) is a symmetric operator
(time-reversal invariance), l„„(E)=l ~ (E), and we do
not need an additional lp „(E).Also,

lx „. (E)=P Lw(E+co' —oo)+l(E+co' —to)7 „
a, P

XS p(E+to' —co)Lo(E+co' —oi)

+1(E+to' oi)7p„, to, co'—)1. (4.6)

In our iterative scheme these matrices are found to be
less convergent than those of (4.5); however, physical
quantities are calculated directly from the latter, and
hence this is not a serious problem.

Froin (4.5) and (4.6) we can see a special property of
the model and indeed of o6-shell charged scalar theory.
The calculation can be done entirely in the region
E&Eo for Eo fixed but arbitrary. In (4.5), if E(Eo, the
energy of the right-hand side is also in the region. For
(4.6) this is not true; however, the right-hand side is in
the region if E&Eo to', and from (—4.5) we see that this

'0 B. Noble, in EonLinear IntegraL L&'qlations, edited by P. M.
Anselone (University of Wisconsin Press, Madison, Wise. , 1964).
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is where L„„is needed to calculate P„.„(E).We there-
fore can work entirely below any given energy Ep, we
naturally take this to be the elastic threshold, Ep=1.

One word of caution is necessary: It is important
never to exceed Ep in the calculation; the formal
property that only energies below Ep are necessary is not
~)f itself sufhcient. For example, one might for con-
venience use matrices above Ep in intermediate steps
and assign arbitrary values (say, zero) to them, knowing
that in an exact solution these matrices cannot con-
tribute below Ep. This leads to severe numerical
instabilities.

3.5

3.0—

2.0—

1.5-

I .0 g(
/

~
—0

45 —— ---
go+2 94

= 1,45
«~+I.4~

C. Unrenormalized N'eutron Mass

For a given V(E), our computational scheme now
generates L(E) and Lx(E). There remains one further
point, namely, ensuring that the neutron propagator has
its pole at the correct energy. As discussed in Sec. III,
this is done setting Gz '(0) =0, fixing mo. From Eq.
(3.3), mo is a function of L(E), which depends on the
input V(E); finally, mo is a parameter of V(E), as in
(2.7). This yields a consistency condition which de-
termines mp.

The most direct way of incorporating this condition
into the iterative scheme is to use I.(E) at the end of
each iteration to calculate an approximate mp, and to
use this mass in V(E) and V~~(E) for thenextiteration.
Clearly, if this iterative process converges, it converges
to a solution of the original equations with a consistent
mass.

Nothing is known about the uniqueness of esp. There
is a priori no reason why the consistency condition could
not be satisfied by an entirely diGerent mp and thus
different L (E) and L& (E).The question of uniqueness is
obviously of physical interest. Computations have thus
far shown no indication of a second solution, but the
general question is still open. Fixed-point methods"
seem out of the question because of the complicated
structure of the model.

.5

t t t t

0 IO 20 30 40 50 60 70

go

Pro. 4. Renormalized coupling constant g~ versus unrenormal-
ized coupling constant g0'. The dashed curve is obtained from the
sum of bubbles. Solid curve is a least-squares Gt to the large-g0~
points.

unnecessary, and convergence was obtained in five
iterations. For the strongest coupling tried, gp'=50,
q=0.05 was used in the interpolated iteration, and 15
iterations were needed. The renormalized g' was ob-
tained from the residue of the E=O pole in T(E),
extrapolated onto the energy shell. The bound-state
energy was found from the zero of D&(E).

The computations were performed on an IBM 360/65
computer. Each iteration took slightly over 1 min to
perform.

I.O

9—

.8—

D. Details of Computation

Numerical integration was done with a ten-point
Gaussian quadrature, after transforming the region of
integration from (1, ~) to (—1, 1).The matrices L and
I& were calculated at a Axed set of points —~ &E;&1p
and other values obtained by interpolation. Nearly haIf
the points were chosen in the region (—1, 1) about the
nucleon pole; the rest extended to large negative Ii.,
where the T matrix is approximately the potential term.
For the reasons explained above, the matrix L „„(E)
was calculated at E=E,—co, rather than E=E;.

The iterative procedure described above was used to
Gnd a solution of the equations. For the weakest
coupling, gp'=1, the methods of Appendix 3 were

' For a discussion see H. McDaniel and R. W. Warnock, Phys.
Rev. 180, 1433 (1969).

0 86+-
gR

00 .5 I

I.O
I

1.5 2.0
I

2.5 5.0 5.5

Pro. 5. Isobar bound-state energy m~ (in units of the pion mass)
versus the renormalized coupling constant g'. Solid line is the one-
meson approximation result. Dashed line is obtained from a
variant of strong-coupling theory (see text). Dot-dashed line is a
least-squares fit to the four largest-g' points.
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0.9 —~

0.8—

FxG. 6. Isobar bound-state
energy cog versus the unrenor-
malized coupling constant g0'.
Dashed line is the strong-
coupling limit and solid line is
a least-squares 6t to the large-
go' points.
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V. RESULTS AND DISCUSSION

As mentioned above, for numerical calculation the
cutoff function was taken suchthat f'(h) =2 /sr( its'+1),
with a= —', . The results of varying 0. are being accumu-
lated and will be reported in a second paper.

A. Renormalized Coupling Constant

Figure 4 is a graph of the renormalized coupling
constant g' plotted against the unrenormalized coupling
constant gf)'."The dashed curve is the result obtained
for the sum of bubbles Pi.e., from V (E) alone] given by
g' =1.43gp'/(gps+1. 43). The solid curve is a least-
squares fit to the large-gp' points, g'=3.45gps/(gps+2. 94).

The behavior g' —& const as go' ~~ displayed by our
model is similar to the Lee model" and in contrast to the
behavior' g'~4go' as go'~~ of the charged scalar
theory. If the limit g2 —+~ were studied in our model-
for examp1e, by using on-shell dispersion relations —we
believe that ghosts would appear as they do in the Lee
model. "

B. ¹+Bound-State Energy

Figure 5 shows the isobar bound-state energy ~@
plotted as a function of g'. The solid line is obtained from
the one-meson approximation. "The deviation of our
points below the solid line makes the effect of inelastic
states quite evident.

The dashed line is obtained by extending Goebel's

~The points plotted on the graphs of this section are our
computed results. Accurate error analysis of numerical computa-
tions such as ours is very difhcult, but a maximum error of j. /0 in
our numbers seems reasonable.

» G. KLII&n, in Lecturesirt Theoretical Physics (W. A. Benjasnin,
Inc. , New York, 1962), Vol. I.

'4 Our cutoff is used in calculating this line. The result provides
a rigorous upper bound for op~.

strong-coupling model. 7 It is included to illustrate how
strong the inelastic effects in our model are. The
extension involves using Goebel's result from his
strong-coupling calculation of cost(g') at small g'. We
remind the reader that Goebel's result is obtained by
applying the Chew-Low equation to charged scalar
theory and assuming that the elastic and inelastic
cross sections are equal at all energies in both the sr p
and sr+p channels. The equality of the elastic and
inelastic cross sections stems from the fact that
sr p-+sr p and sr p-+sr+% become identical in the
strong-coupling limit, as do sr+p~sr+p and sr+p~
7r E+++. On the other hand, the production amplitudes
vanish as I/g', so, for example, sr p-+ sr sr+1V does not
contribute to sr p elastic scattering.

Figure 5 shows that the inelastic states in our model
more than make up for the lack of charge-exchange
effects. This is evident from a comparison of our data
with the two curves in the figure. These curves show
the eGect of increasing g' in two simple models, one
without any inelastic eGects and the other with inelastic
sects proportional to the elastic effects.

A least-squares 6t to our points at large go' gives
cost = —0.86+2.97/g'. Extrapolation of this fit to co~ less
than zero requires g' to exceed the maximum value
allowed by our model. We note that co& ——0 when
g' =3.44, which may be compared with gm~~ =3.45 from
Fig. 4.

Figure 6 displays co~ as a function of g02. The dashed
line is the strong-coupling limit, co~ ——(8/sr) (I+cs)'/gP
(using g' —+ segp' as gps-+op), and the solid line is a
least-squares fit to our points for large go', co~= —0.00
+2.48/gp'.

Thus we have the result tost —+ 0 (within our numerical
precision) as gpp-+op. In contrast to charged scalar
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theory, our model lacks a compelling argument as to
why this should happen. In charged scalar theory the
argument that a&~ —& 0 as g' (the renormalized coupling
constant) ~~ runs roughly as follows. In 7r p elastic
scattering the neutron pole is given by g'/&u and the
crossed isobar pole by —g'/(co+5). Since these are
known to be the only two poles as g' —&~, at least we
must have g' —+g'+O(1), 6 —+O(1/g') to ensure that
unitarity is satisfied.

In our model this argument fails since g' remains
finite. In the Lee model g' also remains 6nite in the limit
go' —+~ and the V-0 bound-state pole nevertheless
approaches the E pole." In that case the bound state
and the E pole do not cancel; however, as discussed
below, this cancellation does occur in our model.

C. Renormalized Mass

Figure 7 shows that mo grows like go in our model.
This is in agreement with charged scalar theory. In the
strong-coupling limit, charged scalar theory gives
ms=sgo'/ga, where
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D. Fredholm Determinants

The Fredholm determinants for vr p and s-+p elastic
scattering are defined by

D(E) =det{1—LV(E)+L(E)]G(E)}
and

Dx(E) =det{1 Lvx(E)+Ix(E)]G(E))
respectively. It is well known, or in any case simple to
prove, that they are analytic functions in the complex
E plane cut from 1 to ~. Furthermore, in the region of
elastic scattering, 1&E&2, the s matrix for s. p is given

d'k
a 2~1 o.'k'+1 k'+1 n{1+o.) (b)

in. our notation. This gives @so——(25s-/48)go' ——1.64ges,
compared with our model, which gives m() ——5.6go~. This
is consistent with our other results, which show the
large binding effects of the inelastic states,
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Fro. 8. (a) Dots and crosses are the values of D and Dx, re-
spectively, at 8=0.5 pion mass. The lines are least-squares Gts to
the computed points. (h) The same as (a), for D(—0.5) and
DX( 0.5).
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Fro. 7. Unrenormalized neutron mass +so versus g0'. Solid line is a
least-squares 6t to the large-go' points.

by S{E)=e"'~~&=D(E—)/D(E+), and similarly for
s.+p.

In Fig. 8, we have plotted D and Dx against go', for
large go', at two representative 8's. It is evident that D
and Dx approach each other. This might be expected,
since the masses of the two pole terms e and N++ be-
come equal.

The line in Fig. 9 is the extrapolated value of D and
Dx in the infinite-go' limit. The points and crosses are
the computed values of D and D&&, respectively, for
go'=50, the highest value of go' we have used.

From our results it follows that the E++-p-s.+
coupling constant becomes equal to g' and that elastic
s p and vr+p scattering become identical in the infinite-
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APPENDIX A: NOTATION

In our notation the interaction Hamiltonian for the
charged scalar model is

d'k f(k)
Hg gp

——
I r~o~(k)+r 0, (k)g+H. c. ,

2(o (2s-)'~'

where (X~(k) destroys a s.+,

I e~(k), e„t(k'))=2&vV(k' —k),

go' limit. These results agree with the strong-coupling
limit of charged scalar theory~ in the sense that the
two channels have identical scattering. It seems reason-
able that the equality of D and Dx in our model implies
the equality of s p and s.+p elastic and inelastic
scattering at all energies.

and H.c. means Hermitian conjugate. f'(k) = 2s-s/

(n'k'+I), where I/n is the momentum cutoff. tt=O
corresponds to a point nucleon.

Our T matrix satisfies the unitarity condition

VI. CONCLUSIONS

We have found that an iterative scheme based on
crossing and elastic unitarity, supplemented with the
technical methods of Appendix 8, gives convergent
results over the entire range of go'. This leads us to
conclude that such methods would yield solutions for
other more realistic models. The general prescription is
to satisfy unitarity in each channel and use crossing to
obtain the effective potential. What appears important
to us is that in at least one case this program can be
made to yield a solution.

When applied to relativistic scattering, this approach
meets two difFiculties. One is simp1y the increased
number of variables and multidimensional unitarity
integrals —this merely increases the computational re-
quirements for the problem. The other is the fact that it
does not seem possible to stay below elastic threshold in
the calculations; if this is indeed the case, methods are
needed for dealing numerically with singular integrals.
While in principle neither difhculty makes obtaining a
solution impossible, each weighs against the practicality
of trying.

The method is of interest only if it can be argued that
the omission of multiparticle unitarity is not a fatal
defect. The correct behavior of the isobar in our model
suggests that this is the case.
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APPENDIX 3
This appendix presents two useful methods for

transforming a divergent iterative process to a con-
vergent one, or, alternatively, to improve an already
convergent one. The methods involve only trivial ex-
tensions of known results, and closely follow Ref. 10.
They are given in detail here simply because they seem
to be unknown, or known only as rule-of-thumb pro-
cedures, to many physicists. Although the exposition
assumes Fredholm equations, it is clear that it is
applicable to iterative solutions for a wide class of
problems. In the present case, the methods were applied
without modi6cation to three independent variables in
two coupled equations with satisfactory results.

A. Interyo1ated Iteration

Assume an initial iterative process

to ftnd a solution to y=F(y). The estimates y and y„+&
can be interpolated to give an estimate

This yields what is called the interpolated iterative
process.

It is claimed that for a proper choice of q this modifi-
cation can make a divergent procedure convergent. To
see this we need a method of measuring convergence.

Consider the iteration of a general nonlinear Fredholm
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equation We then have

y„~ (x) = dt k(x, t; y„(t))+f(x)=J (y„(t)). (33)

y(~) -y (~) =2 ~.';(~), (35)

y(t) -y, (~) =g o;l~;q;(~),

y(t) y. (t) =—Q u~X;"p, (/)=o .J, "q,„(t)
(37)

=~--Ly(&) —y.-i(&)j,
where X, is the (assumed real) eigenvalue of maximum
modulus. For X, one of a complex-conjugate pair
Lthis is possible because the kernal of Eq. (4) is not
symmetric), Eq. (7) is modified in an obvious way.
Clearly, the iterative procedure coverages for

I
X,

I & 1.
For the interpolated iteration scheme

y~i(~) = (1—q)y-(~)+q~(y-(&))

one has the new eigenvalues

X;=1—q+qX;,
1—R;=q(1—X;).

Thus, the effect of interpolation is to bring the eigen-
values towards 1 as q goes to zero. For real X, , the
correct choice of sign for q will ensure IX ~I &1 for
suKciently small q.

Clearly the optimum choice of q is (1—X,„) '; a
smaller value will simply slow convergence. The use-
fulness of this method lies in the fact that P, , which in
all likelihood is quite inaccessible, need not be known-
one simply seeks the largest IqI &1 that gives con-
vergence. The reason that the largest value is preferable
is given below.

B. Aitken's Extrapolation Formula

Given a convergent iterative procedure, such as that
provided by interpolated iteration, it is possible to
achieve much the same optimization as if P ~ were a
priori known. We take (7) at I—1 and I to find

l~-= I:y~ (~)—y-(~)l/r3" (~) —y- (~)3=~- (»o)

If y(x) is the exact solution,

Bk
y(x) —y„+i(x)= dh (x—,t; y(t))Ly(x) —y„(x)j. (34)

By

We assume that Bk/By has a complete set of eigen-
functions q; and eigenvalues P,. We then expand

as a better approximation than y„&, y„, or y~&. To be
valid, (7) must hold to a good approximation; the
simplest way to verify this is to require X =X~& to
within some reasonable tolerance.

One way to regard this approach is as the Newton-
Raphson method, but employing finite differences in-
stead of an analytic derivative. The latter may well be
too complicated to warrant its use, in spite of the
improvement in convergence that it yields; this was the
case in the present work.

It is necessary to use soIne care in employing the two
methods in conjunction. A choice of q that is too small
will slow' convergence by bringing 'A,„ too near 1.
Aitken's extrapolation will in large measure remedy
this; however, with X, very near 1, Eq. (11) intro-
duces very large corrections to y, and correspondingly
large errors. This underscores the desirability of
choosing q as large as possible.

C. Multiyle Eigenvalues

When several eigenvalues of equal or nearly equal
modulus are present, the above methods run into diffi-
culty. For example, with two real eigenvalues X~& 1 and
~2 = 1—

X&, it is clear that interpolated iteration with any
q~0 will have one transformed eigenvalue above 1, and
hence will remain divergent. However, a choice of q
sufficiently small will reduce the speed of divergence to
manageable proportions, so that Aitken's method can
be applied without large differences appearing between
iterations.

Aitken's method itself has a straightforward modifi-
cation for complex-conjugate eigenvalues, given in
Ref. 10. This is equally applicable for two real eigen-
values, and should substantially speed convergence
when both are important. However, two circumstances
weigh against indiscriminate use of this modification.
First, the method requires five iterations to obtain the
extrapolation parameters, as opposed to three for the
simple Aitken extrapolation. When, as in the present
case, each iteration is time-consuming and complicated,
this added cost may prove not worthwhile. Second,
when one of the eigenvalues is of relatively minor im-
portance (either because of a smaller modulus or because
the diGerence between the approximate and exact solu-
tion happens to be orthogonal to its eigenfunction), this
is reflected in significant uncertainties in the extrapo-
lation parameters. The resulting extrapolation may well
be no improvement over that from the simpler method.


