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Multiphoton Exchange Amplitudes at Infinite Energy
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We illustrate in detail the summation of multiphoton exchange diagrams for ee, pe, and yp elastic scatter-
ing amplitudes at the high-energy limit using the infinite-momentum technique reported earlier. These
diagrams are shown to give rise to amplitudes proportional to s, the center-of-mass energy squared, multi-
plied by simple combinations of the eikonal 'forms of high-energy scattering.

I. INTRODUCTION

UCH work. has been done on the theory of elastic
~ two-body scattering in the infinite-energy limit.

Qualitative forms of the scattering amplitude at
infinite s and finite t have been proposed based on the
Regge model and the eikonal or diffraction Inodel, '
which is related to the droplet model of Chou and Yang. '
The predictions of these models seem to be consistent
with the well-established fact that the forward (k=0)
scattering amplitudes for hadrons tend to s as s ~~.

These models are built on extrapolations from the
nonrelativistic potential scattering theory instead of
relativistic first principles. Because of this fact, explicit
calculations based on relativistic field theories are of
great interest. Some work has already been done along
this line. For example, the Regge behavior has been
shown to appear in the scalar-meson theory when the
ladder diagrams in the t channel are summed. ' Torger-
son has analyzed the charged scalar-meson scattering
up to three-photon exchange in the s channel and found
the result consistent with the eikonal approximation. '
More recently, Cheng and Wu have studied thoroughly
the lowest-order diagrams in quantum electrodynamics
(QED) and found the scattering amplitudes to be pro-
portional to s as s —+~.4 In the case of the scattering of
a photon by the static Coulomb field of a nucleus of
charge Z, i.e., the Delbruck scattering, they have
studied the amplitude to all orders in Z.

In studying a field-theory model, one hopes that the
high-energy behavior of the scattering amplitudes
derived from the model might turn out to be relevant to
hadron physics. Therefore, one must extract from the
model those general features which are not based on

any finite-order perturbation calculations, since the
validity of a perturbation expansion in strong inter-
action is very doubtful. In other words, one should

study infinite sets of diagrams.
In this paper, we study the infinite-energy behavior of

a certain infinite set of diagrams in QED. These are the
multiphoton exchange diagrams shown in Fig. 1 for the
ee, ye, and yy scattering amplitudes. At infinite s and
finite t, the resultant amplitudes of summing these
diagrams are all proportional to s, multiplied by simple
combinations of eikonal forms. Thus, the eikonal form
and the Regge form of high-energy amplitudes can be
viewed, respectively, as reQecting the special char-
acteristics of the two different categories of diagrams
shown in Figs. 1 and 2. The main results of this paper
have been reported in a letter. '

It is not the purpose of studying this set of multi-

photon exchange diagrams to determine the exact high-

energy behavior of amplitudes in QED. The exact high-

energy behavior can be found only if all diagrams are
analyzed. Such a task seems impossible to accomplish
at present. We feel that, for the time being, it is im-

portant to associate simple physical features with

special sets of diagrams and to develop techniques of

calculation before a more realistic description of the
true high-energy behavior can be attempted.

The method of calculation in this paper is what we

call the "infinite-momentum technique, " which ex-

ploits the simple I.orentz-transformation properties of
the variables P~=Pe&P' and their special properties
under the momentum integration. ' It is also our purpose
here to demonstrate in detail how the infinite-

momentum technique is used in practical calculations,
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FIG. 2. A t-channel ladder diagram in
the scalar-meson model contributing to
the Regge behavior.

II. INFINITE-MOMENTUM TECHNIQUE

1. Momentum Variables

We are interested in studying scattering processes in
the infinite-energy limit. We must therefore use a set of
variables which describes particles moving with infinite
momenta in a natural and effective way. The set of
variables (p'% p', p', p') studied in Ref. 6 seems to be a,

reasonable choice. We now proceed to review the basic
properties of these variables and list some useful
formulas.

Consider a particle moving with an infinitely large
momentum. Let the four-momentum be p and let the
coordinate axes be chosen in such a way that p' is
infinite and p' and p' are finite. Let P be an infinitely
large number so that

p'= qP

and q is finite. We then have

(2.1)

hoping that this technique will be further developed
and applied to various problems by interested readers.

The outline of this paper is the following. In Sec. II,
we illustrate the basic aspects of the infinite-momentum
technique. Much of the material in this section has been
presented in Ref. 6. In Sec. III, we show how the leading
s dependence in the high-energy limit can be estimated
by inspecting the diagram. To demonstrate further the
details of the infinite-momentum technique, we work
out in Sec. IV the two-photon exchange diagram in ee

scattering and the electron loop integral which appears
in later sections. With the technique fully illustrated,
the summation of multiphoton exchange diagrams is
carried out in Secs. V and VI. In Sec. VII, the results
are put into more explicit forms, and the gauge in-
variance of our procedure is demonstrated. Possible
modifications of the results by those diagrams not in-
cluded are discussed in Sec. VIII. Two short appendices
are included to give a few useful formulas and the results
of summing the multiphoton exchange diagrams in the
charged scalar-meson model.

where
p+'= n,-p '=-(p'+m')/n. (2.4)

The special decomposition of p into p+, p ha, s a, special
physical meaning. They are the eigenvectors of the
boost operator E3..

iLIt„P,)=~P„ i(It„f7= O. (2.5)

e&= 21-'.

Thus, under this Lorentz transformation p' —+ p,

(2.7)

p+= (2P)p+', -p =(2P) -'p ', -(2 8)

and y is unchanged. This is the same statement as (2.3),
of course. The finite vector p' is thus the momentum p
measured in the standard frame defined above.

Physically, this standard frame is a reference frame
moving with a particle of unit mass which has a mo-
mentum P along the third axis. The variables (p+', p)
are finite and are very useful in calculations. In all
computations involving infinite momenta, we shall
always manage to transform to a standard frame. After
such a transformation, the momentum variables be-
come finite and the infinite quantities show up as the
Lorentz-transformation parameters.

2. Sjpinors and Polarization Vectors

For computing the scattering amplitudes, we also
need to know the transformation laws of the Dirac
spinors, photon polarization vectors, and propagators.
Let us first work out some of the basic transformation
properties of the Dirac spinors. Consider first the simple
expression

u~(p2) V"»(pi), (2.9)

Under a Lorentz transformation along the 3 axis, any
operator 0 transforms according to

0 ~ e'&~'Oe

Thus, p transforms accordingly as

li ~ p p+ ~ r+'p+. (2.6)

Let us choose a standard Lorenls frame defined via the
Lorentz transformation given by

po —L(p8)2+p2+m2)1/2
= &P+(2&P)-i(I ~+m~)+0(P-3),

p= (p', p').
(2.2)

p8 —p~3P P~~ ) 6=1) 2

where the longitudinal components of pi and. p~ are
infinite, i.e.,

The boldface letters will always denote vectors in the
1, 2 plane.

We shall often refer to the third component of a
vector as the longitudinal component and the 1, 2 com-
ponents as the transverse components. One can form
from p' and p' the large and small combinations

and their transverse components p, '=p, and p," are
finite.

To evaluate (2.9), we perform a Lorentz trans-
formation to the standard frame. The spinors trans-
form according to

u(p, ) == e l* "'u(pi'), u(p~) = u(p2')el' " (2.10)'"
P+= P'+P'= P+'(2P)+o(P '),
P =P' P'= p '(2P) '+-o(P—'), - (2.3)

where pi, q' are the corresponding four-vectors in the
standard frame, 0""=,'i[p&,y"), and —e&=2P. Then (2.9)
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reduces to
u2(p~')el'&"'yI'e *"&"'ni(pi') .

(2.19)~"(P)= o
The y matrices transform like the components of a

and
vector, i.e.,

e,~(p)=—ep(p)~e, '(p) = ~(2P) '2p e;(p). (2.20)(2.12)g-', i)rJ ~ g
——,'i$rr

where p'=0 p'= p' /= 1, 2, 3. Obviously, (2.17) and
(2.11) (2.18) imply

Tr (Pi'+m) (P2'+m) . (2.15)

This shows that the leading component of the tensor
(2.14) is given by p= v=+. This is similar to the fact
that the leading component of the vector (2.9) is given
by p=+.

In general, it is possible to transform an arbitrary
expression involving Dirac spinors and y matrices into a
corresponding expression in the standard frame co-
variantly. Any free index p, as demonstrated above,
always picks up a factor (2P) +' for p= ~.

Similar transformation laws can be obtained for ex-
pressions involving photon polarization vectors. The
polarization vector e,"(p) is normalized according to

""(P)~ .i( P)=~'— (2.16)

where i, j denote the polarizations of the photons and p
is a vector index. Note that the scalar product A„BI"is
given by ,'(A+P +A 8+) —A. B. T—he polarization
vector has to satisfy the I.orentz condition

(2.17)

We find that it is advantageous to impose also the
radiation gauge condition

Ppe "(P)= o (2.18)

and y remains unchanged, where y+=—y'&y' and
y=(y', y'). Since e&=2P —+~, the leading component
of (2.11) is p, =+, i.e.,

Q2(P2)re+1(pi) = 2P+2(P2 )p+iil(pl )
= (2P/m)(pi~'p2+ )'"8)„x,. (2.13)

The X's are helicities of the electron. The last step may
not be obvious to some readers and is worked out ex-
plicitly in Appendix A. It is interesting that the trans-
verse components of pi and p2 do not appear. The lack
of spin flip plays an important role in the future
computations.

When electron loops are involved in an amplitude,
one encounters traces taken over products of y matrices.
To see qualitatively how these traces behave at the
infinite-momentum limit, let us work out a simple
example.

Consider
TrLq~(Pi+ m)q"(P, +m)], (2.14)

where pi and p2, as before, have infinite longitudinal

components. After inserting e "& "e"&" between all
pairs of y matrices, and carrying out the transformation
e*'t' "ye l'&'", we find that (2.14) reduces to

It is quite straightforward to transform the polariza-
tion vector e,"(p) into that in the standard frame e "(p')
since it transforms covariantly as a four-vector. In the
standard frame we have

e''(p') = e'(p)
e,+'(p') = (2P)—'2p e, (p) = 0,
~,-'(p') = 2p e'(P),

(2.21)

as well as the normalization condition

e''(P') e '(P') = 4 (2.22)

P+=- (»)"P+', p= p'.

Equation (2.23) becomes

(2.24)

L(2PP+ +q+)((2P)-ip '+q )—(p+q) 2 —m2+ie]-i
= (2P)—'Lp+'q +(2P)—'(p'+q' —2p' q —m')+ie] '

=(») 'LP+'I +o(P ')+~e]-' (2.25)

Equation (2.25) is very useful in later applications.
So far we have restricted our discussion to infinite

momenta along the positive 3 direction. It is clear that
all that has been said can be applied to infinite momenta
along the negative 3 direction by simply interchanging
the symbols + and —in appropriate pla, ces. In study-
ing scattering at infinite energy, one always encounters
infinite and opposite momenta.

III. s DEPENDENCE OF DIAGRAMS

In this section, we shall show how to pick out the
leading term in the scattering amplitude for a given
diagram as s, the total center-of-mass energy, tends to
~. The processes we consider here are limited to the
two-body elastic scattering a+9 ~ a+Ii with a finite
momentum transfer. We shall work in the center-of-
mass system with the momentum transfer k lying in the
1, 2 plane. The kinematics is shown in Fig. 3. The

The fact that e;+'(p') =0 will lead to a tremendous
simplification in the evaluation of Compton and the
photon-photon sca,ttering amplitudes. This simplifica-
tion originates from the particular gauge that we have
chosen. Of course, other choices of gauges will lead to
the same physical result of interest.

Ke conclude this section by evaluating the propagator

[(p+q)
'—m'+is] —', (2.23)

where p has an infinite longitudinal component P. The
quantities p', p, and q are finite. Factors like (2.23)
appear repeatedly in the scattering amplitudes where q,
in general, is related to the momentum transfer. In
terms of the quantities in the standard frame, we have
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k

P1 P2

(b)

Fio. 3, Kinematics of a+b —+ a+b.

initial and final momenta are conveniently expressed in
terms of the purely longitudinal momenta p„pb and
the purely transverse momentum transfer k:

To see how our method is useful in practice, let us
consider some lowest-order electron-position scattering
amplitudes, (see Fig. 4). It is easy to see that the
internal photon line in diagram 4(a) carries both an
infinite P+ and an infinite P as s —1~, while the photon
line in diagram 4(b) carries only a finite momentum.
According to the above rule, we should expect that the
contribution from diagram 4(a) is small in comparison
with that from diagram 4(b) as s ~~. Let us verify
this explicitly. For diagram 4(a), the amplitude, i.e. ,
the invariant T-matrix element, is

—(P.+lk)v" (P —lk) (P +lk». (P-—lk)

X/(p. +p/, )'—u'+i~] ', (3 5)

where

Pl pu 2k 1 p2 pb+2kl
P2= P.+2k-Pi= Pb 2k, —

p.'= p/, 2= p—, p. , 2=-0, k'-- 0.

(3 1)

(3.2)

where p is a fictious photon mass which is included to
remove the posible infrared divergence.

Let us introduce two standard frames a and b, a for
the spinors with infinite p+ and b for those with infinite

The total energy squared of the system is

s 1 2

[(m 2+ lk2+P2)1/2+ (m 2+ 11 2+P2)1/2]2
= (2P)'+0(1) (3.3)

In terms of components p= (p+, p, p), (3.1) becomes,
owing to (3.2) and (3.3),

Pi= (s / s / Pk +m 2) —1k)

p, =(~ 2 ~
—1/2(1k2+m 2) ik)

P2
——(s "'(-'k'+m/, ') s"2 —'k)

p = ($1/2(1k2+m 2) ~1/2 lk)

(3 4)

To facilitate our discussion, we shall use the symbol p
to replace the word "momentum" in various contexts.
For example, instead of saying that "the electron has a
momentum whose + component is infinite and whose—
component is infinitesimal, " we simply say that "the
electron has an infinite p+ and an infinitesimal p ."

Thus, according to (3.4) the external lines 1, 3 have
infinite p+ and 2, 4 have infinite p, as s —+~ . Since the
momentum is conserved at each vertex, the infinite p+
and p must be carried through some of the internal
lines. As far as the leading terms are concerned, we find
the following general rule: Eo internal line can carry
both an intinite p+ and an infinite p simultaneously as
s —&~. The reason goes roughly as follows.

The invariant p of an internal line goes like p+p,
which tends to ~ if both p+ and p do. Since p' occurs
in the denominator of the propagator, the internal line
with infinite p+ and infinite p tends to diminish the
amplitude. Therefore, the leading contribution must
come from graphs with no internal lines carrying
infinite p+ and p simultaneously. We have verified this
rule for simple diagrams although we have not proved it
in general. At present, we shall take it as a working rule
for estimating the s dependence qf a diagram,

The spinors with infinite p+ are related to the spinors
in the standard frame a through

u(p —-'k) = e
—l'&"'u(p ' ——'k)

u(P +-'k) = u(P '+-'k)e"'"'

~+ 1 o

(3.6)

(3.7)

p++& k pb-2k
p +2kI pb-2 k

p --k0 2 pb+ pk

(b)

pb+-'k

pa+ &~k pb--k

Pb+q

p -&k

q-k2
pb+ -'k

Fra. 4. {a) An e+e scattering diagram not contributing to the
leading term. (b) A diagram contributing to the leading term.
(c) and (d) Two-photon exchange e+e diagrams not contributing
to the leading term,

For the spinors with infinite p, i.e. , the v and v in

(3.5), expressions similar to (3.6) can be written down
with pb '=1 in the standard frame b. The photon
propagator has infinite p+ and p . It simply gives
1/s as s~~. In terms of spinors in the standard
frames, (3.5) reduces to

u(p. '+-,'k)—el'&"'y el'&"'v(p ' ', k)v(p '+-',—k-)

Xe '*'&"'y„e l'&"'u(p ' —-'. k)(1/s). (3.8)
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su3(p. '+-', k)y+ui(p. ' ——,'k) i g(pi, '+-,'k)
Xy—~4(p~' —2k)(k' —p'+i~) '

= —sm '8i, i,bi, i,(k' —p'+ic) (3.11)

Notice that when u is replaced by v in (2.13), a minus
sign on the right-hand side is needed. Indeed, (3.11)
is an order of s larger than the contribution of diagram

It is easy to verify that p+ anticommute and y com-
mutes with 0".Therefore, for the terms with p= & in
(3.8), the exponential factors cancel as we move y~ to
the right or to the left. The result is of 0(1/s). For
p= j., 2, the exponential factors combine and give

e'&"' ~ -'(Qs) (1+ia") (3.9)

and the resultant amplitude is of 0(1).
For diagram 4(b), there is no additional damping

factor in the denominator, and the amplitude is given by

u, (p.+-,'k)q"Ni(p. 2k—)82(p&+ ', k)y—„v4(p& 'k—)—

X (k2 ~2+i')—i. (3,10)

In terms of the variables in the standard frames and
with the help of (2.13), the leading term in (3.10) as
s —+~ is the term with p.=+ in the first factor coupled
with p= —in the second factor, giving

4(a). Note that the leading contribution in diagram
4(b) is due to the coupling via the photon between the
large component of Ny&u on the left (p=+) to the
large component of 8yI'v on the right (p= —), which are
associated with the electron and positron of large and
opposite momenta. The coupling between these large
components is possible because photon has spin 1. This
very property plays an important role in the high-
energy asymptotic behavior of all QED scattering
amplitudes.

Next, let us consider the e+e elastic scattering ampli-
tudes with two photons exchanged. According to our
rule, it is very easy to see that diagram 4(d) cannot be
the leading term because at least one of its internal
lines must carry an infinite p+ and an infinite p
simultaneously. Diagram 4(c) is a little tricky. None of
the internal lines carry both infinite p+ and infinite p
for finite q. However, as we shall see, this diagram still
cannot give a leading s dependence because the particles
exchanged between the fast-moving particles are elec-
trons rather than photons. In fact, the larger the spin
of the particle exchanged, the higher the leading power
in s in the final amplitude. To see this, let us work out
explicitly the contribution from Fig. 4(c).

The amplitude is

d4q

(p.+lk)v"(q —l&+ )v" (p —lk) (p +ankh (q+l&+ )v, (p.—lk)[(p. —q)' —~'+ ~?'
i(2~) 4

X[(pt+q)
' —p'+i&]—'[(q —-,'k) ' —m'+ is]—'[(q+ —',k) '—m'+is] '

d4q

N(p. '+-', k)y&el'&"'(q —-', 0+m)el'&"'y"n(pg' ', k)8(pg'+—-',-k)y„e l'&"'(q+-,'—0+m) e l'&"'y„u(p—.' —-', k)
i(2s )4

X[(& )(—q-+0(1/& )+ )] '[(4 )(q++0(1/& )+ ' )] '

X[(q——',k)' —m'+i&]—'[(q+-', k)' —m'+i&] —', (3.12)

where we have made use of (2.25) and (3.6). Analogous
to the amplitude in Fig. 4(a), the numerator goes like s,
and consequently the amplitude goes as 0(1). In other
words, the leading s dependence generated in the
numerators of an amplitude associated with an e+e
pair-exchanged is overcompensated by the 1/s factors
picked up from the denominators. One can verify for the
lowest-order diagrams that this is also a general result.
In the future, we consider only processes with an
arbitrary number of photons being exchanged between
particles carrying large and opposite momenta.

In the above calculations, we have assumed that we
can factor out the s dependence before the loop integra-
tion is carried out. In the present case and that of the
two-photon exchange amplitude, the validity of the
factorization (up to lns) can be established. In general,
it is certainly of great importance to give a simple
criterion and justification for factoring out the s
dependence. The criterion we use in our calculations is

simply that the remaining integral after the leading s
dependence has been factored out should be finite and
well behaved. When any term, even if it is an order or so
smaller in s in appearance, becomes divergent after
s factors have been taken out, we must keep this term
in its original form and perform the integral first. In
general, this latter integral becomes convergent and
there appears a cutoff of order s to the integral. We then
factor out the s dependence after the integration if the
remaining coefFicient is then finite. In other words, we
make sure that the remaining integrals are finite when
we factor out the s dependence.

IV. PROCESSES WITH TWO-PHOTON
EXCHANGE

In this section, we consider the asymptotic amplitudes
for processes with two-photon exchange. These diagrams
have been studied thoroughly by Cheng and Wu. 4 We
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p +-'k

p -qji
p

q+-', k

q--k2

p +ql

Let us first compute the asymptotic s dependence of
A„„.We follow the method outlined in Sec. II, and ex-
press 2&" in terms of quantities in the standard frame.
The transformation property of A&" is very simple. The
leading component of A&" is p, =z =+, giving

p --'k (p)

(c)

p --k (b)
p 2

(e)

A++ ——(Qs) zzz (p.'+ -', k)y+(p. ' q'—+m) y+»(p. ' ', k—)—

X[—q +0(q'/Qs)+ic] ', (4A)
where

q~'= s+'"q~, q'= q.
Since

v+'= v+v'v+= o, v+v-v+= 4m+,

only p can survive between the two p+'s, and
consequently,

y+(p. ' —q'+ m) y+ = 2 (p.'+ q')+y+ = 2y+.

Then, with the help of (2.13), Eq. (4.4) reduces to

A+ = 2[(&~)/m]» k.[—q-+0(q'/V'~)+z ] ', (4 5)

where b&,),, indicates that the helicity of the electron
does not Rip. Similarly, the asymptotic structure of
B„„canbe obtained as

FIG. 5. (a) and (b) Leading two-photon exchange ee scattering
diagrams. (c)—(f) Lowest-order leading pe and py scattering
diagrams.

wish to use these relatively simple diagrams to demon-
strate our technique.

We first consider the ee scattering amplitude given
in Figs. S(a) and 5(b). The amplitude for diagram 5(a) is

—e4

i(2zr)'

(4.1)
[(q+-.,k)' —z4'+zq][(q ——,k)' —z4'+zb]

where

As always, the amplitude is evaluated in the c.m. frame
with k lying in the 1, 2 plane. To compute the leading
behavior in s, we factor out the s dependence before the
loop integration. We have mentioned at the end of the
last section that one has to be very careful about the
interchange of the limit s —+ ~ and the loop integration.
The validity of our procedure may be justified after-
wards by showing that the resulting coefficient of the
s factor is finite and well behaved. Note that for a fixed

q, we can compute the asymptotic behavior of A&" and
8'" separately, and put them back into (4.1) after the
s dependences are factored out.

A""=- ~z(p.+ankh "(P.—q+ m) v"»(p- —2k)

X[(p.—q)' —m'+z ]-', (42)

BI4p= Z44(pb 2k)'y~(pb—+q+m)y, uz(pb+=.'k)
X[(pb+q)' —m'+ze] ' (4 3)

~—= 2[(& )/ ]~, .[q++0(q'/& )+ ] '. (4 6)

Substituting (4.5) and (4.6) back into (4.1), we have

A &"8„„=4z A~+A +0(1),
and the asymptotic amplitude for diagram 5(a) is

~ e Sm 5)k1)tan)t2)k4

dq+(fq [—q +0(q'/Qs)+ie] '
z(2zr)'

X[q++0(q'/Qs)+i ] '[(q+2k)' zz'+i ]—'

X [(q—-', k)' —zz'+z~] —'. (4.7)

results in 3++. Similarly, by averaging over q and —
q

in the denominator of 8, we have

(4.V)

Collecting terms and performing the loop integrals in
(4.7), we have the fourth-order e e (or e e+) scattering
amplitude

—4»~ ~) 1) 3~»x4e

d'q(2~) '[(41+lk)'+z '] '[(41—lk)'+z '] '

1
=-', isbk, kkbk4k m ' —d'b e"'X(b)' ) (4.10)

2

Diagram 5(b) leads to the same contribution as that of
diagram 5(a), except that the q in (4.5) is changed to —

q

[or, alternatively, the q in (4.6) is changed to —q].
Adding the two diagrams, and ignoring the 0(q'/gs)
terms, we find that a factor

(—q +ib) '+(q +ie) '= 2zrzb(q —) (4.8)
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with

)c(b) = —e' d'q(24r) '(q'+p') 'e'& . (4.11)
A . .(s)~v—

d4z
4e'e ' Tr[Sp(w —p)y "Sp(w ——,'k)y&

i(2')'
XSp(w —

q) p "S~(w+-', k)pe), (4.15)

There are two important features illustrated above.
First, only p+ appears at the vertices on the electron
line on the left, and only p on the right. Second, as a
result of adding the diagrams in Figs. 5(a) and 5(b),
8(q~) appear. As we shall see, both features persist
when additional photons are exchanged between the
electrons.

For each of the individual diagrams, such as Fig. 5(a),
the result is less appealing. For example, we cannot
ignore the 0(q'/Qs) terms in the denominator of (4.7)
without making the q~ integrals diverge logarithmically.
This indicates that these 0(q'/Qs) terms must serve as
cutoffs on the loop integrations. Indeed, if one keeps
these 1/Qs terms, the q+ integrals become convergent
and the amplitude (4.7) behaves asymptotically as

~),1~3~~~~4~ —s lns—
d g

[(q+2k)'+~' —1 ) '
(24r)'

X [(q——,'k)'+))4' —ie) '. (4.12)

It is important to recognize that the lns factor in (4.12)
is due to the nonvanishing principal parts of the
denominators

[ q+0(q'/Q—s)+ir) '[q++0(q'/Qs)+is) '. (4.13)

A, .(&)y~— """(—q+-' q+-' )
i(27r) 4

When all crossed diagrams of a given order are added
together, the principal parts cancel and so do all the
s lns terms.

The requirement of gauge invariance gives a funda-
mental reason why one is only interested in the total
amplitude in which all crossed diagrams of a given order
are included. The individual diagram, such as Fig.
5(a), by itself is not gauge-invariant. We have to add

up diagrams of all possible crossed photon lines in order
to make the final result gauge-invariant. The appear-
ance of sins in (4.7) is a reflection of the non-gauge-
invariant nature of the amplitude. This point will be
discussed in more detail in Sec. VII.

We now proceed to evaluate the ye and yy amplitude
given in Figs. 5(c)—5(f). All these amplitudes can be
expressed in the form (4.1) with A„„(and 8„„)depend-
ing on the particular type of incident particles. For
the photon subdiagrams in Figs. 6(a)—6(c), the ampli-
tudes for A„„are, respectively,

where

ic)P. v= g-. C4)1cc(.
q ~ q) (4 16)

S);(p)=(p m—+i&) '= (p-+m)(p' —m'+i4) '.
The leading components in these A's are those com-
ponents with p= ) =+.We denote these quantities by
A;, for simplicity. Let us concentrate on A;,".

First, consider the propagators 3 and 4, i.e., the two
upper propagators. They give rise to two denominators,

(W q) m +1r.=(w. q)+('R q)
—(w —q) '—m'+ ie (4.17)

and

(w q
—P 2k) m +zr.= (w —

q P)+(w q P)
—(w —q —-', k) ' —m'+ ie. (4.18)

In terms of the variables in the standard frame
and using p+' ——1, p '= 4k', k+ ——0, they become,
respectively,

(Qs)w~'D- ,
D=—q +[(v s)w~') '[(w —q)'+m' —ie

—w~'w ' —
q+q )+0(s—')

and
(4.19)

—(&s)(w+' —1)D',
D'= q+ [(Q—s) (w+' 1)) '[(w—q

—,'k)'+—m,'——is q+q- —
+(1—w ')(w ' ——,'k'))+0(s '). (4.20)

The product of these denominators appears to con-
tribute an 0(s ') factor. However, it actually con-
tributes an 0(s "') factor. One must be careful because,
if one lets s become infinite directly in (4.19) and in
(4.20), one would have, for 0(w+'(1,

(DD') '= (q +i4)—'(q —ie)—'. (4.21)

Then, the remaining m' integrals would diverge
quadratically and the q integral would not be de6ned
either. To do it correctly, we write

(DD') '=(D ' —D'—')(D' —D) ' (4.22)

From (4.19) and (4.20), we see that D' D= 0(s "'). —
For 0(x+'(1, we have

D ' D' '= (q —ie)—'——(q jie) '
=21rib(q ) (4.23)

as s —+~. Thus, (4.17) and (4.18) contributes an

0(s '") factor.
The remaining denominators of the propagators 1

and 2 and O' —D can be written as

[(w+' —1)(w
' —4k') —w' —m'+ i4)

X [w~'w ' —(w ', k) ' m'+i e)—-—
Xs '1-'f (1—w+') '[q+q —(w q 2k)' —m'—+i&)—

+4k'+w+' '[q+q —(w —q)' —m'+is)). (4.24)XSp(w —q)yeSs (w —
q
—p ——,'k)y"), (4.14)

4e&'e 'Tr[SF(w p)y SF(w ', k)y&— ——

i(24r)'
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Note that there is no m
' dependence in the last de-

nominator. In fact, nor is there any in the numerator
of (4.14). The w ' integration can now be carried out
easily. After the m

' integral, the four denominators 1,
2, 3, and 4 give

s—"'(2zrz)'8(q )[(w—q —,'-w~'k)'+m') '

X {[w——',(1—w ')k]'+m'} ' (4.25)

q&. -'k
2

W-P-q+-k
2

} p+-'k
2

W+- k2~-q+~ k

)W-q
q+& k

w—'k
2

(c)

-k
2

-k
2

for 0(m+'(1 and zero otherwise. The 6nite range in
the remaining zv+ integration is a special feature of the
infinite-momentum technique. Interested readers are
referred to Ref. 6 for more details.

The two denominators in (4-.25) can now be combined

by introducing the Feynman parameter x. Equation
(4.25) becomes

Fio. 6. Left side of Figs. 5(c)—5(f).

(4.30) and (4.26), we have

e'A„&~& =e'i(2zr) ' d'w M,,(—q+-,'k, q+-,'k; w)

s "'(2zri)'B(q ) dx [w"'+m' 4iz(rg )s—

X[I,,(—q+-,'k, q+-', k)+C&,;]6(q ), (4.32)

where

+x(1—x)(q+(P' —-', )k')'1 ' (4.26)
where n=e'/4zr is included in the definition of I;, for
convenience,

w"—=w —,'pxk —(1—x) (q+-',p'k) . (4.27)

We have written p' for w+' and p for 1—w+'.
The leading term in the numerator of the integrand

in (4.14) can be extracted in the same way as was
illustrated previously. We simply give the result of
taking the trace:

8${—k'k (pp ) —pp (wz'w4~+w4'wg +wl'wz +ws wl )
+p'(wz'wz& —wjw2&)+ p"(wr'w4& —w4'wz')

+pp'( pk~wz'+ p'k~w—z' p'k'w4& +pk'w—3')'
+8,,[PP'(Wz W4+W& W,+2m')

+P'(w2 w3+m')+P"(wz w4+m')]} . (4.28)

The subscripts 1, 2, 3, and 4 refer to the propagator
labels in Fig. 6(a) and w'= e' w. In terms of w", defined

by (4.27) and

I,,(kz, kz) —=— dPdP'dx 5(1—P —P')

X[4K'K'pp'x(1 —x) ——',8,,K'(1 —8pp'(x —2) ')]

X[m'+x(1 —x)K']—', (4.33)

K—=p'kz —pkz, (4.34)

and C is a logarithmically divergent constant. As we

shall see, this logarithmic divergent constant will be
canceled out by a similar divergent integral in ampli-
tudes A„„('& and A„„('&.

Now let us consider the leading components zz= v=+
in Figs. 6(b) and 6(c).In terms of variables in the stand-
ard frame and after factoring out the s dependence
explicitly, we have

K=—p'(q+-', k) —p( —q+-', k), (4.29) A (4) ~ (gs)

(4.28) becomes

8s{4pp'x(1 x)K'K'—
+8;,[(1—2PP') w"'+ m' —x(1—x)K']}. (4.30)

where

dzv+ d3') d zv

e,.'4,e' Tr[ ]D ', (4.35)—
i(2zr)4

We have ignored terms linear in w", since they will not
contribute to the w" integral.

The w integral in (4.14) may be written as

d zo= — d'w+ dG'J d K'

2

dPdP'8(1 P P') d'w" dw '—. —(4.31)

The zv
' integration has already been done. Combining

D= [(w+' —1)(w
' ——,'k') w' m'+ze—]—

X [w4.'w —(w —-', k) '—m'+ ze]

X[w~ w —(w+-,'k)' —m'+ze]
X[ w4 'q +0—(q'/Qs)+ie] (4.36)

and

Tr[ ]=Tr[(w' —P'+m)y (w' —-', 0+m)y+
X (w' —q'+m)y+(w'+-', 0+m)ye]

=2w ' Tr[(w' P'+ )my
—(w' ,'0+m)y——

X (w'+ —', k+ m)ye) . (4.37)
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In deriving (4.37), we have used the relation

(rri —q'+m)y = 2(~ —
q ) y = 2w p +0(s ) .

Making use of (2.21) and (2.22), we find that the trace
reduces further to

"''Tr[ . ]
=8ie~'(k, k, ie~'(1 —ie+') '+ (1—2w+'+ 2w+")

X (re,k;—k,w, ) 4w—+'ie;vr,+5;,[(,'k' -re —')ie~"
+ie~'(w'+-,'k'+m')+w' ——,'k'+m']) . (4.38)

The expression for A;, ('& is identical to that of A,, ( ) ex-
cept that the last factor in D is replaced by zv+'q

+0(q'/Qs)+i&. As in the case of ee scattering, the q
integral diverges logarithmically for each of the in-
dividual A,, However, by adding the two diagranis,
the last factors in D of these two denominators combine:

1 —27rz—~(q ), (4.39)—ie+ q +ze ze+ q +ze lie+i

same in both cases, it drops out in the final expression.
This cancellation can be proved more rigorously by
introducing heavy-mass regulators into the electron
propagators. The final amplitude for Figs. 6(a)—6(c) is

nA '&'= —i(Qs)
X[I,,(—q+-', k, q+-,'k) —I,,(k,0))b(q ), (4.43)

which is perfectly finite.
Knowing the A's for both the electron (and/or

positron) and for the photon, it is a simple matter to
compute the asymptotic aniplitudes for Compton and
photon-photon scat terings [see Figs. 5(c)—5(f)) by
putting A s into (4.1) and carrying out q~ integrations.
The amplitudes are

M(y, e+) = ,'is—bi—,i,m 'e4

(2m)'

X[I;,(—q+-,'k, q+-', k) —I,,(k,0)]

X[(q+-',k)'+~'7-'I (q--', k)'+~')-', (4.44)

and the q integral becomes trivial.
We next carry out the m' integration. Since there are

three m
' in the denominator D and at most one in the

numerator, the x ' integral always converges. We can
close the contour of ie ' integral at lw 'l = ~ from
either above or below the real axis, whichever is more
convenient. Note that two of the poles in the m

' plane
are always on the same side of the real axis, and if the
third pole is also on the same side of the real axis, the m

'

integral vanishes identically. We then find that the m
'

integral vanishes except for 0(m+'(1, and in the later
case, the denominator reduces under the ze

' integra-
tion to

D '=
L
—(2 i)'0/~+')~(q-)L(w+lA)'+m'] '

X [(w ——,'Pk)'+m'] ', (4.40)

where /=1 —w+'. The last two factors in (4.40) can
be combined by means of a Feynman parameter x as

dx [(w ——,'Pk+xPk)'+x(1 —x)P'k2+m'] —2. (4.41)

We now substitute (4.38)—(4.41) back into (4.35) and
carry out the remaining w integrations. This can be
done quite straightforwardly by first making a
translation

w" =w —-,'pk+ xPk

and performing the w" integration. The 6nal expression
is simply

~(A ~'&'~+A & &'~) = i(Qs) [I,,(k,0)+C8;,]5(q ) . (4.42)

It is interesting that (4.42) is quite similar to (4.32).
Since the logarithmic-divergence constant C is the

M(yy) = ise4— [I;,(—q+-', k, q+-', k) —I,,(k,0)]
2~2

X[I,', (q —,'k, -q--', l )-I;.,'(-l, 0)]

X[(q+lk)'+")-'[(q —:k)'+"]-' (4.45)

V. ee SCATTERING AMPLITUDE

Having illustrated the details of the infinite-
momenturn technique, we proceed to sum the rnulti-
photon exchange diagrams shown in Fig. 1. To avoid
possible confusion of signs, we remind the reader that
the matrix elements or the scattering amplitudes in
this paper are the invariant T-matrix elements. The
forward elastic amplitude, in our convention, is then
proportional to the energy shift of the two-particle
system due to the interaction. It has a negative imagin-
ary part by the optical theorem.

To evaluate the diagrams in Fig. 1, it requires only a
careful counting in addition to the calculation carried
out in the previous sections. For the sake of clarity, let
us discuss the ee scattering first.

1. Matrix Elements and Their s Dependence

A special feature of the diagram in Fig. 1(a) is the
following. Each photon line has one of its ends joined
to the electron with large p+, and the other end joined
to that with large p . As a result, only y+ contributes
at the left end and only y contributes at the right
end.

Let us label the photon lines starting from the bottom
of the right side of Fig. 1(a) by j= 1, 2, 3, , 1V. The
sum of the photon momenta q, must be the total mo-
mentum transfer k. The integrals over q; have the
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p+-'k, ),

qv„

q

=-== qv

p--,'k, X,

volume element

Fzo. 7. Left side of Fig. 1(al.

(1/&~)'" ', (5.9)

which, combined with (5.4) and (5.6), gives the s to
the first-power dependence of the scattering amplitude.

that (5.7) reduces, at the s~~ limit, to

(& )t (q +q,+ .+q;)-+ 7—= (v'~)D. ; (58)

Thus, the E—1 electron propagators on the left, to-
gether with the lV —1 electron propagators on the right,
contribute a factor

d'q
(2 )'z~'(2 q

—k) II — =2(2 )'z~((Z q)-)
~=i (2zr)'i j=l

Xp(( Q q, )+)8(pq, —k) Q dq;+dq; d'q;

XL2(2 )'7 ' (51)

For each photon line, we have a fa,ctor

(q' —~'+ze) ' (5.2)

The left side of the diagram in Fig. 1(a) looks like that
shown in Fig. 7. The set (pz, zz, ,zN) is obtained from

(1,2, ,A7) via the permuta, tion z. For every permuta-
tion, there is a diagram. There is a total of 5 t diagrams
with Ã photons exchanged.

The numerators of the electron propagators and
spinors in Fig. 7 contribute the factor

zz (p+-', k)y' (p —,,'k+q„,+ .+q„,+zzz)y" -'
X. Xp (P~,'A+—q,—„+zzz)p zzi~(P ,'k), —(—5.3)

with
pi= pv, ~

Transforming to the standard frame with p+' ——1, we

find that the leading component is that with @1=@2
. .=pN=+. Similar to (4.2), (5.3) can now be

written as

2. Summation over Permutations of Photon Vertices

The quantity of interest is

(5.10)

(—2 z)" 'll &(q;-) (5.11)

This result follows from the following.
I.emma.

Z(w~z+ze) (wvz+wyz+ze) X ' ' '

X(w„z+W„z+ ' +W„N &+Ze) X8(wi+ '+WN)

=( 2zri)N —' g 8(w ), (5.12)
2=1

where w, are real numbers. To prove (5.12), we write

since there is a D„, given by . (5.8) for each electron
propagator on the left and we must sum over all
permutations. In (5.10), we have included a 8 function
appearing in (5.1) to ensure momentum conservation.
Notice that the permutation v occurs nowhere else in
the amplitude except in (5.8). Therefore, the sum over
the Et diagrams will be accomplished when the sum
over z in (5.10) is ca,rried out. We now show that (5.10)
gives simply

s zzs(p'+ s k) (sV27+s y ) '-', ~2p+zzi(p' ——,'k)
—2

—', N—i&-,'Nzzz —zg„„(54) (w+ze) '= i dr 8(—r)e'& +"&' (5.13)

N

'1(w + ' ' '+wN) dfN tI e p( —zw, ,f ) . (5.14)
2' j=1(2m+)(lv-)v+= v+,

for s~~. We have made use of Eq. (2.13) and the and
fact that

and have included a ~92 for each p+ vertex. By similar
arguments, the numerators of the electron propagators
on the right side of the diagram t Fig. 1(a)7 give

(5.6)

The jth electron propagator (from the bottom) in

Fig. 7 has the denominator

(p ,'k+q„,+q„q .+q, )' ——zrz—'+ze

= (p+q + +q;)+(p+q"+ +q;)-
—(——,'k+q„,+ . . +q„,.)'—zzz'+is. (5.7)

Substituting Qs for p+ and 1/Qs for p, one finds

Thus, the left-hand side of (5.12) is

XexpLi( g w„, +is)r;7 exp( i fNw))—
j'=1

= (2zr)-' g (—i)N-'

Xexp( z 2 w;f ), fN&fN —i» ti, (5.15)
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where we have made the change of variables from 7-; amplitude
tot;: —s(cV!) '8), ), 6g,g,m '2 '(27ri)"' '2(2')'i
ol

7.,=t+g —I;, i=1, 2, 3, . . ., E—1. (5.16) IId'Vds -dV-L2(2 )'j '~(q+)~(g-)

Now the sum over the permutations v effectively
eliminates the time ordering in (5.15). Integrating over
t, independently, we obtain the right-hand side of (5.12),
and the lemma is proved.

This lemma can also be understood physically as
follows. Consider a zero-dimensional system with zero
unperturbed Hamiltonian. Under the perturbation

&&(—q' —~'+~~) '~(E q' —k)

=2is8&g„bz z,m ' d'b e ' '(iV!) '(ix(b)7~ (5.22)

where we have defined

N

V()) Q g ~
—iwgt' (5.17)

x(b) = —e' (q2+~2) —l~iq ~ b

(2m-)'
(5.23)

i.e.,

8
i—U(&,i') = V(&) U(t, t'),

8t
(5.18)

t

Ut'tt)=exp( —, 'i ch" Q g;s '""') . (5.19)
2

where gj are constants, the U operator is given by
It can be shown easily that, for e+e scattering, one
simply changes X to —X. Summing over E from 1 to
infinity, we have, for the ee scattering amplitude,

M(e e+) = 2is6), ,—g, 8g, g,m 'F~'(k), (5.24)

where F+' is defined by the eik.onal form

F~'(k) = d'b e ""(e+*'x&'&—1)

The term proportional to g~g2 g~ in the S matrix,

5= U(~, —~),
=—F~(k) —(2m) '6(k) .

3. Semiclassical Feature

(5.25)

can be read off from (5.19). It is

g L
—2~ig, |'(w,)].

j=l

The amplitude M(e e+) has the simple eikonal form
expected from the semiclassical approximation. In Ref.
1, it is shown that, in the semiclassical approximation,
x(b) is given by

This term in the S matrix can also be obtained via the
Feynman rules by summing the diagrams geometrically
identical to Fig. 6, with (w+ie) as the propagator for
an internal line of energy zv. In this way, one obtains

2nigq —g~ times the left-hand side of (5.12). Com-
paring this result with (5.20), we establish (5.12)
immediately.

Now let us return to the evaluation of the amplitude.
By symmetry, we must have a factor

x(b) = —v ' dz V(b+z) (5.26)

for the scattering of a particle by the potential V(r).
In (5.26), v is the velocity of the particle, which moves
in the s direction, and b is the impact parameter
specifying the position of the particle trajectory with
respect to the center of the potential. If we set the
potential to be

V(r) = e'(4vrr) 'e &"

(—2~i) ' II ~(V+) (5.21)
=e' d'q(2~) '(q'+p') 'e'~' (5.27)

for the electron denominators on the right side of the
diagram in Fig. 1(a). Equation (5.21) can be obtained
by permuting the vertices on the right side in all pos-
sible ways; However, when one permutes the vertices on
both sides in all possible ways, each diagram appears
M times corresponding to 2V~ sets of labeling. Thus, a
factor (E!) ' must be included. Combining (5.1),
(5.2), (5.4), (5.6), (5.11), and (5.21) and integrating
over the q's, we obtain the E-photon exchange ee

which is a Coulomb potential in the limit p, ~ 0, then
(5.26) leads to (5.23). The velocity ~ in (5.26) does not
have a definite relativistic generalization. To get
(5.23), we must set it equal to 1. Notice that there is no
argument against writing v as pjm, which has a com-
pletely different asymptotic form (Q )/ smOne does
not expect to obtain a definite relativistic answer from
(5.26), which basically is a nonrelativistic result.
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p+gk, j

~qn f ~qn
qn

FQG. 8. Left side of Fig. 1 (b).

electron propagators give

{—[(Qs) —q~]q —q' —m'+ ie) —'

&&{[(Qs)+q )q~ —q' —m'+i&) '. (5.28)

Here we are keeping the 0(q'/Qs) terms in (4.7). If
these terms are ignored, we would get

(5.29)

p-2k& &

after performing the q integral. Equation (5.29) is
logarithmically divergent. Keeping all terms in (5.28),
the q~ integrals then give

The fact, that (5.24) turns out to have the eikonal
form of the semiclassical approximation is not sur-
prising. This is because, in going from (5.7) to (5.8), we
have dropped, among other things, the q,

' terms in
the propagators. The dropping of q,' terms is a crucial
step in the semiclassical approximation, and corresponds
to neglecting the effect of recoil. For the details of
the semiclassical approximation, see, for example,
Ref. 1.

At this point we would like to emphasize that the
appearance of the eikonal form in the ee scattering
amplitude is a consequence of the fact that the ex-
changed particles, i.e., the photons, are of spin 1. If,
instead of photons, scalar particles are exchanged, it can
be shown that no meaningful eikonal form can be ob-
tained from summing the same set of diagrams. If one
goes through the above calculations with the photon
replaced by a scalar particle, one would find X(b)
=0(s ') instead of O(1), which is of the same order as
the neglected terms.

4. Ladder Diagrams

The ladder diagrams play an important role in many
model calculations. We shall give here a qualitative
discussion of the ee scattering ladder diagrams, which
form a subset of the multiphoton exchange diagrams
we just summed. What we want to demonstrate is that
the sum over a different set of diagrams can give
entirely different s dependence of the amplitude. The
result of the ladder sum has no meaning here since, as
will be seen in Sec. VII, the set of ladder diagrams does
not satisfy gauge invariance.

The calculation of ladder diagrams turns out to be
more complicated than the above calculation. In the
above calculation, 8 functions in q,~ were obtained after
summing the permutations of photon vertices. For
ladder diagrams, no such permutation exists and one
obtains powers of lns instead of 6 functions. To illus-
trate this, consider the two-photon ladder shown in
Fig. 5(a).

The algebra proceeds in the same way as that de-
scribed in Sec. IV. The denominators of the two-

= (1/gs) [lns+0(1)]. (5.30)

The resultant amplitude is already given by (4.12).
When more photons are exchanged, the calculation gets
involved. Rough estimates show that, for the E-photon
exchange ladder, the leading term is

—8i, i,8i i m 's(—',m. 'lns)~ ' d'be ' ' X(b) (5.31)

VI. ey AND yy SCATTERING AMPLITUDES

The procedure shown in the previous section can also
be carried out to sum the diagrams shown in Figs. 1(b)
and 1(c). Consider the electron-photon scattering first.

Figure 8 shows the left side of Fig. 1(b) in detail.
There are S internal photon lines labeled by q&, . . ., q&.
The photon lines 1, . . ., n end on the upward line of
the loop and the rest of the photon lines, n+1, . . . , cV,
end on the downward line. The free ends of these E
photons are to be joined to the electron line on the right
in all possible orders to form Fig. 1(b).

As before, we need to consider the term with y+ at
each of these E vertices in Fig. 8. There are n —1
electron propagators between n and 1. Only the term
proportional to y in the numerator of each of these
propagators can survive between the y+'s sandwiching
the propagators. From these n —1 numerators and the n
vertices, we get the factor

(w 'si)" '(—,'v2y —,'y )" '—,'v2p
—2 ,'n (~ 1Is—',

)n —i— (61)—
after transforming to the standard frame. Similarly,

Summing over 1V formally, one obtains an s/lns be-
havior, which might look like what is expected from a
Regge cut, The spurious lns terms are manifestly
absent when diagrams with crossed photon lines are
included. As was already mentioned, it will be shown
later that the ladder diagrams do not satisfy gauge
invariance and should not be taken seriously.
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q1+ q2+ +qn= k1

qn+1+ ' '+qN=k2
&

(6.3)

respectively, on the two sides of the loop. Of course,
we have

k1+k2 ——k. (6.4)

The remaining four electron propagators, which are
joined to the external photon lines, can be analyzed in

exactly the same way as was done in Sec. IV. The
relevant quantity is the same as (4.14), with the
substitution

q+ ', k ~—k, , -q+ —', k —+ k2, (6.5)

and with the two y+'s supplied by (6.1) and (6.2). All

the algebra following (4.14) goes through. In particular,
the 6(q ) in (4.25) implies, by (6.5) and (6.3), that the
factor

6(kr ) =8(k2 )

=~(( 2 q)-)
j=1

for the E—n vertices and the numerators of the
E—n —1 electron propagators sandwiched by them on
the downward line, we have the factor

2l(N —n) —)L(W
' —1)Sk]N—n—1y (6 2)

Therefore, apart from numerical constants, these two
groups of vertices and propagators behave like two y+
vertices with momentum inputs

which multiplies the quantity (4.14) with the substitu-
tion (6.5) mentioned above.

The next step is to sum the diagrams with different
orderings of the vertices. This can be done in the same
fashion as the ee diagrams were summed in the previous
section.

First, we permute the indices j=1, 2, . . ., n in all
possible ways, i.e., we replace D, in (6.9) by D„, Lde-.
6ned by (5.8)] and sum over all the permutations.
Because of the presence of b((q1+ +q ) ) Lsee
(6.6)] and the identity (5.12), we have

1+(D D . . .D )
—1

N—1
2~/(N n) 1(2~i—)N—n 1g $(q

—)—
j=n+1

(6.11)

The appearance of 21ri in (6.11) instead of 21ri is-
because the D,' in (6.8) has a negative imaginary part

i» instead—of a positive +i» Fina.lly, we permute the
~V vertices on the electron line on the right side of the
diagram and sum over the permutations. We obtain,
as we did in the previous section,

n—1
=2ln '( —2mi)" ' g 8(q„). (6.10)

j=1

Next, we Permute the indices j=n+1, n+2, . . ., »n
all possible ways and sum over the permutations. Due
to the presence of 8((q ~1+ +qN) ) Lagain, see
(6.6)] and (5.12), we have for the second factor in (6.9)

=&(( 2 q)-)
j=n+1

(6.6) 2iN '( 2vri)'v—' g 8(q, ). (6.12)

appears. In (6.6), we have utilized (6.3) and (6.4). Also,
the variable zv+' is restricted between 0 and 1 as before.

The denominator of the electron propagator between
the vertices j and j+1 with 1&j&n —1 is

(w ——,'k+ q,+q,+q,)'—n1'+ i»

= (Qs)w~'[(q)+ .+q, ) +i»]
—= (Qs)w+'D; (6.7)

as s —+~. Similarly, the denominator of the electron
propagator withn+1& j&N —1is

(w —p —k+k1+q +1+ . . +q,)' m' +i»—-
= (&s)(w+' —1)L(q-+1+. +q)- —i ]
= (&s)(w+' —1)»'. (6.8)

We have made use of the fact that k1 = k2 = h = 0 and
that 0(zv+'(1.

The (Qs)w+' and (gs)(w+' —1) factors in the de-

nominators given by (6.7) and (6.8) cancel the cor-

responding factors in the numerators summarized by
(6.1) and (6.2). What remains after combining (6.1)
and (6.2) with (6.7) and (6.8) is

2&n '(D1D2 Dn 1) '221N ") '(D„+1'. DN 1')—', (6.9)

The above permutations in fact count every diagram
n!(.V —n)! times. One way to see this is the following.
The A! permutations of the vertices on the right
include those permuting within each of the two subsets
of vertices of photon lines joining, respectively, the
upward and the downward lines of the loop. Thus, when
the vertices on either side of the loop are then permuted
among themselves, one obtains no new diagrams but
interchanges of labels. Therefore, every diagram appears
n!(N n)! tim—es during the permutation.

Let us summarize the above results and obtain the
final form of the ye scattering amplitude:

(1) For the fermion loop, we have

»"i(21r) ' d'w cV,;(k1,k2, w) = i(+s)41r—

(Qs) h)„1,ns (6 14)

&&& ' ("1fr2)+C4]~((q1+. +q.) ). (6.13)

See (4.32) and the discussion between (6.1) and (6.5).
(2) For the electron line on the right, there is the

factor
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constant C in (6.19) does not contribute since the term
involving C is proportional to

np+ng n)+np nR+n4 C~(bl b2) p [~!(&V n—)!] 'X(b&)"[—X(b&)]'v—"
n=o

=C6(bi —b~) [x(b&)—x(b,)]~(g!)—'

Lt R)
=0. (6.20)

FIG. 9. I.oops in Fig. 1(c) shown in more detail.

(3) For the S internal photon lines, since q,~= 0, we
have a factor

II(—q,'—~') '
j=1

(4) The q, integrals take the form

(6.15)

d'q;
(2m)'i8'( P q; —k) II

~ (2')'i

1V K 42q.
l(2~) '( —)"(2 )'~( 2 q' —k) II — . (6.16)

i=~ (2~)'i

The q, integrals can also be written as

d k&d k2(2m. ) 6(k —k& —k2)(27r)25(k& —p q;)
i= 1

The q+ integrals in the above form can be evaluated
trivially with the help of the 8 functions in (6.6) and
(6.10)—(6.12), giving a, factor

The factor 5(b~ —b~) comes from the k~, k2 integrals.
Summing over n and iV in (6.19), we obtain the anal

form of the ye scattering amplitude:

M(ye) = ——',ising, g,m
—' d'k~d'k2(27r) —'6(k~+4, —k)

X[F+(kg)F (kp) —(2m)'5(kg)6(kg)]I, ,(kg, k2) ) (6.21)

where F+ are given by (5.25).
The summation of the diagrams like Fig. 1(c) for

the yy scattering amplitude is a straightforward ex-
tension of the above analysis. Let us consider the case
where cV photons are exchanged.

In Fig. 1(c), each of the two loops has two sides with
electron lines pointing up and down, respectively. Let
us label these four sides by I g, I.g, Rt, and Rg, respec-
tively (see Fig. 9).

Let us group the E exchanged photons into four sets,
1, 2, 3, and 4, including n&, n2, n3, and n4 photons carry-
ing the momenta kl, k~, k3, and k4 from the sides Rq,
Rg, Rt, and Rg to the sides I t, Lt, Lq, and L, q, re-
spectively. Of course,

n d'qm
XII '(2-) ~(k.—Z .) II —,. (6.»)

r=~ (2m)'i t n+1 m==n+1 (2s )2i

(5) There is an over-all counting factor of

P k(=k.
l=l

(6.22)

[n!(1V—m) g ' The number of vertices on the four sides are, excluding
the four external photon vertices (see Fig. 9).

Combining (6.13)—(6.18), we obtain the ye scattering
amplitude with E photons exchanged

n~+n2 on I-t, na+n4 on Lq,
n~+n3 on Rt, e2+n4 on Rq.

(6.23)

—P 2is5q, q,m ' d'kid'k2 (2~) 26(k —
lzq

—k2)

d2$y8 ' ~ [ZX(bz)] d2$ae ~b& ~2[ iX(b )]'v

&([m!(,y —~)!]—'[I;,(k~)kg)+CA, ,]) (6.19)

where X is given by (5.23).

Notice that our discussion in this section has been
restricted to the case nQO and nA2V. However, one can
easily check that (6.19) is valid for n=0, E too. The

Going through the same argument lea, ding to (6.1)—
(6.3), one sees that these four sets of vertices behave like
four vertices one on each side, i.e., a y+ on I.t, a y+ on
L, g, a y on R~, and a y on Rg. The analysis through
(6.11) for the loop in Fig. 8 clearly applies, with
obvious modifications in notation, to the left loop here.
The results for the right loop can be easily obtained
via symmetry arguments from those for the left loop.

Permuting the vertices on each of the four sides in all
possible ways, we get the product of B(q, )'s and B(q,+) 's
similar to (6.10) and (6.11).The coefficient in front of
the 5 functions is a product of four factors corresponding
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to the four sides, that is, impact parameter space as

2k {n3+n3)—1(—23ri) n1+n3—12k {n3+n4)—1(23ri) n3+n4

)(2k inl+n3) —1( 23ri)nt+n3 —121{n2+n4)—1(2~i)n2+n4 —1

—2 X—4(2 )2'—4( )n1+n4 (6 24)

M(h) =
d'k

e'" bM(k)
(23r)2

(6.29)

We have actually counted each diagram n&!n&!e3!n4!
times in the above permutations. One way to see this is
the following. When one permutes the vertices on each
of the four sides independently, the permutations
within set 1, for example, include those which cor-
respond to the relabeling of diagrams. There are n~!
such relabelings in set 1. Therefore, every diagram is
counted n~ In2.'n3.'n4 I times.

For the photon propagators, we again have (6.15).
For the two loop integrals, we have

and the photon impact factor as

I,t(b13b2) =
d'k d'k

e'{"1'1+"3'»I;, (k„k2). (6.30)
(2~)2 (2~)2

M,-,q= (h) =—', isbx, x,bx, x,nz 2(e+'fx {"—1),

It is straightforward to verify that, in the impact pa-
rameter space,

i(23r) ' dw M,3(731+4,k3+k4, w) (6.25)
Mq. (h) = —

—2,2s{31413333
' d'bid'b2 I;,(h13h2)

i(23r) ' dw 3II,'3'(ki+&3, &2+44, w), (6.26)

respectively.
Combining (6.24)—(6.26), we find that the contribu-

tion to the pp scattering amplitude by the diagrams with
given n~, n~, n3, and n4 is

is (2 ) 5(k——P k) g d'&~ (2 ) 'd'b e '""

LjX(hi) j"' (—)"'+"'I,,(k1+k2, k3+k4)
e~.

&&I,','(ki+k3, k2+k4) . (6.27)

We have used (4.32) to express (6.25) and (6.26) in
terms of the I's. By the same argument leading to
(6.20), it can he shown easily that the constant C does
not contribute.

Summing over the ni's in (6.27), we obtain the final
form for the yy scattering amplitude:

M(~q) =-,'is(23r) —' d'k, d2k2d'k3d'&4

X~(k k, k, k, —k4)D'+(k, )I (k2)I (k3)I+(k4)

—(23r)'{3(k,){1(k2){1(k3)5(k4)]I,,(k1+k23 k3+k4)

)('Pix{b—b3)—ix{b—b3) ]j (6 31)

M~„(b) = 2is d2bid2b2d2b3d2b4 I (b13b2)I(bq, b4)

)(Eeix {b+b1 b3) ix {b+b1—b4) ix {b+b3——b3)+ix {b+b3—b4)

The physical interpretation of these formulas is very
clear. The impact factor I(bi, b2) describes the positions
of a virtual electron-position pair in the photon at the
time of scattering. The total phase shift of the scattering
amplitude of an electron (or a photon) with a photon
is the sum of its individual phase shifts of the electron
with the virtual pair, added coherently. It is interesting
to see that when one substitutes Eq. (4.33) in Eq.
(6.30), the integrand of I(bi,b2) vanishes identically
except at p'bi+pb2=0. For relativistic moving electron
and positron, P' and P are proportional to their rela-
tivistic energy. The above relation is simply a restriction
imposed by the constancy of the center of mass of the
virtual pair.

VII. EXPLICIT EXPRESSIONS AND
GAUGE INVARIANCE

I. Functions E+ and ee Amplitude

The factors Ii~ occur in all of our formulas for the
scattering amplitudes. The explicit evaluation of the
integrals

XI,'t (ki+k3, k2+k4) . (6.28)
F~ (i'3) d2b e—,b.b(e+'x{b~ —1) (7.1)

The summation of the multiphoton exchange diagrams
is thus completed.

I{Iote added iri proof It is instruct. ive to examine the
M(ye) and M(yy) in the impact parameter representa-
tion. I.et us introduce the scattering amplitude in the

x(h) — e2 d2{t(2~)—2(412++2)—leiq ~ b

= —2nE{1({{4b) (7.2)
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is straightforward. The result, in the limit p' —+0, is

X(b) =—+[2 ln(~ba)+2y
+-,'p, 'b' ln( —,'bp)+O(b'p') j, (7.3)

F~'(k) = w i(e'/k') e+"~"&

6(k) =n[ ln(k'/p') —2y] —2q,

where n=e'/4ir, y=0.577 is Euler's constant, and

g =- argl'(1+ in) .

(7.4)

(7.5)

(7.6)

Since p plavs the role of a photon mass it must be
let go to zero in the final expressions of scattering
amplitudes.

For the ee scattering amplitudes, we have, by (5.24)
and (7.4),

M(e e+) =-,'isbn, )„b),,g,m
—'F~'(k)

= &-,'sb&„i,b&„i,m '(e'/k') e+~ '+ (7.7)

for k Q 0. Equation (7.7) is simply the one-photon
exchange amplitude multiplied by a phase factor.
When the cross section is computed, the phase factor
drops out. Thus, summing the multiphoton exchange
diagrams introduces no new physical effect to the
lowest-order term. This result is not unexpected, since
a similar situation occurs in nonrelativistic Coulomb
scattering.

The phase A(k) does have physical consequences in

the ye and pp scatterings, as is indicated in the following
discussion.

From (7.1), one easily verifies that

Fp+F = (2ir)'b(k),
F+'gF '+F '+F ' 0— (7.12)

It follows from (7.12) that (7.8) vanishes if I;; is re-
placed by a constant or any expression independent of
the individual integration variables k~ and k~. It also
follows that (7.9) vanishes if one or both of the two I
functions are replaced by a constant or anything in-
dependent of the four integration variables k;, i = 1, . . .,
4. Consequently, (7.8) and (7.9) remain unchanged if
we replace I,, by

I;, (k„k,)—=I;,(kl, k,) —I,,(k,+k„0),

~("ye) = —gi»)„)„m ' d'kid'kg(2ir) —'b(k, +k, k)

XF+'(ki)F '(ki)I;,'(k, ,k,)

because the second term on the right-hand side of (7.13)
will depend only on k, owing to the b functions in (7.8)
and (7.9), and not on the integration variables k;. The
form factor I' is proportional to the function g~ intro-
duced in Ref. 4.

Using (7.12) and (7.13), it is easy to show that (7.8)
can be written in terms of F+' as

2. ye, Delbriick, and yy Scatterings

For reference, let us list (6.21) and (6.28) here.

M(pe) = —-', isbi, i.,m ' d'kid'kq(2ir) 'b(ki+kq —k)

X[F+(k,)F (k,) —(2ir)'b(ki) b(k~) j
XI,,(k,,kg), (7.8)

i'(&~) =-,'is(2ir) —' d%id'kid'4d'k4

Xb(k, +k,+kg+k4 —k)[F+(ki)F—(4)F-(ki)F+(k4)

(2ir) Sb(k,)b(k, )b(k, )b(k4) gI,,(ki+ki, ki+k4)

XI...'(k, +k„k,+k4) . (7.9)

= —k»4.~,m ' d'kid'kg(2n-) —'b(k, +k, —k)

Xe'(k ') ' "(k ') '+"I '(k k)

Since l;,' vanishes when one of k~, k~ vanishes, the
integral in (7.14) is well defined. We have used the
explicit expression (7.4) in obtaining the last expression
in (7.14). Equation (7.14) can be easily generalized to
obtain the Delbruck. scattering amplitude. One simply
replaces the n in (7.14) by Zn, where Z is the nuclear
charge. The result agrees with that given in Ref. 4.

The yy scattering amplitude (7.9) can also be ex-
pressed in terms of I' and F~'. A little algebra shows
that

3f(y7) = is d'k, d'ki(2n-) —'b(k —k, —k,)

ft is clear from (4.33), the definition of I,,(ki, ki), that
XF~'(ki) F '(k, )I„,'(ki, ki)I,',''(ki, ki)

I;,(ki, kg) =I,;(ki,4)
=I;,(k, ,ki) . (7.10) +-',» d'kid'kid'kid'k4(2ir) —'b(k —ki —k, —k, —k,)

.()
A, *A,* A„= b( Q k;—k) g A, (k,). (7.11)

'=i (2ir)'

Let us define the convolution product of the functions
A. k as XFp'(ki)F '(kg)E' '(ki)F~'(k4)

XI;,;,'(ki, l i, l &,ki), (7.15)
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where

I,,;;(ki,k„k„k4)
=-,'LI,,'(ki+k2, k3+k4)+I;, '(ki+k3, k2+k4)

—I,,'(k,+k,+ k„I,) —I,,'(k, + k,+k„ I,)]
XLI;,''(ki+k3, k2+k4)+I,",('ki+k2 k3+k4)

—I,',''(k, +k,+k„k2) —I;.,''(k, +k,+k4, k,,)).
It is clear that J;;;;vanishes whenever one or more of

ki, k2, k3, k4 vanishes. Therefore, (7.15) is well defined
even though I'~'(ki) blows up at k, = 0. In other words,
there is no infrared-divergence problem here.

3. Gauge Invariance

What we have done so far is the sun1mation of a
selected set of diagrams. The selection of this special
set of diagrams and the limiting procedure in extracting
the leading terms are not easy to justify in a mathe-
matically sound fashion. They are, as we now proceed
to show, at least consistent with gauge invariance,
which is a nontrivial condition.

The consistency with gauge invariance may be
viewed as two requirements. First, if there is an ex-

ternal photon line having its polarization lying along
its four-momentum, the amplitude must vanish. Second,
when a term proportional to q„and/or q„ is added to the
photon propagator (of momentum q), the final answer

must not change.
These requirements set a definite criterion for select-

ing diagrams. This fact is clear if we remember an im-

portant step in the usual derivation of Feynman rules.
Recall that, in the propagator for a transverse photon,
there are extra terms proportional to q„and q„besides

g„„(q'—y'+is—) ' Gauge .invariance implies that these
extra terms do not contribute to the scattering ampli-

tude. The proof of the fact that they indeed do not
contribute is well presented in text books. v It involves

attaching an extra photon vertex im al/ possible ways to
any continuous electron line (either a loop or a line with

spinors at ends) in a given diagram and showing that the
slm of the diagran1s thus obtained vanishes, if this extra
photon, internal or external, has its polarization along

its four-momentum. The important point illustrated
here is that, to ensure gauge invariance, it is necessary
to sum a whole set of diagrams generated in a well-

defined way. It follows that the way to generate dia-

grams consistent with gauge invariance is to permute
the photon vertices on each continuous electron line in

all possible ways. The diagrams we have selected

obviously conform to this rule and are therefore con-

sistent with gauge invariance. An example of diagrams
violating this rule is the set of ladder diagrams, which

we discussed in Sec. V.

See, for example, J. D. Bjorken and S. D. Drell, Relativistic
QNaetN&ss Fields (McGraw-Hill Book Co., New York, 1965),
p. 197.

Although the set of diagrams which we have summed
is selected in a way consistent with gauge invariance, it
is not automatically guaranteed that our final results
are gauge-invariant. This is because we have taken the
s ~~ limit inside the loop integrals and such a limiting
process might have rendered the results not gauge-
invariant. We now proceed to show that gauge invari-
ance is indeed preserved.

We have calculated the scattering amplitudes with
the photons having transverse polarizations. To show
that our results are gauge-invariant, we must show that
the amplitudes, calculated using the same limiting
process, in fact vanish whenever a photon has its
polarization along its momentum.

It is sufficient to show that, if the factor I,,'(ki, k2)
(see (7.13)—(7.15)j occurring in the ye and yy ampli-
tudes is replaced by

(p ——,'k) &I„,'(ki, k~), (7.16)

then these scattering amplitudes will vanish. Equation
(7.16) is related to the loop integral through

and
I„,'(ki, kg) = I„,(ki, kg) —I„,(k,0) (7.17)

(p ——,'k)1"I„,(ki,k~)- (p ——2)& d4wM„, (ki, kg) w), (7.18)

where ki+k2 ——k and M». is defined by (4.14) with the
factor c;& removed.

We wish to emphasize that one has to be careful
about the limit s —+~. To show that our final result is
gauge-invariant, we first factor out the s dependence in

(7.18) and then verify that the remaining coefficient of

Qs in (7.16) vanishes. The verification of gauge in-

variance without first taking the limit s —+~ is trivial,
and does not serve as a useful test of our limiting
procedure.

In terms of variables in the standard frame, (7.18)
leads to

Sp(w' —p') —Sp(w' ——,'k) . (7.20)

Substituting (7.20) in (7.19), one proceeds in the same
manner as in Sec. IV. The algebra is much simpler.
The vv

' integral is then trivial, and the trace can be

(p ——.'k) ~M„,(ki, k~, w) = se, '" TrLSF(w' —p')

X (P' —-', 7r)Sp(w' ——,'b)y+ Si;(w' —q')y„
XSp(w' —q' —p' —',k)y~), (7.19)

where
sT 1/2q g

—
g

We have written Wq+-';k for ki and k~, respectively.
The denominators of S~(w' —q') and S~(w' —q' —P' ——,'0)
contribute a 1/Qs factor as shown by (4.17)—(4.23).
Hence (7.19) has an explicit Qs dependence. For the
remaining s-independent factors, we note that the first
three factors in the trace of (7.19) may be written as the
difference
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(0) (b)

b

{c)

Fio. 10. (a) Self-energy corrections; (4) vertex corrections;
(c) and (d) electron loop corrections.

evaluated easily. We have

(p ——',k)" d'w cV„,(ki)k2; w)(2') —'i=16'(+s)6(ki )

d'w (w —Q)'
X dw~'(w~' —-', ) —,(7.21)

0 (2ir) ' (w —Q) '+no'

Q =—', (w+' —1)ki+-', (w+'+1) k2.

This result can be shown to be valid also for the case
when one of the k& and k2 vanishes. One can carry out
the d w integrals in (7.21) explicitly, assuming a circular
domain for the integration. The result is proportional
to k&' and independent of ki or k~. Therefore,

or
(p —-,'k) ~I„,(ki,k2)-k,

(p ——,'k) &I„,'(k, ,kp) =0,

i.e., the longitudinal component of the photon does not
contribute to the scattering amplitudes according to
our previous conclusion. We have thus demonstrated
the gauge invariance of our results.

VIII. DISCUSSION

An interesting feature of our results is the appearance
of the eikonal form. As mentioned in the Introduction,
in analogy to the high-energy Regge form the eikonal
form of the scattering amplitude is first derived from
the nonrelativistic potential scattering theory. The most
often quoted relativistic model having Regge behavior
is the scalar-meson theory in which one sums the ladder
diagrams in the t channel. Our result, which is the sum
of multiphoton exchange diagrams in the s channel,
seems to be the first example of the eikonal form derived
from a relativistic field theory.

Thus, in the language of diagrams, the eikonal ap-
proximation and the Regge theory reflect the special
features of two different categories of diagrams. With-
out further model calculations and experimental

justifications, it is difficult to say which feature is more
relevant to high-energy scattering in general.

Clearly, our results cannot be regarded as the exact
expressions for the QED amplitudes at infinite energy.
As was mentioned in the Introduction, for the time

being, we can only demonstrate prominent features of
special sets of diagrams. We are very far from being
able to analyze all diagrams to get the exact results.
An interesting question to ask now is how the above
results are modified when diagrams of next higher order
in complexity are included.

The diagrams we have summed are skeleton diagrams.
The next natural step is to insert self-energy parts into
the propagators and make radiative corrections to the
vertices. Figures 10(a) and 10(b) show some examples.

The self-energy insertions can be done easily by
using the spectral representation of the propagators.
For every propagator, one integrates over the mass
spectrum. The s dependence of the amplitudes should
not change. The photon mass p appears in the function
X(b). The integration over p weighted by the photon
spectral function effectively introduces a (momentum-
transfer-dependent) dielectric constant of the vacuum
in addition to a part which can be removed by renor-
malization. The electron mass remains only in the
propagators adjacent to the external photon lines and
gives rise to the mass dependence of I;, In all the other
electron propagators, the mass disappears in the s ~~
limit. Thus, the integrations over the electron mass
spectrum will modify the structure of I;, in addition to
the charge and wave-function renormalizations. Of
course, the renormalization must be carried out to-
gether with the vertex corrections.

The vertex correction is more complicated because
it has no spectral representation comparable in sim-

plicity to those for the propagators. Rough estimates
show that vertex corrections do not change the s
dependence. The amplitude of Fig. 10(b), for example, is
still proportional to s. The summation of corrections to
all the vertices in Fig. 1 has not yet been carried out.

When one or more electron bubbles are involved in a
vertex correction or in more complicated diagram I see
Figs. 10(c) and 10(d), for examplej, additional care is
needed in applying the infinite-momentum technique.
Consider Fig. 10(c). In the infinite-s limit, it is quite
clear that the two electron lines a and b carry infinite
and opposite momenta and the photon 4 has a finite
momentum. It is not so clear, however, when additional
electron loops occur. For example, the photons 1—3 and
the bubble can either move with infinite momentum
along with electron a or have a finite momentum.
Similarly, in Fig. 10(d), the bubble and the photons 1
and 2 can move with infinite momentum along with
electron a while the momenta of 3 and 4 stay finite, or
the bubble and the photons 3 and 4 can go along with
electron b with infinite momenta, leaving 1 and 2 with
finite momenta. Furthermore, the bubble and the four
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photons can all have finite momenta. When the limit
s —+~ is taken, all cases must be taken into account. A

rough estimate shows that, in all cases, these diagrams
are of order s (up to 1ns). We have not yet obtained con-
clusive results from these diagrams. It is doubtful that
the simple eikonal form of the scattering amplitudes will

remain after the vertex correction and more complicated
diagrams are included.

Rough estimates show that there are no diagrams
which give rise to amplitudes larger than s(lns)" as
s —+~. In fact, we have not encountered in summing
the multiphoton exchange diagrams any amplitude
which goes like s(lns)", n& 1, other than those diagrams
which are known to violate gauge invariance. Un-
fortunately, it seems necessary to analyze a diagram
in some detail before one can be sure whether such s lns
terms occur.

The calculation of more complicated diagrams is very
involved. But taking the limit s —+~ before integrating
should make the calculation much simpler than the
usual way of calculating Feynman amplitudes. What
we need is a mathematically more rigorous and techni-
cally tractable method for justifying the limiting pro-
cess. We feel that an extensive study of the infinite-
momentum technique is certainly worthwhile, not only
for more efficient QED calcula, tions, but also for ap-
plications in other areas of physics.

After the completion of this paper, we learned that
similar results have also been obtained by Cheng
and Wu, by Levy and Sucher, and by Englert et al, '
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with
y, (p') = e'&"~P, (p)

&= »(P+/P+')

(A1)

(A2)

where K3 is the generator of the Lorentz transformation
along the 3 axis and p' is the momentum in the standard
frame given by

p'= p', p+'-—- finite. (A3)

8 T. T. Wu (private communication). See also F. Englert
et a/. , Nuovo Cimento (to be published); M. Levy and J. Sucher,
Phys. Rev. (to be published). For an alternative derivation, see
H. D. I. Abarband and C. Itzykson, Phys. Rev. Letters 23, 53
(1969);Y. P. Yao (to be published).

APPENDIX A

Let tt q(p) denote the wave function of a, physical one-

pa, rticle state with momentum y= (p', p'), p'=P —+m,
mass m, and helicity X. Then the wave function in the
standard frame is

(p )
—e iy' xe —i1n(y+'—tmiIc3$ B (A6)

where X=(Xi,X2)= (Ei+L2, E2—Li). The operators
and I describe the generators of rotation and

accelerations, respectively. Note that /Xi, X&]= 0, and
that X, L3, and E3 form an algebra of E(2)D. Equa-
tion (A6) describes the I.orentz transformation be-
tween the rest frame and the standard frame. With the
help of (A6), it is now quite straightforward to verify
(2.13). For Dirac spinors f&, =nq, we know that L=-,'o.

,
E =-'o" and X=-,'-(o"+o" o"+o").Using the fact
that

X~ =~,x=o,
(A7)

K37+= —2iV+ 7+K3= 2iV+
we have

~i(pi')v+»(P~')
1I B~i In(pI+'/m)E3eip1' X, &

—ip2' X~—i In(@2+'/m)K3+ R1+ 2

r+
—I &~i »(@1+'/~)1&3 ~ g i I&(P2+'/~)~3~ &

= (Pi+'P2+')'"~~ "~ ' (AS)

which is (2.13). The same technique can be applied to
evaluate photon polarizations.

APPENDIX B

In this appendix, we consider the multiphoton ex-

change diagrams, which we have studied above, for
the charged scalar-meson theory. The algebra turns out
to be very simple because of the zero spin of the mesons.

The photon vertex now has the form

e(py p')„,

instead of the ey„ in QED, where p and p' are the meson
momenta on the two sides of the vertex. At infinite s,
we have, as before, p=+ for those vertices on the meson
lines with infinite p+, and ti= —for those on the meson
lines with infinite p .

There are also seagull vertices e'g„„ in addition to
(81).However, in this case p and v cannot be both +

H. Bebie and H. Leutwyler, Phys. Rev. Letters 19, 618
(1967); S. J. Chang, R. Dashen, and L. O'Raifeartaigh, Phys.
Rev. 182, 1805 (1969).

Note that pi, (p') is not an eigensta, te of helicity X with
respect to p'; it is a state simply related to the helicity
state at infinite momentum.

It is easy to see that the wave function lt z(p), in the
limit P —+~, is related to the wave function in the rest
frame Pq~, with X being the spin along the 3 axis,
through

Pq(P) = exp I
—i(n K) ln(P+/m)]lt q~, (A4)

where 6 is the unit vector along the three-momentum.
Then Eq. (A1) can be expressed as

Pq(P') = e'&x' expL —i(n K) ln(P+/m)]PP. (AS)

At the limit I' —+~, the right-hand side of (AS) is well

defined and leads to'
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(or both —) at the same time. This is because g++ ——g
=g1+=g~+=0. Therefore, the seagull vertices cannot
contribute to the leading term at the s —+~ limit for the
multiphoton exchange diagrams under consideration.

Without the seagull vertices, the algebra is similar
to what we have done but much simpler and is left as
an exercise for the reader. The results are the following.
For the meson-meson scattering amplitude one obtains

cV(m, no+) = -,'isF~(k), (82)

similar to (5.24). For photon-meson and photon-
photon scattering amplitudes, we simply replace 8&,z /m'

in (7.8) by unity and use the new I,, factor

l,,(kr, ks) =— dPdP'dx 5(1—P —P')

y4PP'Lx(1 —x)K,Z, +(x—-', )'Ksg, ,]
XLm'+x(1 —x)K'] ', (83)

K—=p'ks —pkr, (84)

in (7.8) and (7.9). Equation (83) is only slightly dif-
ferent from (4.33).
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Equal-Time Commutators and Equations of Motion for Current Densities
in a Renormalizable Field-Theory Model
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The equal-time commutators of current densities are studied in a renormalizable field theory. From a care-
ful study of the equations of motion for current densities and products of current densities, a relation between
the full commutators and the naive commutators is derived. The difference between the two is related to
the well-known seagull terms associated with time-ordered products of currents and to anomalies in the
equations of motion for current densities. Previous second-order perturbation calculations on specific
matrix elements are shown to be special cases of this general result.

I. INTRODUCTION

A USEFUL way of formulating most of the appli-
cations of the usual SU(3) 8SU(3) current

algebra' (and its generalizations) is to start from a
formal Ward identity. Recent developments in ex-
ploiting an even wider class of local current cornmu-
tators are based on the Bjorken-limit technique. ' Both
the "Ward identity" and the Bjorken relation are
formal relations between equal-time commutators and
time-ordered products of current densities. In all the
applications, one assumes certain algebraic structure
for the current commutators (usually obtained by
naive use of canonical commutation relations) and
deduces its consequences on the time-ordered products.
For theoretical purposes, it is also desirable to study
the inverse problem. Given a theory in which the
time-ordered products can be calculated, one can use
these same formal relations to define the current
commutators. These can then be compared with the
usually assumed naive commutators. One thus obtains
a check on the reliability of the results which are
deduced from the assumed commutators.

This latter point of view was first adopted by
Johnson and Low, ' who calculated a particularly simple

~ For a comprehensive review, see S. L. Adler and R. F. Dashen,
Current Algebras (W. A. Benjamin, Inc. , New York, 1968).' J. D. Bjorken, Phys. Rev. 148, 1467 (1966).

matrix element of a large class of current commutators
to the lowest order in perturbation theory. Although
their results show that the simple commutators usually
assumed are not always the full commutators in their
model, the anomalies do not directly invalidate any of
the usual applications of the assumed current com-
mutators. Recent calculations along the same line but
on more physical matrix elements show that additional
anomalies exist and that almost all the principal
applications of the Bjorken-limit technique do not
hold in second-order perturbation theory. 4 '

'K. Johnson and F. E. Low, Progr. Theoret. Phys. (Kyoto)
Suppl. 37-38, 74 (1966).

A. I. Vainshtein and B.L. Jaffe, Zh. Eksperim. i Teor. Fiz. 6,
917 (1967) /English transl. : Soviet Phys. —JETP 6, 34 (1967)].
These authors calculated the virtual Compton scattering in the
pseudoscalar gluon model and found that the violation of Eq. (9)
is accompanied by logarithmic divergences. They concluded that
the failure of Eq. (9) to hold is due to the infinities encountered.
This conclusion is contradicted by the results of Ref. 6.

'R. Jackiw and G. Preparata, Phys. Rev. Letters 22, 975
(1969); 22, 1162(E) (1969); and to be published. These authors
calculated the spin-averaged forward Compton-scattering ampli-
tude in the vector gluon model. In this case the first term in Eq.
(7) vanishes. What is tested is the commutator t V;, V,].Again,
the violation of Eq. (9) is accompanied by logarithmic divergence
and the authors reached the same conclusion as that reached in
Ref. 4.

S. L. Adler and Wu-Ki Tung, Phys. Rev. Letters 22, 978
(1969);and to be published. In addition to the case $V, , V, j, it is
shown here that in the vector gluon model, Eq. (9) is violated for
all commutators involving V, and A; even if all quantities involved
are finite and well defined.


