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Practical techniques are developed for evaluating wave functions and Green’s functions using
the eikonal approximation. It is assumed that the scattering angle is small. This provides a
great simplification in analysis of the trajectory curves, radii of curvature, etc. A sequence
of approximations and the use of variational principles are described. Numerical illustrations,
particularly for proton-hydrogen—atom scattering, are given for several of the approximations.

I. INTRODUCTION

In paper I of this series,® we formulated a meth-
od for studying rearrangement collisions between
atoms (or molecules) using the eikonal approxi-
mation. The method was based on a form of the
perturbed- stationary-state technique, using as
basis function the adiabatic states (corrected for
proper asymptotic boundary conditions). These
basis states describe the elastic scattering of the
two atoms (for simplicity, we shall refer to the
colliding particles as atoms, even though one or
both might be a molecule or ion) in the potential
represented by the adiabatic molecular potential
curve. The simplification of the theory which
results from the use of the eikonal approximation
for the adiabatic wave functions and Green’ s func-
tions was discussed in I.

In this paper we discuss the actual construction
of the distorted wave functions and Green’s func-
tions. Before beginning this, it is useful to re-
view the range of certain parameters which will
be of interest to us.

The reduced mass of the two colliding atoms is
written as Mand their relative coordinate R. The
potential energy of interaction between them is
taken to be V(R).2 The interaction V(R) is as-
sumed to have a range of order a,, the Bohr radi-
us; this is interpreted to mean that for R suf-
ficiently greater than g, the potential is negligi-
bly small. More precisely, we assume that

v(R)<0(/R' ) | (1.1)
where 6>0. For R <q, we characterize the
strength of V as |V(R)I~ 1 Ry, recognizing of

course that V may be singular at R=0.
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The incident relative momentum of the colliding
particles is P and their c. m. energy is €, =p?/2M.
In atomic units (rydbergs), we shall denote € by
E. Our first assumption is that

E>1. (1.2)
This implies the condition (I1. 3) that

-1/2
]

g Eh’/pa0= [920AeffE < 1. (1.3)

Here we have introduced the notation

M/m= 9204 ;¢ (1.4)

where m is the mass of the electron.

Using the condition (1.2) we can write the clas-
sical scattering angle (in the c. m. coordinate sys-
tems) for an impact parameter b as

(-]
b d dz
6 (p)==-21 < az 2
c(b) ZEf_ dRov(Ro)Ro+o(ec), (1.5)

where R, = (b?+22)*/2 and V(4,) is in rydbergs.
Our second assumption, seen to be generally con-
sistent with (1.2), is that

]Gc(b)| <1 . (1.6)

For order of magnitude estimates we shall assume
that

|ec[z1/E (1.7

for impact parameters of order a,.
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In I, the wave function describing the scattering
was written in the form [Eqs. (14.8) and (14.35)]

H(R) = @n32A@)eS®) , (1.8a)

where S(R) is the eikonal,
- R =,
SR) = [TkR")ds , (1. 8b)
R
and A(R)=(p/k)"/?exp| - 1 (—1 +i) ds
2 ®,"®,
(1. 8¢c)

Here ds is an element of path length,

k%(R)=p% - 2MV(R) , (1.9)

and the integrals are taken along the classical
trajectory. The quantities ® (R) and ®,(R) are the
principal radii of curvature of the surface of con-
stant eikonal which passes through R.

The functions® y=*(R) are obtained from Egs.
(1. 8) by imposing Izhe appropriate boundary condi-
tions. This s illustrated in Fig. 1. For d)’* we
have, when R lies in the asymptotic region pI‘lO!‘
to scattermg,

T®-7 , s%(ﬁ)zﬁ.ﬁ, AR)=1, (1.10)
where K(ﬁ) is the relative momentum vector at a
point R on the trajectory. For lP”_ we have,
when R lies in the asymptotic post scattermg re-
gion,

kR =k , S ®-k-R, A®)- (1.11)

For the applications considered in this paper we
may consider k=p.

The Green’ s function (Rl GIR’) satisfies the
same (Schrddinger) differential equation as y*(R).
Thus, in the eikonal approximation [see Eq.
(14.25)]

1>

FIG. 1. Tllustration of the eikonal trajectories and
boundary conditions for Iﬁ; and ¥,

(®| G| R -Aa®, 7SR R (1.12)

b

where S and A are again given by Eqs. (1.8b) and
(1.8c). The boundary condition imposed on G is
[Eq. (14.27)]

M exp[zK(R)lR— R'1]
IR-R
asR-R’ .

Lim(R| G|R") =

(1.13)

The relative error resulting from the use of the
eikonal approximation, Egs. (1.8) or (1.12), is*
of order

ne

)= (| —C | ) ~ 3)-1/2
nleik) = <|pao |> (9204 E°] ,  (1.14)
except for certain singular regions in the asymp-
totic domain [at R~ O(ag/16,!1)]. We see that, for
particles of atomic mass,

nleik) < 1 (1.15)
whenever the condition (1. 2) is satisfied. If we
make the further approximation of setting A(R)=1
in Eq. (1.8a), the relative error is of the order of
of magnitude

o (eik) ~ |eC| ~1/E (1.16)
except in certain asymptotic domains [this will be
discussed in Sec. (IV)].

Making use of the condition (1.2) we shall obtain

a series for S of the form

S(R)=Sy+S,+S,++++ , (1.17)

where for R ~a,,
~ - 1/2
SO ba (920AeffE) ,

~ — 172
S~ (paol oc[ )= (gzerff/E) 2, (1.18)

~ 2) _ 3)1/2
Sy~ (pagh )= (9204 _, /E2

We shall neglect terms of order S, and higher.
That is, we shall take

s(ﬁ):so+s +S (1.19)

1924

where nsmpaol90|3z(92OAeff/E5)”"’ . (1.20)

The approximation in which S, is neglected, so
that S is taken to be

SR)~S,+S, , (1.21)
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is called the “straight-line” approximation. This
approximation results on evaluating Eq. (1. 8b) for
a straight-line trajectory. The relative error in
using (1.21) is of order

pagh 2~ (9204 o /EF/ (1.22)

The straight-line-trajectory approximation has
long been used in quantum mechanics. It was
given by Moliere® in 1947 and applied to neutron
scattering from nuclei by Fernbach, Serber, and
Taylor.® Applications to the optical model of nu-
clear scattering were made by Francis and
Watson’ and by Glauber. 8

Applications of the eikonal approximations to atom-
ic scattering have been made by Bates and Holt, ®
and by Smith and his collaborators.!® An “eikonal-
like” technique was recently proposed by Wilets
and Wallace. ™

Before closing Sec. I, it may be well to empha-
size that the criterion (1. 14) for validity of the
eikonal approximation by no means implies that
the classical scattering amplitude is accurate. A
somewhat crude estimate for the validity of the
classical description of scattering may be ob-
tained from the condition [a precise estimate was
given in I and is given again in Eq. (5.19)]

16 1> 0406 » (1.23)
where 6 diffzh'/pao (1.24)

is the characteristic diffraction scattering angle
from a potential of range a,. From these expres-
sions and Egs. (1.3) and (1.7), we obtain the con-
dition

n(class) = (E/920Aeff)”2 <1, (1.25)

if the scattering is to be classical. In Sec. V a
more precise condition than (1. 25) will be given.

II. GEOMETRICAL RELATIONS

In this section, we discuss the classical trajec-
tory in the c. m. system. This trajectory is
specified by giving R(¢) as a function of ¢, having
solved Newton’ s equations of motion

di dR ., .-
ar =~V g M

2.1
We suppose R(?) to lie in the (%, 7) plane of a rec-
tangular coordinate system, the plane being so
positioned that R =0 is at the origin and the trajec-
tory is symmetric about the ¥ axis. This is il-
lustrated in Figs. 2(a) and 2(b) which refer, re-

=

|

(b)

FIG. 2. Description of the trajectory in the (x, 2)
coordinate system.

spectively, to the case of repulsive and attractive
forces.

The condition (1. 1) permits us to construct a
circle “A” of radius A and with center at R =0, so
chosen that V(R) may be neglected for R>A. Thus,
outside A we may take the trajectory to be
a straight line. In the asymptotic prior region out-
side A, henceforth called region i, this line is
parallel to the incident relative momentum 3.

In the asymptotic post region outside A, called
henceforth region ii, the trajectory is parallel to
a fixed vector P, obtained by rotating § through
an angle 6,. [Note that 6, is positive (negative)
for an effectively repulsive (attractive) force, as



188 TRANSITIONS IN COLLISIONS OF ATOMS AND MOLECULES., II 239

obtained from Eq. (1.5).] At an arbitrary point
on the trajectory, the local momentum vector is
K and the local tangent is the unit vector K. Equa-
tions (2. 1) of course imply that k(R) may be writ-
ten

k(R)=p[1- UR)] , (2. 2a)

where U(R)=1-[1- V(R)/ip] 12

=V/26p—%(V/ep)2+-~ (2. 2b)

It will be convenient to choose the coordinate z
as the independent variable defining points on the
trajectory (rather than the time ¢), so we shall
write R=R(Z). The equation of the trajectory is
then of the form

#(Z)=d+h(z) , (2. 3a)
with #(0)=0 ,
h(-2)=h(z) . (2.3b)

Thus, d is the distance of closest approach of the
trajectory to the origin, as is illustrated in Figs.
(2a) and (2b).

The angle between the tangent vector k(Z) and the
Z axis will be called 8(z). Thus,

tang(z) - 2% (2.4)
The asymptotic angle 8 is then
B=lim (z) . (2.5)
Z =
Evidently, 6 =28 . (2.6)

In the approximation equivalent to (1.5), we have,
from Newton’s equations of motion (2. 1),

z '
B(E)=—df d—g;ﬁo-)‘gim(sﬂ) , @2.7)
o (s} (4]

where now we take
R,=[d? + (2')?]*? . (2.8)
Two useful relations are
1(@)= [*tang(z")dz’ (2.9)
and  s(2)= [ “secp(z)dz’ (2.10)

where s(Z) is the path length along the trajectory

measured from zZ=0. Because of condition (1.6)
we may write these equations as

h(z) = | z|tang - fol-z-l Ag(z")dz'+0(1Bla,) ,

(2.11a)

with  AB(Z)=p- B(z), (2.11b)

and s(z)=Z secp

-1 [P - e az 0| gt a)
(2.12)

(Note that because Z may be arbitrarily large in
the asymptotic domain we do not expand the trig-
onometric coefficient of z.)

From Figs. 2 we see that the impact parameter
b is related to the distance of closest approach d
by the equation

bsecf+Z,tanf=d+h(z,) , (2.13a)

where Z, and Z,(= - | Z,| ) represent the points at
which the trajectory crosses the circle “A”. Us-
ing Eq. (2.11a), we obtain

b=dcosp- [ Ap(Z)Z+0(|F|a,) . (2.13b)

This relation lets us rewrite Eq. (2. 3a) for the
trajectory as

%(z) =b secB + | Z| tang

+ fl°z_°| ap("az' +0(| 8| a,) . (2. 14)

To evaluate A(R), Eq. (1.8c), and certain other
integrals of interest |see, for example, Eq.
(15.9)], we require the principal radii of curva-
ture of surfaces of constant eikonal. This is most
easily done in a coordinate system for which S[®R)
has azimuthal symmetry. For the wave function

+ we rotate the (%, Z) plane about the origin
through an angle B, so the z axis is parallel to P.
For y ~, we choose the z axis to be parallel to
the outgoing momentum k. This is illustrated in
Figs. 3.

We first discuss the wave function yz*. Then
the relation between the new (z, x) coordinate sys-
tem and the (z, %) coordinate system of Figs. 2 is

z=ZcosB-xsing ,
(2.15)
x=z8inB+X cosf

In this coordinate system S(R)=S(z, p), independent
of the azimuthal angle ¢ [describing the orienta-
tion of the (z, x) plane]. Here we have written the
radial coordinate as p=1|x|.
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FIG. 3. Trajectories in the coordinate systems (2.15)
and (2.15°) are illustrated in (a) and (b), respectively.

In this new coordinate system the equation (2. 14)
for the trajectory becomes

x(Z)=[z+|Z|]sing+b

+fl; aB(ENdZ +0(1B%a,) ,  (2.16a)

and z(Z) = secB[Z cos?B - | Z| sin?p] - b tanp

- tanp fl.; AB(z')az’ + O(B%a,) . (2.16Db)

Finally, the radial distance p(z, b) in a cylindrical
coordinate system is

p(z,b)=e()x(z) ,

e(z)=x(2)/1x(2)! (2.16c)

To calculate the radii of curvature of S R), we
choose a fixed point R, and consider the surface
passing through R,

S@®)=S®&,) .

The normal to this surface at ﬁo is the unit vector
R,, tangent to the trajectory passing through ﬁo
(this is illustrated in Fig. 4). For a very small
displacement K,D from the point R;, we have

S(R, +&,D) =S(R,) + Dk (R,) . (2.17)
[This follows from the general theory of the
eikonal: S(R+X)=S(R)+X - vS(R)and VS(R)=%(R).]

We now introduce two orthogonal unit vectors,
each perpendicular to ,,

2=/, p-5 k), é2=(3, (2.18)

Trajectory

S (R) = const

FIG. 4. Ilustration of trajectory and eikonal surface
through point R,,.

35z, 0)

where 92

, etc.

o

and all quantities are evaluated at ﬁo. (Here &, p,
and 0 are the three basis vectors of the cylin-
drical coordinate system. )

A small displacement X =),&, + 1,2, will represent
a point on :glother constant eikonal surface defined
by S(R)=S(R, + k, D), where

D=302/R, +,2/R,) . (2.19)
Here ®, and ®, are the:. principal radii of curva-
ture of the surface at R,. This is illustrated in
Fig. 5. We note that positive ®,(®,;) corresponds
to convex curvature as seen from a point ahead
of R, on the trajectory.

Using Eqgs. (2.17) and (2.19), we obtain

S(ﬁo +X)= S(ﬁo +KoD)
=SR,) + 3k 2/R, +2,2/®,) . (2.20)

By direct calculation using a Taylor expansion we
obtain, on the other hand,

s(ﬁ0+ X) = s(ﬁo) + (g /20)S o+ 047726

x[S2 +§7% -28S8S ] . (2.21)
p 2z "z pp Tz pzp

S:S(R,)

FIG. 5. Illustration of the displacement D of Eq.
(2.19) and of the two surfaces of Eq. (2.20).
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~1_,-3[q 2 - 2
Thus, (al) =K [sp S, 2szspszp+sz spp] ,

(6%2)’1=p“(s p/n) . (2.22)

To lowest order in the small quantity 16,1 we
can considerably simplify these quantities. The
angle which the tangent k at a point Z on a given
trajectory makes with the z axis is

GC(E,b)EB+B(E) , (2.23)

where we explicitly indicate the dependence on the
impact parameter b, which of course acts as a
trajectory label. Then,

S =kcosf (z,b)=k |,
z c

and S =ksind (z,b)=kb (Z,b) .
p c c

This lets us write

((Rz)“z ec(z, b)/p, (2. 24)

Now, to lowest order in 6., we obtain from Eq.
(2. 16a)

oh a6 (b) \°!
a—p:e(E)(l+é(’z'+lEl)cosB dcl; > ,
and thus
20 (z,b) o (0) \~1
((R,)"Ee(f)—cab——— <1+%(E+IEI)cosB ;b )
(2. 25)
Here

6 ()= lim 6 (z,b)
c c

Z=o

is the scattering angle (1.5) and e(Z) is defined in
Eq. (2.16c).

We now repeat the above calculation for the
wave function as is illustrated in Fig. 3(b). In
this case, Eqs. (2.15) are replaced by (for ¥~)

2=z cosB+Xxsinp

’

(2.15%)
=-zsinB+Xcosp.

The trajectory equations (2. 16) are replaced by
(for the case y~)
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x(2)=[|z| - Z]sinB+ b + |°z°| ag(zNdz'+ 0| Bl ay) ,

z(z)=secp[zcos?B + | Z| sin®B] +btang  (2.16)

- tanp 7, 88297 +0([ "] )

The angle of deflection (2.23) from % at any point
Z on the trajectory is now (for the case ~)
BC(E,b)=B—B('z‘) . (2.23")

Also, we now have S, = - k6,(z, b) (for the case y-),
so

®y)*=- ec(z, b)/p . (2.24")

Instead of Eq. (2.25), we have (for thecase y1)

- e(z)[aec(z, b)] /ob

@)1= (2.25%)

1+3(121 - 2) cosﬁ[dec(b)/db]

III. CALCULATION OF THE EIKONAL

We are now ready to discuss the evaluation of
the eikonal, as implied by Eq. (1.19). That is,
we neglect terms of order

- 34 571/2
ns_pa0|ec| [920Aeff/E] . (3.1)

First, we calculate the eikonal for that part of
the trajectory which lies inside the circle “A” of
Figs. 2. Using Eqs. (1.8b), (2.1), and (2.12),
this is

Su-20 (s@)- [FumEaz) , 6.2
where R=[z%+(d+h)?]¥2 | (3.3)
and z, is as before the point at which the trajec-
tory intersects the upper half of “A”. Since we

are neglecting terms of order 7g, we may set ds/
dz =1 in the second term above. Thus, we have

Sy, = 2p(z, sech— ffz £[p2 - 2(2)]+ UR)}d2)
+ 0(77 S)

=2p sec62'2+<1>(b)+0(ns) , (3.4)

where ®(b)=-p [ o {3[6* - B*(2)]+ UR)}dz . (3.5)

The quantity S,, may be put into the form of Eq.
(1. 19) by writing it
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S, = 2p(Z, secB - wa(R )dz'

- PR a=<—'>]+d"—”i Vaz')

+o(ns) , (3.6)

where R, is defined by Eq. (2.8)

We observe that when we evaluate S,, [or S(R)
generally] to within the accuracy implied here,
the angle B(Z) need be evaluated only to the lowest
order that given by Eq. (2.7).

We also observe that according to the principle
of least action*? S,, is stationary with respect to a
variation of trajectory about the exact trajectory.
This means that we can use Eq. (3.6) to give a
variational principle for obtaining g(z). It also
means that S,, is insensitive to the precise tra-
jectory. (In Sec. VII we shall discuss the varia-
tional principle in more deta11 )

We now calculate Sz+(R), the eikonal for zb**
to the same order. In the region (i), prlor to
entering the circle “A” we have Sz*=p- R as in
Eq. (1.10). In all other domains, we ev1dent1y
have (recall that z, = - Z,)

S%(ﬁ):p[s(i)—s(‘z‘l)— (2 U(R)dz']ﬂ’rﬁl, (3.7

where ﬁ, is the vector from the origin to the
point at which the trajectory intersects “A”.
Now, from Figs. 2, we see that

B'R,=- pz,secf-pbtang . (3.8)
This lets us rewrite Eq. (3.7) as (to order 7ng)

S%(ﬁ)=ps(§)-pbtanﬁ——f [2- B2(2)]dz

-1 (% UR)az’
=pzZsecf-pbtanB+®(Z,b) , (3.9)
where &(z,b)= -pf_i &l - g2("]+ UR)}az’ .

(3.10)

Equation (3. 9) is valid over all R space if we
let the radius of “A” become infinite. In the
asymptotic region (ii), following the scattering,
we can write

S+(R) =P
5 p

‘R- 2pbtang+ &(v) (3.11)

0

where &(b) is given by Eq. (3.5). Here P, is the
asymptotic final momentum, as in Fig. 2(a).

The eikonal Sz~ (R) for the wave function ¥j; ~ is
subject to the boundary condition (1.11). Refer-
ring to Fig. 3(b) and following the argument given
above, we obtain to O(ns)

slg (R) =kz secB + kb tang

vk [5 {582 - B2+ UR}aZ' . (3.12)
In the asymptotic region (i) ahead of the scattering
this is

SE(R)=kin-R+2kbtanB—<I>(b) , (3.13)

since Ein R=- B[IZ] secB + b tanp] in region (i).

In the straight-line approximation we may drop
the term S, in Eq. (1.19). In this case we may
replace Eqs. (3.9) and (3. 12) by

S%(ﬁ) =pzsecp
z -
- pbtang- pf_wU(RO)dz + O("es) ,
Si—; (R) = kZ secB + kbtang

vk [ U(Ro)d2'+0(nes) , (3.14)
where n__=pa, 19| 920A /ES]W. (3.15)

Again, R, is defined by Eq. (2. 8).
Also, in the straight-line approximation we can
write

- —r i
Ss®) -5 -R p [ LURYAZ',  for z<0;

NI - z =1 _ .
sﬁ(R)_p0 R pf_eoU(Ro)dz pbé , for z>0;

- - - 0 —
Sp®)=k-R+k [ URaz’, for z>0; (3.16)

-— - - 0
> = . -— z!
sy ®) =k, R+kfk U(R )z’ +pb6 , for z<0.

Note that our straight-line approximation does not
strictly correspond to a straight line. This is be-
cause | zZpl may be arbitrarily large in the asymp-
totic domain.

-
IV. AMPLITUDE A(R)

We consider first the amplitude (1. 8¢c) for y= (R)
and evaluate this only to within relative order" (6.2).
For x(z) >0 we have from Eq. (2.16a)

p(z,0)=(z+|2))B+b+ [ a8E")az" + O(@) . (4.1)

If we hold b constant and vary zZ, we obtain from
this

dp(z,b) =[B+B(EZ)]dz
=6 (z,b)dz , (4.2)
C

according to Eq. (2.23).
we find

[

Thus, using Eq. (2.24)

/ ”(z b)] . (a.3)
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Also, using Eq. (2.25) we obtain

/E‘g: =/Edln(%§
RETEEey

:m[ﬂ’;%”)] , (4.4)

Substitution of these results into Eq. (1. 8c) now
gives us

A(§)=[(1—U)<%Z—g)]_l/2, @4.5)

which is just the exact expression (14. 9).
(4.5) may be evaluated using Eq. (4.1).

We note that A(R) is singular in the asymptotic
post region (ii)

Equation

for Z‘GC(b)=—b, Gc(b)<0; (4.6a)
do (b) de (b)
and for 7——=-1, —S <0 . (4. 6b)
db ' T ap ’

These singularities are suggestive of the familiar
Stokes phenomenon occurring in the WKB solution.
The eikonal approximation (1. 8) breaks down at
either of these singularities. To integrate past
these, more elaborate methods than those given
here are required. Fortunately, for the applica-
tlons which we have in mind, the wave functions
¥% are not required in the far asymptotic region
implied by Eqgs. (4.86).

It is evident from Eq. (4.1) that Eq. (4.5) does
not approach its correct asymptotic form when
either g=0 or dB/db =0. This can be seen by
writing A(R) in the approximate form, valid for
large Zz,

AR Z(1+ {1 +3G+ | 2] )6, 6)/6)][1+3(2
+| 2] )(dec/db)]}‘”z .

The case where 6 (b)=0 is called a “glory, ” while
df,/db = 0 gives “rainbow” scattering. Ford and
Wheeler!3 have shown that the classical description
of scattering fails in either of these cases. This
is clear from the above expression, since then
A(R) does not approach its correct asymptotic
form. Equation (5.11) of the Sec. V may be used
to describe scattering at angles near either a
rainbow or a glory. The result is of course
equivalent to that of Ford and Wheeler. !3

To obtain the amplitude factor A(R) for lP‘, we
first use the first of Eqs. (2.15’) to write, for
x()>0, (for the case ¥~)

p(z,b)=(]z|-z)3+b+f|°z_°|A3('z*)dz'+o(32) . (4.1%

The expression (4.5) remains valid, but is now
to be evaluated using Eq. (4.1’).

V. ELASTIC SCATTERING AMPLITUDE

Using the eikonal wave function (1.8), we may
write the T matrix for scattering from an asymp-
totic momentum P into an asymptotic momentum
k as

T=(2m)"%" [d SRe™ & RV(R)IP%(ﬁ)
3 i[S.TR)-k-R)
=(@2n)* [d°RV(R)AR)e P , (5.1)

where in the second writing the relative error is
of order n(eik), Eq. (1.14). We showed in I that
the classical amplitude is obtained from (5. 1)
when condition (1.25) is met. Inthis case, of
course, we have 6 =161, where 6 is the scatter-
ing angle defined by

cosG:E-fJ .

In addition to the assumed condition (1. 6) that
16, < 1, we shall also suppose that

<1

Finally, we contmue to assume that the expres-
sion (1. 19) for S* is valid, quantities of order

= 3
g paol GCI
being neghglble We shall also consider 7y

= pa,8® to be negligible.
We see from Eqgs. (4.5) and (4. 1) that to rela-

tive order 16,1, we may set
AR)=1
in Eq. (5.1). We have then to evaluate
i[sx®)-k-R)
-0 (2®rRVvR)e P . (5.2)

We now shall use a cylindrical coordinate sys-
tem, with variables (z, p, ©) to carry out the in-
tegration above. Then

d°*R=pdp d@ dz (5.3)
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In this coordinate system, we may rewrite Eq.
(3.9), using Eq. (2.15b), as

s%(ﬁ) =pzsect +pB | ;_°I AB(E"dz!

+<I>(‘z‘,b)+0(ns) , for z>0; (5.4a)

and s%(ﬁ) =pz +pB fl; 2B(z")dz’
+<1>(z,b)+o(ns), for 2<0. (5.4b)

Also, using Eq. (2.16a) with p=x(2),
k-R=pzcosb +ppsinb cosP

=pz cosb +p sinf cosP[(z+ | Z| ) sinB
© =
+b+ fIE‘Aﬁdz ]

This lets us write, to relative order ng, 714, etc.,

+ = _2 o 0 S
Sﬁ—k-R-pz secec[l b k] +Pf|2-|~'-\l3 dz'[sing

— siné cosP] - pb siné cos@ + (z, b),
for z>0; (5.5a)

and S%—E-ﬁ:pz[l-— cosé | +pf|; ABdz’!

% [sinB ~ sinb cosP]- pb sinb cosP
+®(z,b), for z<O0. (5. 5b)
Now, we saw in I that in the classical limit the

important contribution to the integral in (5. 2)
comes from Z in the near asymptotic post scat-

tering region. This means that in the classical
limit we can set

f;Ade’= og) .

Also, in the classical limit 'ﬁo k=0. Therefore,
in the classical limit we have

S%—E -R=%(z, b) - pb siné cosp , (5.6)

to within the order 7ng, 7y, etc.
The classical limit fails, as we have seen, when

|961pa051 . (5.7)

Thus, when the classical limit is not valid, we
have 6.%pag<<1, 6%pag <1, 616.|pag<<1. In this

case we again see that Eq. (5.6) may be used.
In any case, we may now write Eq. (5.2) as

T=@n) Y pdpdz ap VR) ¢~ PP SN0 cosP 1®
-2m2 Jpdpdz V(RW (pb sind)e’ 2@ (5.8)
To relative order !Gcl we have
pdpdz=bdbdz (5.9)
and, to the same relative order,
V(R)dZ =-vd® |, (5. 10)

where v=p/M is the asymptotic relative velocity.
This lets us write

i®(b) _

T=_7(%7, fo""bdeo(pbe)[e 1], (.11

where &(b)=1im®(z,b), as Z—~+» (5.12)
is defined by Eq. (3.5).

Equation (5. 11) would reduce to the familiar ex-
pression of Moliere® if we were to drop the term
S, in Eq. (1.19). The increased generality in the
quantity ®(b) has not, therefore, altered the sim-
ple form of (5. 11).

It is instructive to retrieve the classical limit
from Eq. (5.11). To do this, we introduce the
classical scattering angle ©., defined to accuracy
of &,

_ad(p)
pec(b)=—£—— ,
aec
ec(b)Ea—b yoeoe (5.13)
and ¢, sec(b)/] ec(b)l (5.14)

Then, on using the asymptotic form for the Bessel
function, we have

T2ty @/nop) e [ “pvzap Y Poiern/,
(5. 15)
where y(b)=&(b)~ e pbb (5.16)

Now, the stationary phase point at » =b. is ob-
tained from

& _
Ec——p[— Gc(bc)+e19]=0 .
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or 6=]6 (b ) (5.17)
c ¢

defines bo. This lets us write in the integrand of
Eq. (5.15),

20
y(b)=v(b )+2abc(b b F+0[n(class)], (5.18)
2% _ 3/2)-1
where n(class)= ab2 <p1’2l
(5.19)

[This provides a more precise definition than that
given by Eq. (1.25).] A stationary phase evalua-
tion of Eq. (5.15) now leads directly to the clas-
sical scattering matrix

b
c

re. [(211)2M]'1( £

C

1/2
@)

exp{i[@(bc)

) -

(5. 20)

—epb, 0]}exp{ {1 3:;0(

Finally, we see from Egs. (3.10) and (1.5) that

o (b)=6 (b)+0(6 2) . (5.21)
(4] c c

Thus, ©, =60, to within the accuracy with which we
have calculated the classical scattering.

A familiar expression for the total scattering
cross section may be obtained from Eq. (5.11).
We have

o Z27 [sin6 d6(2nPM?| T|? | (5.22)

Now, if we write
/ Tsing d6 J,(pbo M, (pd'6)

Zp=2[o(b-0"]/b , (5.23)
we obtain

o=8n[bdb sin’[38()] . (5.24)

VI. GREEN’S FUNCTION
The Green’s function (R| G| R’) was given in the

eikonal approximation by Eq. (1.12). The eikonal
in this case is

S® = [Sx®ds 6.1)

where_the integral istaken from a point R'toa
point R along the trajectory linking these two
points. We may evidently so rotate our (z, %) co-
ordinate axes that Figs. 2 apply. We may then
use Eq. (3.9), writing

2 B0 _cHB)_ (R
S(R,R)—SE(R) Sﬁ(R) , (6.2)

where P and the impact parameter are chosen to
ensure that the trajectory pass through both R and
RI

The principle of least action may be used as a
variational principle to calculate S(I_{J R). _That
is, S(R, R’) is stationary if we hold R and R’ tixed
and make small variations in the trajectory.

For our applications to atomic reactions the
points R and R’ will ordinarily both lie within the
range of strong interaction. This means that we
can, for most applications, approximate A(R R')
in Eq. (1.12) as

AR, RNZ- (M/20)(|[R-R" ). (6.3)

The principal radii of curvature may then be ap-
proximately written as

®, IR, |R-R'| . (6.4)

The relative error in both cases above is of
o(le:1).

VII. APPROXIMATION METHODS

We have already noted that according to the
principle of least action the quantity S,, [Eq.
(3.2)] is stationary if we hold the end points
fixed and vary the trajectory about its correct
value. This suggests that the eikonal is some-
what insensitive to the actual trajectory chosen.
It also means that we can use (3. 2) to provide a
variational principle for calculating the trajec-
tory.

The simplest generalization of the straight-
line trajectory is that consisting of two straight-
line segments intersecting at an angle 283, as is
illustrated in Fig. 6. [If we consider B8 to be a
variational parameter, and vary B to minimize
S,», we of course obtain 28=6., as given by Eq.
(1.5).] In this case, which we call the “angle”
approximation, Eq. (2. 13b) is reduced to

b=dcosB , (7.1)
and Eq. (2.12) becomes
s(z)=zsecB . (7.2)

The expression (3. 10) simplifies to the form
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FIG. 6. Trajectory for the “angle” approximation.

z(-)

8(z,0)=-p [ UR,dE, z<0

==p/ E(+)U(R1)d§ +2pU(d)d sing,

- 00

z>0, (7.3)
where Z(+)=Zsecf+dsing and R,2=b?+¢2. In ob-

taining Eq. (7.3), we have set

fod sing U(R,)dt =2U(d)d sing, etc.

The phase (5.12) appearing in the T matrix is
obtained from (7.3) as

®(b)==p [ UR,)L +2pBdU() + O(pa,| B°) .
(7.4)

The “angle” approximation thus differs from the
“straight-line” approximation only by the addi-
tion of the term 2pBdU(d).

We mention that when it is possible to write
U(R) in the form

P
a
S
U(R)=Z 5 (7.5)
s=1

with the ag constant, the integrals (7.4) and (2.7)
can be done analytically. Also, if we write

Q c
BE)=co+ Y, =, (7.6)
s=2 R

the integrals (2.11) and (2. 12) can be done analyt-
ically. In this case the coefficients cg,...,c
may be treated as variational parameters in S,,.

To provide a simple numerical comparison of
the “straight-line” and “angle” approximations
with the “exact” expression (3.5) for &(b), we
write

UR)=D/R? . (7.7)

The expression for 8, as obtained from Eqgs. (2.5)
and (2.7), is

B=3m(D/b?) . (7.8)

The corresponding expressions for & in the
“ straight-line” and “angle” approximations are
then'*

®(b) = - 2pbB (straight line)
=- 2pbpB[1- (2/mB] (angle) . (7.9)

In Fig. 7, we show the resulting values of &
given as a function of 6,=28. In this calculation
we chose D =0.025 and p =136 (both in atomic
units). We have given ® here for 8 extending over
the range 0<B<1. The “exact” expression is, of
course, no longer exact for g = 1 since we have re-
placed cosB by 1- 382 in Eq. (3.5) and tang by 8
in Eq. (2.9) for k. The results of Fig. 7 do sug-
gest, however, that the angle approximation,
which represents an almost trivial generalization
of the straight-line approximation, can be con-
siderably more accurate than the latter.

VIII. APPLICATION TO (H*H) SYSTEM

As a first application of the approximate methods
developed in the previous sections to physical pro-

-40.0 T

.......

-300 A

®
-20.0
—— Exact
—|="Straight ine"
-=4-"Angle"
-10.0 |
-4.0
1.0 1.50 2.0
9c (rad.)

FIG. 7. Comparison of the phase & for the potential
(7.7) of the “straight line,” “angle,” and “exact”
methods.
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cesses in an actual collision system, we consider
the elastic scattering and resonant electron-trans-
fer processes in the (H+, H) collision system.
Since the adiabatic potentials for this system are
known accurately, !* we are in a position to eval-
uate directly the validity of the various approxi-
mations without ambiguities resulting from un-
certainties in the potentials.

The (H*, H) collision system is a system having
symmetries with respect to the interchange of the
protons and upon reflection of the electron co-
ordinates in the internuclear plane. As a conse-
quence, we have the gevade and ungerade sym-
metries for the electronic states and a parity re-
striction for the angular momentum states of the
nuclear motion. For a given electronic state, the
angular momentum quantum number [ for the mo-
tion of the protons is limited either to even or odd
values. We have the symmetry properties for the
scattering amplitude 7 (9):

76)=f(n - 6),
f(G):—f(n— 9),

1 even;

(8.1)
7 odd.

This would give rise to oscillations in the differ-
ential cross sections resulting from the interfer-
ence between f(8) and f(r— 6).2% gych interfer-
ence would become appreciable only at large ! and
large scattering angles. For the present interest
in small angle scattering [see Eqs. (1.6) and
(1.7)] we neglect for the moment such interference.

The gerade and ungerade symmetry of the elec-
tronic states which give rise to separate potential
energies of interaction between H* and H must
explicitly be considered. In dealing with the elas-
tic scattering and resonance electron-transfer
processes between H* and H, we assume that the
interaction potential is given by the 22::5 H§ (ger-
ade) and the 227, H} (ungerade adiabatic potentials.
This assumption neglects any coupling of the
elastic-scattering and electron-transfer channels
with the collisional excitation, electron-transfer
excitation, and ionization channels. This would be
a reasonable assumption if the condition for the
near adiabatic scattering n,<«1 [Eq. (11.2)] is
satisfied and if there is no near crossings of the
adiabatic states. For the (H*, H) system such an
assumption is, however, an oversimplification
since in the united-atom limit the 2po and 2p7
states of H} are degenerate and, therefore,
strongly coupled. This oversimplification, never-
theless, should not affect our study of the trajec-
tory problem.

In this approximation, the elastic-scattering
and electron-transfer amplitudes may be ob-
tained from appropriate linear combinations of
the collision amplitudes resulting from the gerade
and the ungerade potential interactions. The dif-
ferential cross section then takes the expression,
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for elastic scattering,

do do do do
S g u I

™I (6.2)
and, for electron transfer,
do do do do
et :_g+_u __I (8.3)
dQ ~ dQ " df ae ’ :
dog
R 2
with —& 41r*M|Tg| , (8.4)
dou
- 2
W-‘IMM[T“I , (8.5)
doI
P, *
0 81r‘MR.e{TgTu} , (8.6)

where do_/dQ, dou/dﬂ, and ch/dQ correspond to
the contributions to the cross section coming
from the gerade interaction, the ungerade interac-
tion, and their interference.

Calculations of the differential cross section
are carried out in the classical limit of the eikonal
approximation for the straight-line and classi-
cal (to the order |B|%a,) trajectories, as well as
for the angle approximation (Sec. VII). More
specifically, we will adopt the classical scattering
matrix [Eq. (5.20)] obtained from the eikonal ex-
pression given by Eq. (5.11) [to O(ng)] by means
of the stationary-phase approximation [Eq. (5.17)].
In Paper III of this series, we shall illustrate the
application of the eikonal approximation to scat-
terings where the classical description fails.

The condition for the validity of the classical
scattering is given by Eq. (1.25). In Fig. 8 the
region of classical scattering obtained from Eq.

(1. 25) is displayed for both the gerade and the un-
gerade adiabatic potentials in the straight-line ap-
proximation. The classical region is then given
by the areas lying below the curves labeled
n(class) =1. It is seen that the gerade potential is
more restrictive than the ungerade potential. This
is clear since the gerade potential has an attrac-
tive portion and would give rise to rainbow scat-
tering for which, as mentioned before, the clas-
sical description of scattering fails. From Fig.

8 it is apparant that collisions with impact param-
eters in the neighborhood of 2 to 3.4 g, are essen-
tially nonclassical. (It will be seen later that rain-
bow scattering corresponds to an impact param-
eterof about2.7 a,.) At very small impact param-
eters (i.e., at b—~0), the n(class)=1 curves for
both the gerade and the ungerade potentials dip
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FIG. 8. Region of classical scattering for H' on H
as predicted by Eq. (5.19) and the condition (1.25) in
the “straight-line” trajectory approximation for the

adiabatic % 7 (——) and ’Z,, (----) H potentials.

down to effective zero energy (due to the scale in
Fig 8, it is undistinguishable from the E. .
axis).

Utilizing the known adiabatic potentials!® the
classical scattering angle may be determined as
a function of the impact parameter. For straight-
line trajectory, where the impact parameter
equals the distance of closest approach, this is
particularly simple since the energy dependence
of 6, can be factored out [see Eq. (1.5)]. This
permits us to define a reduced classical scatter-
ing angle 6 .(b)¢~2 which is energy-independent.
We have

w b [Td ., aZ 2
ec(b)c == |, V(RO)RO+O(GC ), 8.7)
with  ¢= (H/agp)M/m , (8.8)

where ¢ is a dimensionless quantity, and V(R,)
is in rydbergs. In Fig. 9 we have plotted the
reduced scattering angle as a function of impact
parameter. It is seen that in the gerade mode of
interaction we have at 6=2,7¢q, a minimum,

This would give rise to a rainbow.

For classical trajectory, the relation between
the impact parameter and the distance of closest
approach is no longer simple. To order [8|a,,
they are related by Eq. (2.13b). This relation-
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gerade
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FIG. 9. Impact-parameter dependence of the reduced
classical scattering angle ¢~ as given by Eq. (8.7) for
the adiabatic *Z g and £y H} potentials.

ship is shown in Fig. 10. As expected, the devia-
tion from d =b straight line becomes more
pronounced with decreasing energy. The classi-
cal scattering angle for H* on H along classical
trajectory may be obtained to the accuracy of
®(b). We have from Eq. (3.5)

20— —T————

1.5 4
S 1o .
= [ ]
= 07 ]
o ]
£ os bg(75.5ev)
g L d=b
< by(75.5eV)

& 0.3} bg(500eV) !
5 by (205 eV)
£ |byl500eV)s.7
= 02 / —by (205 ev) 1
- i
7/
0.l L1 T A B L
01 02 03 05 07 10 20 30

DISTANCE OF CLOSEST APPROACH d(0q)

FIG. 10. Relation between the distance of closest
approach and the impact parameters along the classical
trajectory [0(181%,)] as given by Eq. (2.13b) for the
gerade and the ungerade interactions for the (H, H) col-
lision system at three c. m. energies.
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- ;(g)/

+ 0(963) ,

"dR d_
db dR

{E[8 - B2 (2)]+ V(R)}dZ

8.9)

where R is given by Eq. (3.3). The calculated
O, is compared with that obtained in the straight-
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line trajectory approximation in Table I.

In the stationary-phase approximation, the con-
tributing impact parameters to the classical scat-
tering are defined by Eq. (5.17). They are shown

in Fig. 11 as a function of the classical scatter-
ing angle O, for several c. m. energies. The
corresponding stationary phase y(b,) [see Eq.

TABLE I. Comparison of the scattering angle as a function of the impact parameter in the “straight-line” and the
“classical trajectory O(l 8l 3a0)” approximations.

Bg(ag) 0y 0y B, (a;) 0, 6,
Eom, =75-5eV E, o =755 eV
0.53714 3.4633 x 10~ 4.4610x 107! 0.40643 5.7277 x 10~} 9.1860 x 107!
0.76686 1.9749x 107! 2.2679x 107! 0.61844 4.7074 x 10~} 6.2399 x 10~!
0.98764 1.1065x 107! 1.1871 x 107! 0.82942 3.9215x 107 4.7957 % 10
1.20264 5.6279 X 1072 5.7015 X 10™° 1.04047 3.3247x 107! 3.9066 x 10~!
1.41358 2.0682x 1072 1.8975 x 1072 1.25182 2.8537x 107! 3.2791 x 1071
1.62147 —3.1303x 1073 -5.3668 X 1073 1.46339 2.4677x 107! 2.7957 x 107!
1.82702 —1.9067 x 10~ —2.1068 x 10~2 1.67499 2.1427 x 10~! 2.4023 x 107!
2.03073 —2.9509 X 1072 -3.1007 x 10™2 1.88641 1.8637 x 10~ 2.0715 x 107!
2.23299 —3.6017 x 10™2 —3.6974 x 1072 2.09745 1.6216 x 10~} 1.7881x 10!
2.43411 —3.9677 x 1072 —4.0154 x 10~2 2.30795 1.4100x 107! 1.5429x 107!
2.63435 -4.1273x 1072 —4.,1369x 1072 2.51782 1.2244 x 10~! 1.3299x 107!
2.83392 — 14,1387 x107? —4,1203 X 1072 2.72696 1.0616 x 107! 1.1448 x 10~}
3.03298 —4.0455x 10~° —4.0084 x 1072 2.93536 9.1885x 10~2 9.8390 x 10™2
3.23166 —3.8808 x 10~ —3.8326x 1072 3.14300 7.9381 x 1072 8.4435 x 10~2
3.43009 —3.6694 x 10~ -3.6159x 10~ 3.34990 6.8455x 102 7.2354 x 1072
3.62835 —3.4301x 1072 -3.3756 X 1072 3.55608 5.8929x 10~ 6.1919 x 10~2
3.82652 ~3.1767 X 10~ —3.1241x 1072 3.76161 5.0645 x 102 5.2912 x 1072
4.02464 —2.9194 x 102 ~2.8711x 1072 3.96651 4.3459% 1072 4.5188 x 10~
5.01587 ~1.7653 x 1072 —1.7408 x 10~° 4.98351 1.9855x 1072 2.0264 % 10™2
6.00939 -9.8121x 1073 —9.7209 x 10~ 5.99212 8.9006 x 1073 8.9907 x 1073
8.00290 —2.6907 x 1073 —2.6820x 1073 7.99834 1.7437x 1078 1.7476 x 1073
Ec.m. =205 eV Ec.m. =205 eV
0.57921 1.3276 x 10~! 1.4446 x 10~ 0.53580 2.3411 x 10~! 2.6183 x 107!
0.78878 7.4658 x 10~ 7.8433 x 1072 0.73880 1.8154 x 1071 1.9588 x 10~!
0.99583 4.1530x 1072 4.2632x 10~ 0.94193 1.4847 x 107! 1.5754 x 10~1
1.20109 2.1008 x 10~2 2.1126 x 10~2 1.14530 1.2508 x 10~! 1.3156 x 10!
1.40502 7.6706% 10~ 7.4452 x 1070 1.34891 1.0713 x 10~! 1.1209x 10~!
1.60791 -1.1946 x 1073 —1.5007 x 1072 1.55267 9.2584 x 10~2 9.6520 x 10~2
1.80997 -7.0916% 107 —7.3696 x 10 1.75649 8.0365 x 10~2 8.3546 X 1072
2.01137 —1.0932x 1072 ~1.1142x 1072 1.96029 6.9879x 10~ 7.2462 x 1072
2.21223 —1.3309x 1072 ~1.3445 x 1072 2.16400 6.0768 x 10~ 6.2861 x 10~2
2.41267 ~1.4634 x 1072 —1.4703 x 10~2 2.36756 5.2800 X 10~2 5.4486 x 10~2
2.61278 -1.5200 x 1072 -1.5215x 1072 2.57092 4.5812x 1072 4.7160 x 1072
2.81263 ~1.5224 x 10~2 —1.5200 1072 2.77406 3.9860 x 10~2 4.0808 x 10~2
3.01229 —1.4868 x 1072 —1.4818 x 10~2 2.97696 3.4306 x 1072 3.5148 x 1072
3.21180 —1.4254 x 10~ ~1.4188 x 1072 3.17962 2.9605 x 10~2 3.0263 x 10~2
3.41121 -1.3471x1072 —1.3398 x 10~2 3.38203 2.5502 x 10~2 2.6012 x 10~2
3.61056 ~1.2589x 10~2 —1.2514 x 10~2 3.58420 2.1929 x 1072 2.2322 x 1072
3.80988 —1.1657 x 1072 —1.1584 x 10™2 3.78615 1.8827 x 1072 1.9128 x 10™2
4.00917 -1.0712x 1072 —1.0645 x 10™2 3.98789 1.6140 x 10™2 1.6369 x 10~2
5.00589 —6.4803 x 107 —6.4468 x 10~° 4.99399 7.3460 x 1072 7.4007 x 10~°
6.00348 —3.6056x 1072 -3.5932x 1073 5.99711 3.2857 x 103 3.2978 x 10™3
8.00107 —9.9015 x 10~ —9.8898 x 1074 7.99939 6.4253 x 10~4 6.4306 x 10~
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FIG. 11. Stationary-phase impact parameter b, as
a function of the ¢. m. scattering angle for the (H*, H)
collision system at three c. m. energies. bg and b,
denote those of the b,’s for the gerade and the ungerade
modes of interactions, respectively. The differences
in b, found at these angles in the “straight-line,” and
the “classical trajectory [0(181%,))”’ approximation are
too small to be seen for the scale adopted in the figure.

(5.186)],

y(bc)= <I>(bc) -epb b, (8.10)

are shown in Fig. 12, Differences are found in
the stationary phases as predicted by the
straight-line trajectory approximations and by
the classical trajectory approximations. These
differences should become appreciable in the in-
terference pattern,

Having determined the impact parameters and
the stationary phase we are now in position to
evaluate the differential cross section. The re-
sult for elastic scattering and resonant electron-
transfer cross section using the classical scat-
tering matrix given by Eq. (5.20) is shown in
Figs. 13-15 as a function of scattering angles for
several c.m. energies. The regular pattern of
oscillation comes from the interference [Eq.

(8. 6)] between the gerade and ungerade mode of
interactions. It is seen that the interference de-
pends sensitively upon their phases. In Fig. 16
the constituent compounds [given by Eqs. (8. 4)-
(8.6)] of the differential cross sections are
shown for one of the energies. As expected, the
interference term daI /dS? oscillates with increas-
ing amplitude and rapidity as the scattering angle
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FIG. 12. Comparison of the stationary phase vy [Eq.
(8.10)] as a function of the c.m. scattering angle in the
“straight-line” (— — —), and “angle” (==-=- ), and the
“classical trajectory [0(]81%2¢)]1” ( ) approximations
for the (H', H) collision system at three c. m. energies.
The subscripts “g”’ and ‘%’’ denote the “gerade’ and the
“ungerade” potentials of interaction, respectively.
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[0(181%a0) ¥ ( ) approximations for the (H',H) col-
lision system at an energy of 75.5 eV in the c.m. system.
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FIG. 16. Comparison of the differential cross sections
for the gerade-potential scattering, the ungerade-
potential scattering, and their interference [see Egs.
(8.4), (8.5), and (8.6), respectively] as functions of the
scattering angle in the “straight-line” (———), the
‘“angle” (==—==) ), and the “classical trajectory [0(I81%,)]”
( ) approximations for the (H", H) collision system
at an energy of 205 eV in the c.m. system.

decreases. The sum of the elastic scattering
and resonant electron-transfer differential cross
sections denoted by do;/dQ is, however, a
smooth function of the scattering angle.

For comparison, the results obtained in the
angle approximation [Eq. (7.4)] are also included
in these figures. It is observed that the angle
approximation yields values that are consisently
close to the values obtained from the more elab-
orate calculation following the classical trajec-
tory up to the order | 813%a,. This seems to sug-
gest that the simple generalization of the straight-
line approximation offered by the angle approxi-
mation do constitute a significant improvement.

At angles smaller than the rainbow angle, the
one-to-one relation between the impact parameter
and scattering angle as shown in Fig. 11 for the
stationary-phase approximation is no longer sat-
isfied. The scattering observed at a single angle
arises from the scatterings through several sep-
arated impact parameters. This would then give
rise to interesting interference patterns. Such
a behavior is expected for scatterings due to the
gerade mode of interaction. In Fig. 17 the rela-
tion [Eq. (5.17)] between the impact parameters
and the scattering angles is given for several
c.m, energies. It is clear that at angles smaller
than the rainbow angle 64, there are three par-
ticipating impact parameters for gerade scatter-
ing. For the ungerade scattering where the po-
tential is repulsive and has no rainbow scattering,
only one impact parameter participates for each
scattering angle. Their corresponding stationary
phases y(b¢) are given in Fig. 18.
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FIG. 17. Comparison of the stationary-phase impact
parameters b, as a function of the absolute c. m. scat-
tering angle 1@, . | in the “straight-line” (——~) and
the “classical trajectory [0(IB81%,)]” ( ) approxi-
mations for the (H', H) collision system at two c.m.
energies. bg and b, denote those of the bc’s for the

gerade and the ungerade modes of interactions, respec-
tively.

To account for the scatterings coming from
separated impact parameters in the gerade case,
Eqgs. (8.4) and (8.5) must be modified. We have

do
—E_4rm|T. T, |? 8.11
aa IZ] ]gl ’ (- )
doI
d—n=81r4Re{Ej T]}Tu} , (8.12)

where the sum over j runs over all the partici-
pating impact parameters for each scattering
angle, Results for dog/d and doy/dS calculated
from these equations are given in Fig. 19. The
interference structure in do,/dS is apparent.
This interference within the gerade scattering
also gives rise to further structure in doj/df.
Superimposed on the regular gerade-ungerade
oscillations in doj/dQ are the oscillations com-
ing from interference within the gerade scatter-
ing. The elastic-scattering and resonant elec-
tron-transfer differential cross sections at
these scattering angles are shown in Fig. 20,
The differences in the differential cross section
at these small angles coming from the straight-
line approximation, the angle approximation,
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FIG. 18. Stationary phase vy [Eq. (8.10)] as a function
of the absolute c. m. scattering angle |18, ,, | for the
(H*, H) collision system at two c.m. energies. The
subscripts g and # denote the gerade and the ungerade
potential of interaction, respectively. The difference
in y found in the “straight-line,”’ the “angle,” and the
“classical trajectory [0(I81%())” approximations at these
angles are too small to be seen for the scale adopted in
the figure.
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FIG. 19. Differential cross sections for the gerade-
potential scattering, the ungerade-potential scattering,
and their interference [see (8.11), (8.5), and (8.12),
respectively] as functions of the scattering angle for the
(H*, H) collision system at an energy of 75.5 eV in the
c.m. system. The difference in the differential cross
section found in the “straight-line,” the “angle,” and
the “classical trajectory [0(IB81%a,))” approximations
at these angles are too small to be seen for the scale
adopted in the figure.
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and the classical trajectory are small and be-
come indistinguishable in these figures,

An investigation of the energy dependence of
the differential cross sections has also been car-
ried out. The results are given in Figs, 21-24
for a few scattering angles in the straight-line
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FIG. 22. Comparison of the scattering and electron-
transfer differential cross sections and their sum as
functions of the energy in the “straight-line” (———)
and the “angle” ( ) approximations for the (H', H)
collision system at a scattering angle of 4° in the c.m.
system.

and the angle approximations. In general, the
behavior of these quantities as a function of en-
ergy is similar to that as a function of scattering
angles. For a fixed scattering angle, the rain-
bow scattering appears at certain critical ener-
gies below which again we observe interference
coming from separated impact parameters. The
results obtained from the angle approximation
agree reasonably well with that obtained by fol-
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FIG. 21. Comparison of the differential cross sections
for the gerade-potential scattering, the ungerade-potential
scattering, and their interference [see Eqs. (8.4), (8.5),
and (8.6), respectively] as functions of the energy for
the (H*, H) collision system in the “straight-line” (—— —)
and the “angle” ( ) approximations at a scattering
angle of 6° in the c.m. system.

FIG. 23. Comparison of the differential cross sections
for the gerade-potential scattering, the ungerade-
potential scattering, and their interference [see Egs.
(8.11), (8.5) and (8.12), respectively] as functions of the
energy in the “straight-line”’ (———) and the “angle”

( ) approximations for the (H',H) collision system
at a scattering angle of 2° in the c.m. system.
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FIG. 24. Comparison of the scattering and electron
transfer differential cross sections and their sum for
the (H'*, H) collision system as functions of the energy
in the “straight-line” (— ——) and the “angle” ( )
approximations at a scattering angle of 2° in the c.m.
system.

lowing the classical trajectory for all the ener-
gies that we have checked.

To our knowledge, no experimental measure-
ment on the differential cross section for H* and
H is available in the literature for a direct com-
parison with the theoretical result. Detailed
measurements on the electron transfer probabil-
ity in the (H™,H) collision system has been car-
ried out by Helbig and Everhart.!® This then
provides an indirect assessment of the theoretical
result for the differential cross section,

The electron-transfer probability P can be
calculated from the differential cross section by
the relation

P =foit/dot°tal (8.13)
et dQ ae ’ :
where doiota]/d9 is the total differential cross
section for the (H+, H) collision system. In the
two-state approximation, the total differential
cross section is approximated by dot/dﬂ. Hence,

d do do do

{0}
tot.
o A e 6.14)

In this approximation, the differential excitation
cross sections are neglected.

The calculated electron-transfer probability
Pet is compared with the experimental measure-
ments in Fig., 25 as a function of the incident
proton energy for several fixed scattering angles
and in Fig. 26 as a function of the scattering
angle for several fixed incident proton energies.

It is seen from Fig. 25 that the agreement be-
tween the theoretical and experimental electron-
transfer probability as a function of proton energy
is not quantitative. The improvement over the
straight-line approximation introduced by the
angle approximation in the position of the os-
cillation is too small. No further appreciable
improvement is obtained if the classical trajectory
is followed up to the order |B1%a,. The theoretical
result also fails to predict the Everhart damping. 20
These are, however, expected of the adiabatic
two-state approximation as was pointed out by a
number of workers. 2!~ The discrepancy (dis-
played in Fig. 25) which is apparently larger than
the experimental uncertainty comes partly from
the approximation in doyt,1/dS as given by Eq.

(8. 14) and partly from the inaccuracy in the cal-
culated differential cross sections as a result of
the classical and adiabatic two-state approxima-
tions,

The agreement between the theoretical and ex-
perimental electron-transfer probability is, how-
ever, much better as a function of scattering
angle, except for the case with an incident proton
energy of 151 eV (the lowest energy measured).
This agreement appears to be further improved
by the angle approximation. However, experi-
mental measurements of Pg¢ at angles larger than
those reported are needed to settle this point. At
angles smaller than the rainbow angle, an increase
in the oscillation in P _, is found. This increase
is originated from the interference in the gerade
scattering coming from separated impact param-
eters. A calculation of B, following the classical
trajectory up to the order |B1%a, is carried out as
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FIG. 25. Comparison of the calculated electron-

transfer probability Pgy in the (H+, H) collision system
as a function of the incident proton energy in the

“straight-line”” (— — —) and the “angle” (——) approxi-

mations with that measured by Helbig and Everhart

(Ref. 19) (crosses) at four laboratory scattering angles.
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culated electron-transfer probabil-
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ity Py, in the (HY, H) collision sys-
tem as a function of the laboratory
scattering angle in the “straight-
line” ( ), and the “angle”
(mmmmms ), and the “classical trajec-
tory”’ [O(Iﬁlsao)] (= = =) approxi-
mations with that measured by
Helbig and Everhart (Ref. 19)
(crosses) at six incident proton en-

o
°

ergies. The “classical trajectory
[O(!ﬂlsao)] ”’ approximation is car-
ried out only for the incident proton

ELECTRON TRANSFER PROBABILITY Py

energies of 151 and 410 eV.

a function of scattering angle for two-fixed inci-
dent proton energies at 151 and 410 eV. The re-
sult is in good agreement with that obtained in the
angle approximation. Thus further supports our
observation mentioned earlier that the angle
approximation, despite its simplicity, constitutes
a significant improvement of the straight-line
approximation.

APPENDIX: ERROR RESULTING FROM
EIKONAL APPROXIMATION

The error resulting from the use of the eikonal
approximation may be estimated by replacing A
in Eqs. (1.8a) and (1.12) by the product A’A.

8Lap
SCATTERING ANGLE 6 ng(Degrees)

Here A is given by Eq. (1.8c) and A’ represents
a correction to this, The exact equation to deter-
mine A’ is [see Eq. (14.31)]

8 1nd’

9x,

= - (2A’Aki)"'V2(4'4) . (A1)

To estimate A/, we set A’ =1 on the right-hand
side of (A1). Using Eq. (1.8c), we obtain

cenp| i (L) ane ]|
A1~9Xp(4x[<al+m2>+axg_ ’ (a2)

from which the estimate (1, 14) follows.
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