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1-Plane and Khuri-Plane Singularities in the Veneziano Model
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The singularity structure of the Veneziano model in the angular momentum and Khuri planes is dis-
cussed. The continued partial-wave amplitude is shown to have an infinite number of Regge poles, spaced
by integers, together with an in6nite number of fixed poles at wrong-signature nonsense points in the
1 plane. The residues of both the moving and fixed poles are calculated, and consequences of their structure
are discussed. In the Khuri plane, the Veneziano model is shown to be characterized by an infinite number
of moving poles, but there are no fixed poles. The residues of the moving poles are presented.

I. INTRODUCTION

X elegant model for relativistic scattering ampli-
tudes has recently been proposed by Veneziano. '

Crossing symmetry is exactly satisfied by the model,
and Regge asymptotic behavior is ensured by the re-
quirement that the trajectories rise linearly. ' A number
of physical consequences of the model have been ex-
plored by several authors' with a good degree of success.
Also, though not unique, the Veneziano amplitude pro-
vides a solution of the finite-energy sum rules. 4

Because of this phenomenological success, the ques-
tion of the singularity structure in the complex angular
momentum plane, implied by the Veneziano model is
of considerable interest. In this paper we study the
partial-wave projection of the model as a function in
the angular momentum plane. The partial-wave ampli-
tude is holomorphic to the right of a certain line in the
complex I plane; a situation familiar in the study of the
Frossart-Gribov representation. ' We then analytically
continue the amplitude to the left of this line, encounter-
ing families of Regge poles and an infinite set of fixed
poles at wrong-signature nonsense points.

We also examine the singularity structure of the
Khuri amplitude, ' defined as the Mellin transform of
the absorptive parts of the total scattering amplitude.
Our method of analytic continuation of the Khuri ampli-
tude in the complex index plane is essentially the same
as that for the partial-wave amplitude. We show that
the poles in the index plane have residues given by quite
simple expressions. Furthermore, no fixed poles in this
plane are found.

For simplicity we consider the scattering of identical
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U(x,y) = (2)

We neglect the over-all multiplicative constant in the
amplitude. We wish to point out that the results to
follow are not limited to the form (2) but can be applied
to (2) with arbitrary positive integers in the arguments
of the gamma functions. This follows from the freedom
of redefining the intercepts of the trajectories and the
fact that one gamma function, because of the equal
slopes, is always simply a function of s.

In Sec. II we discuss the analyticity properties of the
partial-wave amplitudes derived from the first two
terms in (1).We show that this contribution to the full

partial-wave amplitude is characterized by an infinite
number of simple poles in the l plane which are spaced
by integers and whose positions are determined by n(s).
We discuss various properties of the residues of these
moving poles, including a necessary relation to the
Veneziano supplementary condition, ' and show that the
continued partial-wave amplitude has the correct thres-
hold behavior in s.

In Sec. III we consider the partial-wave amplitude
following from the third term in (1).This contribution
is holomorphic in the / plane except for simple fixed
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spinless particles, so that the total amplitude is sym-
metric in t and u. The mathematical techniques em-

ployed, however, are directly applicable to unequal-mass
processes with no t-I symmetry. The only requirements
are that o.(t) and n(u) be strictly linear functions with
identical slopes, and that the intercepts of the tra-
jectories be less than unity.

While it is not mathematically necessary that these
slopes and intercepts be strictly real, we shall treat them
as such in what follows. This is, of course, the narrow-
width resonance approximation. Similarly, there is no
restriction on the function n(s) in our method, but to
simplify the equations we will take it to be a linear
function as well.

The Veneziano amplitude we consider is

F(s,t,u) = V(s, t)+ V (s,u)+ V(t,u)

with
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poles at wrong-signature nonsense points. The residues
of these poles are such that if the partial-wave amplitude
is unitarized through the E/D formalism, then the
kernel of the integral equation for N will be non-
degenerate and the well-known Gribov-Pomeranchuk
phenomenon will result. '

In Sec. IV we derive the Khuri amplitude for the
Veneziano model. The first two terms in (1) give rise to
an infinite number of moving poles in the index plane,
spaced by integers. The residues of these K.huri poles
are much simpler in structure than are those for the
Regge poles. The contribution to the Khuri amplitude
of the third Veneziano term is found to be analytic
throughout the index plane. Finally, Sec. V contains
our conclusions, and in the Appendix we prove that the
residues of fixed poles at right-signature nonsense points
in the 1 plane vanish identically.

II. REGGE POLES

Consider the partial-wave projection

Legendre function, and permits the continuation in n(s)
up to this value.

In the conventional way we define the auxiliary

amplitude
A (t,s) = (4q') —'a+(t, s),

and, by Carlson's theorem, continue (5) into the com-
plex t plane in the region Rel)Ren(s), where it is
holomorphic. For the continuation of A(t, s) to the left
of this line, (5) is not a convenient representation, so we

employ the Laplace transform'

Q&(s) = dy e '&(m./2y)"'I&+i/2(y),

Res& 1, Rel& —1.

Inserting this representation into (5), we are permitted
to interchange the order of summation and integration
for Ret) Ren(s), and we encounter the sum

F(n+1+n(s) )
e '&"=—F(n(s)+1)(1 e '—")-

where

1

a(l,s) =—
2 1

n=o

de,Pi(s, )fU(s,t)+ U(s, u) j, (4)
where

e= (2bq') —'

s,= 1+t/2q'.

%e use the representation'

F(*)F(y) =z- Rey& 0
I'(x+y) ~=o n!F(1—y)(n+x)

to obtain

A (l,s) =M (t,s) dy e—ew(1 e
—eu) —~(~)—i

X( /2y) i I, „,(y), (6)

and Reo&0 is required for the convergence of the sum.
After this step, the auxiliary partial-wave amplitude

becomes

V(s,t) =— 1 F(n+1+n(s))
Re+(s) (0

FL(x(s)7 =0 n!Ln+1 —n(t)]

where

y = 1+(1—a)/2bq'

with an identical expression for V(s,u).
With the linear expression (3) for n(t) and n(u), the

partial-wave projection (4) can be directly carried out
to yield Legendre functions of the second kind. Because
of the 3—I symmetry in our specialized case, the odd-
signatured partial-wave amplitude a (t,s) vanishes
identically, and the even-signatured amplitude is
given by

1 ~ F(n+1+n(s)) n+1 —a)
a+(l,s) =- Qi 1+

I (5)
bq2 n=o n!F(n(s)) 2bq'

This is simply the Froissart-Gribov formula with the
absorptive parts in the t and u channels Lfor the first
two terms in (1)J represented by infinite sums of
8 functions. We note that the sum in (5) now converges
for Ren(s) (l, because of the asymptotic behavior of the

7 V. N. Gribov and I. Ya. Pomeranchuk, Phys. Letters 2, 239
(1962); C. E. Jones and V. L. Teplitz, Phys. Rev. 159, 1271
(1967); S. Mandelstam and L. L. Wang, ibid. 160, 1490 (1967);
G. C. Joshi and R. Ramachandran, ibid. 166, 1832 (1967).

8Bateman Manuscript Project, EXigher Transcendental Fzfnc-
tions, edited by A. Krddlyi (McGraw-Hill Book Co., New York,
1953), Vol. I, p. 8, Eq. (2).

M(t, s) = —4n(s)/b(4q') '+'. (8)

We note that (6) still does not permit the analytic
continuation of A (t,s) to the left of the line Re/= Rem(s)
because of the divergence of the integral at the lower
limit. To overcome this limitation we consider the
Taylor expansion with the remainder of the following
function:

(1 e—I)y —n(s)—1

= Z f.y"/~. +~-(y), (9)
y k=o

where f), is the kth derivative of f(y) evaluated at y= 0.
It is necessary to keep the sum in (9) finite because

the full Taylor expansion has a finite radius of con-
vergence, and we wish to carry out the integration in

(6) over the positive y axis. However, since the sin-
gularities in (6) come from the lower limit and

g (y)~ysf+i as y ~0
9 Bateman Manuscript Project, Tables of Integral Transforms,

edited by A. Erd6lyi (McGraw-Hill Book Co., New York, 1953),
Vol. I, p. 195, Eq. (5).
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by construction, the remainder term in (9) will contri-
bute no l-plane singularities for Rel) Ren(s) (M—+1).
In what follows, we will ignore the contribution of this
remainder term since M can be chosen arbitrarily large,
but finite. This procedure makes the analysis of such
questions as the asymptotic behavior in s very dificult
but it does not aRect the determination of the pole
positions and the values of their residues.

Because the evaluation of the residues requires the fI,
coefficients, we note some of their properties. It is not
difficult to show that (using 8 '= 2bq')

fo=(2bq') '"',
fg —(2bq2)a(8)+1—k P ( 1)m

m=p

XC 'I'(n(s)+1+k —m)/I'(n(s)+1), (10)

where the C„~are positive, purely numerical coefficients
but are rather complicated in structure. Ke list here
the simpler ones:

Co~ ——2 ~, C "=-'k(k —1)2' ' Ci P=(k+1) '

Using (9) in (6), we obtain

A (l,s) =M (I,s) P f„/k! dy
k=p p

Xc "3" " '( /23)'"I+ (3)

This integral is a well-known Laplace transform' and
yields associated Legendre functions,

dy c '"y"( /2cy)"'I~+»2(cy)

c—1(y2 c2) PI2c i'w&(3 iv—(@/c)—

7r'"c'I'(1+tL+1)

2 l+ iy t-I p+ i P(l+ o)-
X."'('; l+ ,'tJ+ '„,'l+ ,'t-i-+ I—; I+—-,'; —c'/y—') (11)

with the conditions for the convergence of the integral

Re(l+ti)) —1, Re/)
~
Rec~ .

This result allows us to write the partial-wave amplitude
in the form

~ f,ir'"I'(l+k —n(s))
A(l, s) =M(l, s) Q

A;=p $ t2~+&y~+Ic—~(&)

XF(ol+-,'k ——',n(s), -', l+-', k+-.',

(s); l+—,'; P ')/I'(l+ —'), (12)

G. E. Roberts and H. Kaufman, Tables of Laplace TransJorms
(4V. B. Saunders Co. , Philadelphia, 1966), p. 72 (4); Ref. 9, p.
196 (9).Note that in the latter reference, Barnes's definition of the
associated Legendre functions of the second kind is used rather
than the usual definition employed elsewhere in Ref. 9.

where p and M(l, s) are given by (7) and (8) '

respectively.
Equation (12) can now be continued into the complex

l plane, and because F(a,b; c; s)/I'(c) is an entire func-
tion of u, b, and c for fixed

~

s
~
(1, it follows that the

only singularities of A(l, s) are those of I'(l+k —n(s)).
In this way we find that the first two terms in the
Veneziano model LEq. (1)) lead to partial-wave ampli-
tudes that are holomorphic in the I plane except for

simple poles at l=n(s) —m, with m=0, 1, 2, . . . .
The residues of these moving poles can be expressed

as complicated, but Gnite, sums. The residue of the pole
at l=n(s) —m is

( 1)k+m~1/2f ym —k

P (s) =M(n(s) —m, s) P
i,=o k!(m —k)!2 &'& "+'

XF(-',k —-', m, —',k —-', m+-'„n(s)

—m+$; P ')/I'(n(s) —m+2). (13)

The simplest case is the residue of the first pole (m= 0),
for which we obtain

Po(s) = —'" (s)(4b) "/I'( (s)+2) (14)

It is interesting to note that this residue vanishes for
~(s) =0 andfor n(s)= ——,

' —n, with n 0, 1,=2, . . . . Also,
the residue vanishes as Ren(s) —++ ~.""

Consider the residue of the erst daughter pole at
l=n(s) —1. From (13) we find

ir'"n(s) (—', b)
Pi(s) = — $n(s)+2a 4bq' 1j, —(15)—

2r(n(s)+-', )

which vanishes for to.(s) =0 and n(s) = —'; n, with-
n=0, 1, 2, . . . ,. We also note that because, by (3),

n(t)+n. (u) = 2a 4bq'—
for our equal-mass process, the condition for Pi(s) to
vanish identically is

n(s)+n(t)+n(u) = 1,
which is the Veneziano supplementary condition for
this process.

The structure is a necessary consequence of the fact
that the supplementary condition eliminates alternative
trajectories in the total Veneziano amplitude. Because
of the complicated structure of (10) and (13), we have
not been able to prove that all of the odd-m residues
vanish identically if the supplementary condition is
fulfilled, but we believe it to be true.

In conclusion, we note that A(l, s) t Eq. (12)], using
the q' dependence of M(l, s), p, and the coefficients fi.,

approaches a constant value as q' —+0, which is the
correct threshold behavior for the auxiliary partial-
wave amplitude.

"H. Goldberg, Phys. Rev, Letters 19, 1303 (1967)."C. J. Goebel, Phys. Rev. Letters 21, 383 (1968).
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we find

n!F(n(s)+X)n=O

(—1)"F(n+n(s)+X+1)
b+(l,s) =bq ' Q

The Laplace transform in (24) converges for Re(l+k))—1 and Re(1—a))0, and it is evaluated. according to
(11). The resulting amplitude may be written in
the form

4bq'

t
s'n(s)+h. +1+2n ~ gk~'i2F(1+k+1)

xgi (22) B(l,s) =1V(l,s) P
p k t2 1+1(2bq2) ky1+k+1

g(r) =(1+~ ") ' " '=2 gkrklkt+R~(r), (23)
k=o

where gk is the kth derivative of g(r) evaluated at r= 0.
Since, by construction,

RkI(r) ~ r~+' as r —& 0,
the remainder term will contribute no l-plane singu-
larities for Rel) —(M+2).

The residues of the fixed poles depend upon the
coefficients gy, so we note some of their properties. It is
not difficult to verify that

g 2—1—a(s)—)

F(1+n(s)+X+k —m)
g

—g ( 1)mD k2—1—a(s)—X—k+m

m=o F(1+n(s)+X)

where D ~ are positive, purely numerical coefficients.
We list here the simpler ones:

Dp"=Dk 1 =Is Di"=2k(k —1), Dk 2"——2k—' —1.

In general, these coefficients satisfy the recursion
relation

k+1 (k rn)D k+D k

The next step is to insert (23) into (21) and to obtain
for the auxiliary partial-wave amplitude

B(l,s) = 2Ln(s)+X](4q2) ' Q gk/k! dp p
—(I+&')+~) "1'2

&(rk(2r/4bq2r)'~ I1+ii2(2bq2r)+Rkr(l, s), (24)

where Rkr(l, s) represents the integral over the remainder
term in (23) and is holomorphic for Rel) —(M+2).
Since we are primarily interested here in the location of
the fixed poles and the values of their residues, and since
ilI may be chosen arbitrarily la, rge (but finite), we will

henceforth ignore thy rqmailideI &enn,

which is very similar to (5) except for the factor (—1)".
Again, this factor signifies the distinction between Regge
poles and fixed poles.

To develop the fixed-pole structure we first define the
auxiliary partial-wave amplitude by

B(l,s) = (4q') —'b+(l, s),
and, by Carlson's theorem, continue (22) into the com-
plex l plane in the region Rel& —1, where it is holo-
morphic. We now employ the Taylor expansion with
remainder, as before,

where
XR(21+2k+2, 21+2k+1; l+-' 4 ')/F(l+-')

N(l, s) =4[n(s)+7,]/b(4q')'+'

and, for example, the residue at l = —1 is

1[n(s)+ l1)21—a(s)

This structure has the following consequence. If the
partial-wave amplitude were unitarized by means of
the 1V/D method, the fact that the residue of the fixed

pole at l= —1 is proportional to 2 "would lead to a
nondegenerate kernel in the integral equation for E.
In the absence of moving branch points, such a non-
degenerate kernel results in an essential singularity at
l = —1 in the partial-wave amplitude. '

It can be verified by explicit calculation from (25)
that y2=- y4=- 0, but this procedure becomes very tedious
for the residues of the remaining right-signature fixed
poles. To prove that these residues vanish in general, we
turn to the Froissart-Gribov representation (22). Using
the fact that theresidue of Qi(s) at l= —rn, n2= 1, 2, . . . ,
is P 1(s) we obtain from (22) the alternative formula
for the residues of the fixed poles. (—1)-F(n+ (s)+1+1)

4b
—1 (4q2) m—1

n!F(n(s)+X)

2n+n(s)+X+1
XE 1

— —. (26)
4bq'

and 4s is again given by (7). This amplitude coming
from the third term in the Veneziano model is seen to
be very similar in structure to (12). It exhibits the
correct threshold behavior, and for the same reasons as
discussed in Sec. II, its singularities in the complex
l plane are those of F(i+k+1). It follows that B(l,s)
has an infinite number of simple, fixed poles at l= —m,
m=12 3

However, as we will show, only the wrong-signature
fixed poles (rn odd) survive, for the residues of the
right-signature fixed poles vanish identically. The
residue of the simple pole at l= —nz is given by the
finite sum

( 1)k+mg 2rlt22m —1

y„=—1V(—rn, s) P-
k=p k!(rn —1—k)!(2bq')ksbk+' "

)&I'(,'k+ ', ', rn, —',-k+1-——-',—rn;—,
' rn; sb ')/—

F(-', —2n), (25)
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It should be remarked that this sum is being evaluated
upon its circle of convergence, but it does converge due
to the factor (—1)".In the Appendix it is proved that
& =0 for m even, and as a consequence there are only
wrong-signature fixed poles present in B(t,s).

We insert (30) into (29) and obtain (again ignoring
the remainder term)

2n(s)b nr f„
C+( S) P dt tk+v —a(s)—1C—(1—a) 1

I'(v+1) &=p k! p

IV. KHURI POLES

and the sum is convergent for Rev) Ren(s). To evaluate
this sum we use the identity"

(11+1—a) " '= dt tvC
—(n+1—a) &/r(V+ ]) (28)

Inserting (28) into (27), we can interchange the order of
summation and integration for Rev)Ren(s), and the
resulting sum is simply a binomial expansion.

These steps yield

c+(v,s) = 2n(s)b"—
ytvc —(1—&)&(1—c

—
&)

—&(v)—1/r(v+1) (29)

but this form is still not suitable for analytic continua-
tion in the variable s because of the divergence of the
integral at the lower limit for Rev& Ren(s). As in the
Regge-pole case of Sec. II) we perform the analytic
continuation by considering the Taylor expansion

In the section we exam. ine the Khuri-plane singu-
larities of the Veneziano model. As before, we will

discuss separately the contributions of the erst two
terms and the third term in (1).It is convenient to use
the Khuri amplitudes

c+(v,s) = ci(v, s) +cp(v, s),

where c~ and c~ are defined in Ref. 6 as the Mellin
transforms of the t- and I-channel absorptive parts,
respectively. For our t-I-symmetric case the amplitude
c (v, s) vanishes identically.

For the contribution of the first two terms of the
Veneziano formula to c+(v,s), we use the infinite-sum-
o'-8-functions representation for the absorptive parts
that can be read off directly from (5). The Mellin
transform of this representation yields

r ()1+1+n(s))
c+(v,s) = 2b" P— ()1+1—a) "—', (27)

~!r(n(s))

Evaluating the simple Laplace transform gives the
compact result

2n(s)b" ni fear(k+v —n(s))
P)$

r(v+1) )=p k((1 —a)~+"—('
(31)

In pa, rticular, the residue of the leading pole is

t3o= —2b "/r( (s)),

which could have been deduced from (14) and the
results of the Appendix of Ref. 6. The residue of the
first daughter pole is

Pi ———n(s)b (')—'$n(s)+2a —1]/r(n(s)).

As a general property we note from (32) that the
residues vanish at n(s) = m —1, m —2, . . . , 0, —1,
—2, . . . , and at additional values of n(s) determined by
the finite sum in (32). This sum is always a polynomial
in n(s) of order nz, as can be seen from (10).

We now discuss the Khuri-plane singularities coming
from the third term in (1). The b-function representa-
tion for the absorptive parts can be read off from (22),
and the Mellin transform of this representation gives. (—1)-r(~y1+n(s)yZ)

c+(v,s) =2b" Q (v+1—a) " '.
rs!r (n(s) +X)

This sum converges for all finite values of v, because of
the (—1)", indicating that c+(v, s) is an entire function
of v. But it is worth while to verify this in a different
manner. Using (28) as before, interchanging the orders of
integration and summation, and evaluating the binomial
expansion, we obtain

which can now be continued into the complex v plane.
We see that the Khuri amplitude is analytic except for
an infinite number of simple poles coming from the
factor I'(k+1 —n(s)). These poles occur at v=n(s) —m,
with m=0, 1, 2, . . . , and their residues, from (31), are
given by

2n(s)b~(' ~ ~ (—1)"+ (1 a) )'f),—
(32)

r(n(s)+1 —yg) )=p k!(m —k)!

(30) c+(v,s) =-2b"Ln(s)+X] dt

where f), is the kth derivative of f(t) evaluated at t= 0.
These coefficients f).„are given by (10) with 2bq' re-
placed by unity.

"Reference 8, p. 1, Eq. (5).

Xt"c " "(1+c ') "" '/I'(v+1) (33)

The integral in (33) diverges at the lower limit for
Res &~—1, but it is clear by inspection that the resulting
singularities are like those of the gamma function,
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namely, simple poles at v= —1, 2, . . .. To prove this in
detail, one simply inserts the Taylor expansion (23) into
(33) and evaluates the resulting Laplace transform. The
outcome is

2L~(s)y~)b ~ g„r(v+u+&)
C V)$ +Ru(v, s),

F(v+1) &=o k!(1—a)"+"+

which can be analytically continued throughout the
v plane to the right of the line Rev= —M —2, with M
arbitrarily large but finite. This verifies the fact that
the Khuri amplitude coming from the third Veneziano
term in an entire function in the index plane.

V. CONCLUSIONS

We have studied the singularity structure of the
Veneziano model in both the angular momentum and
Khuri planes. For simplicity we chose to work with an
amplitude syiximetric in the Mandelstam variables t

and N. However, the mathematical procedures used in
the partial-wave projection are immediately applicable
to an arbitrary Veneziano amplitude for equal- or
unequal-mass scattering processes. The only rnathe-
matical restriction is that the Regge trajectories n(t)
and u(u) be strictly linear in their arguments. There is
no restriction on the trajectory n(s).

It was convenient to analyze separately the contribu-
tions of the first two terms and the third term in the
Venziano representation because their singularity struc-
tures are quite different. The first two terms give rise
to an infinite number of Regge poles in the t plane,
spaced by integers. The residues of these poles are
complicated in structure, but a number of general pro-
perties can be inferred. The residues vanish at n(s) =0
and at negative half-integer values of n(s) They also.
tend to zero as n(s) —++ ~ .

A further property was noted for the first daughter
residue: It vanishes identically if the Veneziano supple-
mentary condition is fulfilled. This is a necessary con-
sequence of the general properties of the supplementary
condition in the total Veneziano amplitude. While we
were not able to prove that all odd-daughter residues
share this property, it is very likely true.

In this connection we note that our results for the
residues can be immediately applied to the residues of
the resonance poles in the physical s-channel partial-
wave amplitudes. The condition that these residues be
positive leads to constraints upon the trajectory param-
eters. This analysis will be presented elsewhere. Finally,
we noted. that the continued partial-wave amplitude
exhibits the correct threshold behavior in the energy
variable.

The third term in the Veneziano model gives rise to
an infinite number of fixed poles in the l plane. At first
sight it appears that these fixed poles occur for both
right- and wrong-signature nonsense values of the
angular momentum. We were able to prove, however,

that the residues of the right-signature fixed poles
vanish identically, as is the case with the Mandelstam
representation. The residues of the wrong-signature
fixed poles were calculated and the following con-

sequence noted. The residues are such that if one
proceeds to unitarize the continued partial-wave ampli-
tude by means of the N/D method, the resulting integral
equation for E will contain a nondegenerate kernel. In
the absence of moving branch points (which are absent
in the Veneziano model with strictly linear trajectories),
this leads to an essential singularity at l= —1.

It is a very interesting fact that the partial-wave
amplitudes coming from the Veneziano model have
many properties in common with those from the
Mandelstam representation. That is, there seems to be
a rough one-to-one correspondence between the three
terms in the Veneziano amplitude and the three
double-spectral-function terms. The properties of the
fixed poles noted above are one example.

In this regard we would like to comment that the
analysis presented in this paper for the first two terms
of the Veneziano model can be rather simply extended
to the case of complex, nonlinear trajectories n(t) and
n(u). Our preliminary analysis indicates the presence
of Regge branch points arising from the nonlinear terms.
By analogy to the Mandelstam representation case we
expect these branch cuts to correspond to the well-

known AFS cuts. "The third Veneziano term is more
difficult to handle when the trajectories are nonlinear,
but we expect Regge branch cuts to arise from this
term as well. "This analysis will be presented elsewhere.

Once the l-plane structure of the Veneziano model is
known, it is straightforward to deduce the singularity
structure in the Khuri plane. We showed that the first
two Veneziano terms lead to an infinite number of
moving poles, spa, ced by integers in the Khuri plane.
The residues of these poles were calcula, ted and their
properties discussed. Finally, we demonstrated that the
third Veneziano term leads to an entire function in the
Khuri plane.

We are hopeful that the singularity structure of the
Veneziano model in the angular momentum and Khuri
planes presented here will be of use in the major
problem of imposing unitarity upon the Veneziano
amplitude. Another question of interest, that can be
attacked with the methods employed here, is the
asymptotic behavior of the partial-wave amplitude as
s tends to infinity in all complex directions. While the
analysis is straightforward for Res —&+ ~, it appears to
be more complicated for Res ~—~.

Note added in manuscript After this wo. rk was com-

pleted, we learned of recent work of Alessandrini and

"D.Amati, S. Fubini, and A. Stanghellini, Phys. Letters 1, 29
(1962) (referred to here as AFS)."S.Mandelstam, Nuovo Cimento 30, 1113 (1963); 30, 1127
(1963);30, 1148 (1963};V. N. Gribov, I. Ya. Pomeranchuk, and
K. A. Ter-Martirosyan, Phys. Rev. 139, 8184 (1965); J. C.
Polkinghorne, J. Math. Phys. 6, 1960 (1965).



SINGULARITIES IN THE UENEZIANO MODEL 236j

—~P P (—1)-r(n+P)/n!
n=o

Amati, 's who approach the problem in a manner quite to prove that Ss(p) =0. This follows from the steps
similar to ours. The present paper contains a con-
siderable extension and a more rigorous treatment of 00

the subject matter. We also learned of work of Fivel So(p) = 2 (—1)"r(n+p+1)/n
and Mitter, " who have considered similar problems,
although their approach is quite different. The ex-
pressions for Regge residues as calculated by Fivel and
Mitter agree with ours.
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S „(P)=-;P S„(P)-S„(P+2),
APPENDIX

In this Appendix we prove that the residues of the
fixed poles at right-signature nonsense values of the
angular momentum vanish identically. From (26), we S,(P) P ( 1)-r(n+P)( ~rP)s-+i
observe that these residues are proportional to n=O

(A2)

P (—1)"r(n+P)P +it-(n+ —P)/2bq j/n!,
n=o

(A1)

X(n'+ pn, +-',p')/n!

=-,'P S.(P)+ P (—1)-r(n+P+ 1)
n=l

where P=n(s)+)+1 and m=0, 1, 2, . . . . Since the
Legendre polynomials in (A1) consist of odd powers of
their argument, it is sufficient to prove that

g(n+rP)2m+I/(n 1) ~

= lO'S-(P) 2(——1)"r(n+P+2)
n=0

S„(P)=P ( 1)~r(n+P)(nyrP)s"+i/n! =0
n=O

=-:P'S-(P)—S-(P+2).
)((n+1P+1)2m+i/n f

for m=0, 1, 2, . . ..
To do this, we first make use of the identity

Q ( 1)" (rn—+P+k)/ !n=r(P+k)/2s+"
n=0

20 V. Alessandrini and D. Amati, Phys. Letters 29B, 193 (1969).
"D. I. Five] and P. K. Mitter, P hys. Rev. 183, 1240 (1969)

Since, by (A2), the vanishing of S (P) implies the
vanishing of S ~i(P), and since Ss(P) vanishes, the
proof is completed by induction. We conclude from
(A1) that the residues of the right-signature fixed poles
arising from the third term in the Veneziano amplitude
vanish identically, and that only the wrong-signature
fixed poles persist.


