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The movement of these zeros (as well as the poles) is
illustrated in Fig. 12, where

gz 4 (71+72)

One finds that the relation (3.8a) is kept satisfied for
g'&g&, where a; is the imaginary part of 3f,'. This
shows that the corresponding point in Fig. 3 leaves the
point A and goes up along the circle, which, of course,
gets smaller during this movement. Also looking at Fig.
5, one sees that a very remarkable double-peaked struc-
ture is likely to be obtained in this model. The part of
the circle on the other side in Fig. 3 corresponds to the

zeros of 52~. The rest of the portion of the curve has no
correspondence to this simple model.

For g'&g1', the poles are not along the vertical line.
One easily finds that this case provides a simple example
of the complex residues. They are, however, not always
of the same nature as the complex residues discussed by
Goldhaber who analyzed the structure with three peaks
observed in the E+z system. '0 The phases of his residues
include, not only the phases of the residues of the
scattering amplitudes, but also the contribution from
the production matrix element.

"G. Goldhaber, Phys. Rev. Letters 19, 976 (1967).
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Assuming s, picture of the strong interactions in which the Hamiltonian is the sum of an SU(3)QxSU(3)-
symmetric piece Ho plus a small symmetry-breaking term cPI, we show how to calculate relations among
the cprrections of prder e to the symmetry limit. Our techniques are purely group-theoretic and involve no
extranepus dynamical assumptions, so that our results provide direct experimental tests for various sym-
metry-breaking schemes. For example, we show that if eH& belongs to the (3, 3)Qx(3, 3) representation of
SU(3)QxSU(3), then there is one sum rule satisfied by the corrections to the generalized Goldberger Treiman
relations for the three decays n ~ p+e+ v, ~ ~ N+e+~, and A ~E+e+ I . We also show that the so-called
g terms, which are closely related to &HI, can be obtained from on-the-mass-shell scattering amplitudes
(albeit at an unphysical energy point) if terms of order e' can be neglected in comparison to terms of order f.
The question pf whether or not lowest-order calculations of symmetry breaking are meaningful is discussed
in some detail.

I. INTRODUCTION

NUMBER of authors' ' have pointed out that
the most logical explanation of the successes of

the partially conserved axial-vector current (PCAC)
hypothesis and current algebra is that the strong inter-
actions possess an approximate SU(3)SSU(3) sym-
metry. Two major features of such a symmetry, if it
were exact, would be the existence of SU(3) multiplets
of particles degenerate in mass and eight massless
pseudoscalar mesons. It is the appearance of this octet
of massless mesons which allows for the conservation
of the axial-vector currents without the need for
SU(3)S U(3) multiplets of particles. In the real,

*Research supported in part by the National Science
Foundation.

'The original suggestion that PCAC is related to a slightly
broken chiral symmetry is due to Nambu and his collaborators
(see Y. Nambu and D. Lurie, Phys. Rev. 125, 1429 (1962) and
earlier papers cited therein]. The first paper relating the modern
work on current algebra to chiral symmetry seems to be S.
Weinberg, Phys. Rev. Letters 16, 163 (1966). An extensive list
of later references on SU(3)QxSU(3) is contained in Weinberg's
report in Proceedings of the Fourteenth International Conference on
High Energy Physics, Vienna, 196$ (CERN, Geneva, 1968),
p. 253.

2 R. Dashen, Phys. Rev. 183, 1245 (1969); referred tp as Paper I.
3 R. Dashen and M. Weinstein, Phys. Rev. 183, 1261 (1969);

referred to as Paper II.

broken-symmetry situation it is, in fact, the case that
we appear to have approximate SU(3) multiplets of
particles and, also, eight low-mass mesons 7r, E, and g
which satisfy an approximate PCAC condition.

The assumption that in the symmetry limit these
mesons correspond to the aforementioned octet of
Goldstone bosons, is what guarantees that the approxi-
mate PCAC condition will hold.

In a recent paper (hereafter called I) by one of us,
the basic ideas behind SU(3)SU(3) symmetry and
its breaking were discussed in some detail. The picture
of the strong interactions outlined there is one in which

(i) the strong-interaction Hamiltonian can be de-
composed into an SU(3)SU(3)-symmetric part H&,
plus a symmetry-breaking term eH&,

(ii) e is assumed small enough so that predictions of
the symmetric theory fairly well approximate the real
world;

(iii) in the limit e —+ 0, the vacuum is taken to be
SU(3)-symmetrical, 4 but not SU(3) IglSU(3)-symmet-

4 This means, in particular, that there is no strange scalar "I~:
meson" which goes to zero mass when c —+ 0. There could still
be an octet of scalar mesons which plays a special dynamical role
in symmetry breaking.
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rical. Thus one is led to predict SU(3) multiplets of
particles and an octet of massless pseudoscalar mesons.

We explicitly showed in a second paper (hereafter
called II) how these assumptions yield all of the soft-
meson theorems usually derived from the combined
assumptions of PCAC and current algebra, or by means
of effective Lagrangians [which give, in effect, a
particular model of SU(3)SU(3) symmetry]. Strictly
speaking, these soft-meson theorems, insofar as they
pertain to mass-shell scattering amplitudes, are exact
only for e= 0. In the actual world they become approxi-
mate statements which are to be understood in essen-
tially the same way as the predictions given by SU(3).
Clearly, it is desirable to be able to systematically
discuss corrections to the symmetric limit. This is the
main objective of the present paper.

In order to make any progress towards our goal of
developing a systematic way of discussing corrections
to SU(3)SU(3) symmetry, we have to make one
further hypothesis which is logically independent of
(i)-(iii):

(iv) For the purpose of computing the major devi-
ations from the predictions of the symmetric theory,
it is sufficient to work to lowest order in eH~.

While it may appear at first glance that (iv) is a
logical consequence of (ii), this is not necessarily true.
In fact, in Paper I it was argued that hypothesis (iv)
is very unlikely to hold, because if it is valid, there are
some rather severe difFiculties encountered in trying
to understand the electromagnetic masses of mesons'
and theoretical difficulties with the concept of octet
enhancement.

Why, then, are we discussing predictions based upon
assumption (iv)? One reason is tha, t one can think of
models, as we shall see later, in which relations derived
upon the basis of hypothesis (iv) might be expected to
hold quite well for processes involving only strong
interactions, whereas similarly derived relations for
processes involving weak or electromagnetic inter-
actions might not be satisfied at all. While this possi-
bility may have nothing to do with the actual situation,
it does point up the fact that there is a dearth of
verifiable first-order predictions which orie might hope
would shed some light on this question. Thus, it is our
purpose in this paper to derive several nontrivial
relations among observable quantities which should be

' The success of the Gell-Mann —Okubo mass formula makes it
look as though we are seeing first-order SU(3) breaking. How-
ever, this formula merely states that the effective breaking trans-
forms like an octet. There are a number of models (tadpole model,
various bootstrap schemes, vector mixing, etc.) which have the
property that second and higher orders may be important but
end up looking like lowest order in the sense that the net breaking
displays an octet pattern. For more details and references see
Ref. 2.' In Paper I it is shown that neglecting terms of order eo., one
has m +'—m 0'= m~+' —m~0' which is in violent disagreement with
experiment. One difhculty in interpreting this disaster is that the
analogous Coleman-Glashow sum rule for electromagnetic mass
differences of baryons works very well.

accurate to order e(i.e., neglecting order e'). We adopt
the point of view that if these relations turn out to be
satisfied, then we may assume that calculating to 6rst
order in symmetry breaking is, at least sometimes,
meaningful. In this case we must try to understand the
difficulties raised in Paper I. If, on the other hand, the
order-e relations are not satisfied, then we must look
for more sophisticated, possibly nonperturbative, ways
of computing corrections to the SU(3)SU(3)-sym-
metric theory.

So much, then, for questions of motivation. I.et us
now discuss some general features of our approach.
First, let us note that in order to make predictions
about symmetry breaking, it is, in general, necessary
to make some assumption about the transformation
properties of the symmetry-breaking part of the
Hamiltonian. For example, in SU(3) one usually as-
sumes that the symmetry-breaking term belongs to an
octet. One might wonder at this point how we are going
to disentangle the general question of the validity of
lowest-order calculations from the problem of deter-
mining the structure of eH~. A particular answer is
that we know of ai least one relation which holds to order e

and which is independent of any specific assnniption on
the properties of &Hi. This relation is a theorem on the
form factors in K&3 decay and has been discussed in a
recent letter. ~ Furthermore, if by assuming specific
simple transformation properties for eH~ one can obtain
several verifiable sum rules which are mutually inde-
pendent, and all satisfied to 10 or 20%, then one would
believe that both the expansion in powers of e and the
specific choice for eH~ are correct.

When presenting various results we have, for reasons
of clarity of presentation, adopted the suggestion of
Gell-Mann, Oakes, and Renner' that eH~ is a particular
component of the (3,3)6 (3,3) representation of
SU(3)SU(3). While this is by far the simplest and
most elegant choice for eH&, it is by no means necessary
for us to restrict attention to this case; our techniques
are quite general and can easily be extended to other
schemes.

One of our results involves the Goldberger-Treiman
relation and its extension to strangeness-changing
axial-vector currents. More explicitly, for the decays
Z —+N+c+v, A —+N+e+v, and N —+N+e+v there
are three generalized Goldberger- Treiman relations
involving matrix elements of the axial-vector current,
the couplings G~~~, Gl~~~, and G ~~, and the decay
constants fir and f . In a world in which SU(3)C3SU(3)
were an exact symmetry of the type just described,
these generalized Goldberger-Treiman relations would
be satisfied identically. Since, in the real world, they
are not exact, we can talk about the three deviations
from symmetry defined by expressions of the form

7 R. Dashen and M. Weinstein, Phys. Rev. Letters 22, 1337
(1969).

M. Gell-Mann, R. Oakes, and B. Renner, Phys. Rev. 175,
2195 (1969).
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(2f m~g~ G—~~) (analogous combinations of the
relevant constants are used for the other two cases).
We show that in the Gell-Mann —Oakes —Renner theory
there is one sum rule which relates the three deviations
and which holds up to terms of order e'. One can think.
of this result in direct analogy to the Gell-Mann —Okubo
mass formula which provides one sum rule among the
three mass splittings in the baryon octet.

Another one of our results involves the. fact that in
the Gell-Mann —Oakes —Renner theory (or any other
theory giving a specific model for eH|) one can make
de6nite predictions about the so-called "~ term" which
is given effectively by the commutator [Q '[Qp', e'er j7,
where Q' stands for an axial-vector charge. One would,
of course, like to measure this object and thus obtain a
test of this theory. So far, all attempts' to do this have
been based on one sort or another of off-the-mass-shell
extrapolations of various scattering amplitudes. Our
contribution to this question is to show that if one is
willing to neglect terms of order e2, then the Z term can
be extracted from the measurable on-mass-shell meson-
baryon scattering amplitudes extrapolated to an un-

physical point in energy. Although this extrapolation
in energy is clearly dificult and requires a careful use
of dispersion relations, it is not subject to the host of
ambiguities inherent in any off-mass-shell extrapolation
procedure.

The techniques used throughout this paper are based
on those developed in detail in Paper II. We have,
however, attempted to make this paper relatively self-
contained and so, in addition to reviewing some of the
methods of II, we also summarize a number of rather
elementary, but important, points about SU(3) SSU(3)
symmetry and its breaking. All proofs which require
somewhat more knowledge of the notation and for-
malism developed in Paper II and which are not vital
to the discussion have been included in the Appendix.

We might also mention at this point that we have

by no means exhausted the possibilities for calculating
interesting corrections to SU(3) 8SU(3). On the con-

trary, the methods developed here and in Paper II
should be capable of producing a large number of
additional relations among the various deviations from
the predictions given by assuming 5U(3) 5U(3)
symmetry.

Finally, a word of warning: In the above discussion,
and through most of this work, we have assumed that
the fundamental interaction which breaks
SU(3)SU(3) is a local operator linking hadrons
to hadrons. There is no reason why this need be the
case. It could be that the basic interaction arises from
the coupling of hadrons into some nonhadron. If this
is in fact the case, the effective symmetry-breaking
effect for processes involving only hadrons is already
of second order. That is, if the basic hadron-nonhadron

9 see, e.g., F. Von HippIe and Jae Koran Kirn, Phys. Rev.
Letters 22, 740 (1969);C. H. Chan and F. T. Meiere, ibid. 22, 737
(1969).

coupling is characterized by a coupling constant g,
then e determined in hadronic processes is essentially
g'. A number of the results discussed in this paper will
not hold if symmetry breaking is due to an interaction
of this type, and we shall return to this point at a later
time.

The general plan of this paper is as follows. Section
II is basically a review of the essential ideas involved in
SU(3)SSU(3) symmetry and its breaking. Section III
is devoted to an exposition on general group-theoretic
properties which could be assumed for eB~, with special
emphasis placed upon the Gell-Mann —Oak.es—Renner
model. Then Sec. IV gets down to the business of
stating and deriving the sum rule for the deviations
from the generalized Goldberger- Treiman relations;
our result relating the Z term to on-mass-shell scattering
amplitudes is stated and discussed in Sec. V. Finally,
Sec. VI is devoted to a discussion of this work, its
possible extension, and further theoretical questions
which have yet to be resolved.

II. REVIEW OF SYMMETRIC WORLD AND
GENERAL PROPERTIES OF

SYMMETRY BREAKING

As we pointed out in the Introduction, it is worth-
while for the sake of completeness to briefly review the
properties one would expect the world to have in the
limit that SU(3) 8SU(3) becomes an exact symmetry.

In such a world, the vector and axial-vector charges
denoted by

Q (t)—= d'x5: "(x,t), Q.'(t)—= d'xF "(x,t)

(n=i, 2, , 8) (2.i)

are time-independent, and under commutation generate
the I.ie algebra of SU(3)ISSU(3). This is, of course,
guaranteed by the assumptions

a„s.~(x) =0, a„v."(x)=0, (2.2a)

+S.T. ,

L5'-'(~) Pt '"(y)]*,=.,= i~'(x —y)f-s,&,'"(*)
+S.T. , (2.2b)

L&-"( )P' '"b)j*,=..= ~'(x—y)f- »,"(~)
+S.T. ,

where S.T. stands for possible Schwinger terms.
As discussed in Paper I, it is perfectly consistent to

assume that the octet of vector charges generates an

SU(3) symmetry realized in the usual way, by having
multiplets of particles which are degenerate in mass
and an invariant vacuum state. However, if we wish

the single-meson state to be coupled to the vacuum by
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If„,=Hp+ «Pt, (2.4)

where Hp is SU(3) SSU(3)-invariant and ««1.
The first change which obviously must occur is that

the masses squared of the pseudoscalar mesons are no
longer zero, but rather m ', m~', and m„,

' all become
of order «."What this means (and we wish to empha-
size this point) is that if « is small, it is the ratio of
meson masses to typical strong interaction masses,
such as nucleon masses, which is expected to be small;
this does not imply that meson mass diflerences must
be small in comparison to the mean mass of the multi-
plet. Far from being a difFiculty with this point of
view, one derives a positive advantage by considering
the basic symmetry to be SU(3)SU(3), since there
is no way within the framework of SU(3) alone to
explain the fact that the mass differences are comparable
to the mean mass. In other words, the fact that in the
real world (mrs' —m ')/burrs 1 is not to be taken as
evidence that SU(3)SU(3)-symmetry breaking is
large.

A second change which is of some importance is that
in Eq. (2.3) the constants f no longer need to be equal.
Rather, one now has the condition that

(M. (q) I
sp'"(0) I0)=—( sq"/2f-)~ p, (—2 5)

That it is m ' rather than w which is of order e follows from
the fact that in the limit of exact symmetry m ' =0. Thus in
order to get the change in energy of such a zero-mass state, we
note that Ep+bE= (p ~

Ho+«H
~
p)—= (p'+no '—)"'—= (p') "+no '/

(p') '"+;and since E0——(p') '" and BE is of order e, it follows
that m 2 is of order e. Note that p cannot be taken to be zero
because the eigenstates of Ho are massless mesons.

the axial-vector current, so that we have

(~-(q) I
&p""(0)

I
o)= ( fq—"/2f-)~-p (2 3)

where (2f ) '+0, then the remainder of the symmetry
is realized not by the creation of still larger super-
multiplets of particles which are degenerate in mass,
but rather by the existence of an octet of massless
pseudoscalar mesons (i.e., Goldstone bosons). In this
case the vacuum state is not invariant under the larger
group, although it remains invariant with respect to
the SU(3) group generated by the vector charges. LThe
fact that the masses of the Inesons must be zero follows
trivially by taking the divergence of both sides of Eq.
(2.3) and making use of Eq. (2.2).] Furthermore, the
SU(3) symmetry implies that in this theory the con-
stants f are all equal to a single constant which we
shall call fp.

We have already shown in Paper II that as a direct
consequence of these assumptions, one has exact gen-
eralized Goldberger- Treiman relations and that all of
the familiar soft-meson theorems hold exactly for on-
mass-shell scattering amplitudes.

It is now natural to inquire as to what happens in
such a world if we introduce a "small" symmetry-
breaking term eB~ into the total Harniltonian, that is,
if we let

where

f /fs= 1+0(«) when n~p.

III. GROUP-THEORETIC STATEMENTS
ABOUT sKy

As we mentioned in the Introduction, the main
purpose of this paper is to show how one can derive
veri fiable sum rules from any specific model for
SU(3)SU(3)-symmetry breaking. Before we do so,
however, there are several important points we must
discuss. These are facts which follow from any assump-
tion of transf ormation properties for eH~ and which
have nothing to do with the assumption that one is
calculating effects to lowest order in symmetry breaking.
This section is devoted to a statement of these general
results and a detailed discussion of the case in which
«Ht belongs to the (3,3)6 (3,3) representation of
SU(3)CSSU(3). Since the points covered here are im-
portant to an understanding of the rest of this paper,
we include them even though they have been com-
pletely treated elsewhere. "

If, as in Sec. II, we let Q (t) and Q '(t) denote the
vector and axial-vector charges, respectively, then it is
well known that the chiral combinations

Q.'()=—lLQ-(t)~Q. '(t)j (3.1)
satisfy the commutation relations of two commuting
SU(3) subalgebras, namely,

LQ-+(t),Q«-(t) j
LQ-'(t) Qs'(t)3—= f-«,Q, '(t) . (3.2)

Moreover, if we denote the parity operator for the
strong interactions by (P, then

(PQ+(P
—1=

Q
9 (3.3)

"M. Gell-Mann, Physics 1, 63 (1964).

There is one further point worth emphasizing at this
stage of our discussion, and that is that the equation

(~-(q) I
«).5p'"(0)

I
o)= (—~-'/V-)~-p (2 6)

is a kinematic identity when m is nonzero, and places
no constraints upon the SU(3) transformation proper-
ties of the divergence, c)„Fs'"(0) In .particular, it does
not require that the divergence transform as a member
of an SU(3) octet. Moreover, Eq. (2.6) makes it clear
that if one wishes to work to lowest order in e, the
correct version of Eq. (2.6) is

(~-(q) I
c).&p'"(0)

I
o)=—(~.'/2fp)8 «+0(«'). (2.7)

The preceding statements summarize those aspects
of symmetry breaking which we will use extensively
throughout this paper. Note that these are all model-
independent statements, since in the next section we
will discuss those aspects of symmetry breaking which
are not independent of the model one chooses for &II~.
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Adopting these conventions, and assuming that the
symmetry-breaking term eH& is given by

oIIi(t) —= dsx Xi(x,t), (3.4)

oII i =—s'II'+ o"II", (3.6)

where o'II' breaks SU(3) but not SU(2) SU(2), and
H is the piece of the Hamiltonian which breaks

SU(2) SU(2) and gives the pions a mass. Physically
this would be an interesting procedure to follow if one
wished to argue that SU(2) SU(2) was a better sym-
metry than either SU(3) or SU(3)SSU(3), and that
the breaking of SU(2) SU(2) has a different physical
origin than the breaking of SU(3) or SU(3)SU(3).
That is, one argues that e"((e' and the structures of
H' and H" are unrelated. If, however, one would like
to argue that the breaking of SU(3) is related to the
mechanism which breaks SU(2)SU(2), then this is
not as interesting a thing to do. For example, as we
shall see later, if one assumes that eB~ belongs to the
(3,3) (3,3) representation of SU(3)SSU(3), then
there is a definite relationship between the amount of
SU(3) breaking and SU(2)SU(2) breaking which is
present in any specific model. In this case, it is more
interesting to classify eB& as to its transformation
properties under the usual SU(3) subgroup of
SU(3)SU(3). Since it is the second case which leads
us to the largest number of verifiable sum rules (for
reasons which will become clear) we shall fix our atten-
tion upon this classification scheme.

"In fact, our actual results will only involve the fact that
B„F t'(q) —=Jd'x e+'& ~B„P„&(x) belongs to this representation
when q=0. This result is true under more general assumptions,
but we shall not pursue this point further.

one then has the following general result, in the case
that oui(x, t) contains no derivatives:

B„r &(x,t)=ioLQ (t),Xi(x,t)),
a„e.»(x, t) =i.LQ.'(t)Pe, (x,t)).

(3.5)

The importance of this statement is that once one
assumes that e3C~ belongs to a particular representation
of SU(3)SU(3), then Eqs. (3.5) tells us that the
divergences of the currents belong to the same repre-
sentation. Much of what we shall do in the sections
devoted to the derivation of sum rules which are correct
to lowest order in e will make use of this fact."

Equations (3.5) immediately suggest many inter-
esting possible approaches which one could follow in
pursuing the question of calculating corrections to
SU(3)SU(3) symmetry. All of these can be classified

by the group-theoretical way one chooses to describe
the symmetry-breaking term eH~. For example, one
could choose to decompose ~H~ with respect to its
transformation properties with respect to the chiral
SU(2)SU(2) subgroup of SU(3). That is, one could
assume that

I.et us now go on to see how the general relation
given in Eq. (3.4) works in the particular case that
eH& belongs to a Gell-Mann —Oakes —Renner type of
model. Adopting the notation introduced by these
authors we note that if we decompose this representation
with respect to the usual SU(3) subgroup generated
by the vector charges, we get an even- and odd-parity
singlet and octet. We shall denote a complete set of even-
parity operators as Uo, U; (i=1, , 8) and corre-
sponding odd-parity operators as Uo, U, (i =1, , 8).
These operators then satisfy the commutation relations

I Q&~Up) if&pvU7 for a~ P~ |'=1i
LQ- vp)= if-p—Fv,

LQ ', Up)=——id.p, V,—z(Q-,')8 V, ,

LQ ', Vpj—= id p~U—~ i(Qss)—b pUo,

Le., U.)-=LQ.,V.)-=0,
I Q-' Uo)=——i(v'l) V-,
LQ ', Vo)—=—z(g-;)U .

(3.7)

Moreover, remembering that eH~ must conserve both
isospin and hypercharge, we see that the most general
form for oui(x, t) is

oXi(x t):sLCoUo(x t)+ CsUs(x t)]. (3.8)

Equations (3.5) therefore imply that the divergences
of the vector and axial-vector currents can be written as

a„V.~(x,t) —=.Cs Q f.s,U„(x,t),
p=l

a„V.»(x,t) = .t (g ;)S.—,C,U,+-C,(g ', ) I . - (3.9)

+Z Csds. ,V,) .

oC-=~-'I2f-II VII (3.12)

A similar analysis can be performed for the Z term,
which is formally equal to

Zp (x,t) —=—oLQ '(t),LQp'(t), X&(x,t))]. (3.13)

In terms of the Gell-Mann —Oakes —Renner model for
&3C~, this gives

Zp~(x, t) =o(LsCo+5ap+ (gs)Csds~p)Uo
+(Co(V s)d~p~+Csdsp, d 7+ s6ps8 ~)U7), (3.14)

If one notes that the matrix (ds) p is diagonal, it then
follows that we can write the divergence of the axial-
vector current as

B„F»(x,t)—= oLC U (x,t)+(Qs)5 sCsVo(x, t)). (3.10)

Moreover, Eq. (2.6) implies that

&~- I ~.+p»(0)
I o)—= (~-'/2f-)&-p
=—«-(~-

I
Us(0) I0&=—oC-~-pll Vll (3»)

(to lowest order in o), where
II Ull is a reduced matrix

element independent of n and P. Thus we have
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where we have used the summation convention. As
was shown in a previous paper by one of the authors,
one can, if one works to lowest order in e, relate the
2 term to the meson mass matrix, the specific relation
being"

(m')-p= 4fo'(o
I
~p-(0) I

o&. (3.15)

Co = —(1/v2)Cs . (3.17)

Moreover, the deviation from Eq. (3.17) being satisfied
gives, in any Gell-Mann —Oakes —Renner model, a
specific relation between the type of SU(3) breaking
and the amount of SU(2) SU(2) violation which
occurs. Certainly, since there is no reason why such a
relationship must occur in the real world, the Gell-
Mann —Oakes —Renner model, while convenient to work
with, is far from general.

We shall discuss at a later point how the fact that
SU(3)SU(3) and SU(3) can be broken without
breaking SU(2)SU(2) affects the interpretation of
some of our sum rules. The model defined by Eq. (3.17)
will be very useful in our discussion of this point.

IV. SUM RULES FROM GENERALIZED
GOLDBERGER-TREIMAN RELATIONS

In this section we discuss in some detail the deri-
vation of identities relating the meson-baryon coupling
constants to the constants which describe the coupling
of the axial-vector current to the same baryon states.
First we present the derivation of the relevant identity
in the case EIi that belongs to the (3,3)g (3,3) repre-
sentation of SU(3)IRSU(3); we then discuss how one

might experimentally check this result.
We shall explicitly carry out the derivation of this

identity in order to introduce the necessary notation.
The theorem follows from the basic equation

d'~ s+" '(73'(P')
I ~.&-'"(*)

I 73(p) &

= q, d' "'*(fl'(P')
I
&-'"(*)

I fl(p)&, (4 1)

where IB'(p')& and IB(p)& denote arbitrary baryon

"It is worth noting that the Z term is not symmetric in o. and P.
Rather, it is simple to show using the Jacobi identity that in
general Zp (x,t) —Z p(x,t)= t'ef s~PQ~(t), Hq(x, t)7. H—owever, the
vacuum-expectation value of the antisymmetric part vanishes,
since Q (t) annihilates the vacuum.

Using this result and the specific formula for Zp given
in Eq. (3.14), we get

(ms) p:+—4fose[ Cob—p+(gs) Csdspj(0I UoIO) ~ (3 16)

The important thing to note at this point is that besides
giving us a relationship between the Z term and the
mass matrix, Eq. (3.16) makes it clear that we can
conserve SU(2)IISU(2) symmetry (leaving the pions
massless) only if there is a definite relation between Co
and C8, namely,

states of momentum p and p'= p+q. We can now write
the matrix element for the axial-vector current between
baryons as

(fl'(P')
I
~-'"(0)

I fl(p)) =—N~ (P') {-:[~"msgr~-(q')
+q"vs&~ s-(q')l)»(P) (4 2)

and taking the divergence of Eq. (4.2) gives

(fl'(P')
I
~P-'"(0)

I fl(p) &

—=t» (P')(vss~n ~-(q'))»(P) (4 3)
where

r)B'B (q )= (mB'+mB)gB'B (q )+q bB'B (q ) ~ (4 4)

If we write Bntta(q') as a meson pole term plus a
remainder,

r)B'Ba(q )—=Git'itama /fa(ma q ) 4'tta(q ) y (4 5)

where 6& z is the relevant meson-baryon coupling
constant [in Eq. (4.5) bit za is defined to be cjtt ita minus
the meson pole term (it is important to remember that
it is bit. ita(q') which is of order e and not Bit tt (q'),
which is of order Gtt tt f ')j and one now observes
that the form factor hit it (q') also has a one-meson
pole term in it, we can rewrite Eq. (4.4) and Eq. (4.5)
at q'=0 as

GB'B /f. = (mti +mit)gB tt +bit tt (0) . (4.6)

At this point we refer to the observation made in Sec.
III that if Hi belongs to the (3,3)(l}(3,3) represen-
tation of SU(3)SU(3), then the divergence of the
axial-vector current transforms as an SU(3) singlet
plus an SU(3) octet under the algebra of vector charges
[Eqs. (3.7)—(3.9)j. This means that matrix elements
of the divergence of the axial-vector current between
meson states are, to 6rst order in e, given by two
independent reduced matrix elements, since once the
one meson-pole term is removed, the divergence of the
axial-vector current is explicitly of order e. That is, the
term bit tt (0) in Eq. (4.6) can be replaced by the general
expression

GB'Ba/fa (mB'+mB)gB'Ba

+b[(1 tt) f~ tt +Zadtt —tt 7(m '/2f ), (4.7)

where fit tt and did. it are the usual "f" and "d"
symbols for SU(3).

Equation (4.7) is the basic result which we wished
to obtain in this section. The rest of the section is
devoted to a discussion of how one might test this
result experimentally and what special points must be
considered in its application.

For the purposes of our discussion let us limit our
considerations to experimental information which one
might expect to have available in the near future. This
limits us to g~ ~„, g~~~, and g~~~, all of which one

might hope to determine correctly to better than
twenty per cent (from the baryon leptonic decays)
within the next few years. One might also hope that
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better data on kaon-nucleon scattering will allow us to
determine (at least to 20%) the meson-baryon coupling
constants G&z&, and G&z& (of course, G» is already
known to this accuracy).

Knowing these three pieces of information allows us
to check the sum rule obtained by eliminating b and a
from the equations

(G„„. bm '
—(m.+m, )g.„. =

2f.
' (4.8)

G~„& l b(2a —1 mr«'—(m, +m„)g,.~ I— (4.9)
2fK

(G~vr«g(2g —3)nor«'—(~~+~,)g~,x = (4.10)
(46)2f

At this juncture, there are two important points to
be made. The first is that if SU(2) SU(2) remains an
exact symmetry, then the three pieces of experimental
information which we have listed do not give a sum
rule. This is clear from an inspection of Eq. (4.8), since
in this case, m '= 0 and the Goldberger-Treiman
relation is exact; thus, we have only two nontrivial
equations by which to determine the unknowns a and
b. Such a problem does not arise if we think that the
real world conforms to the type we have been discussing,
namely, one in which H& belongs to a (3,3)(3, 3)
representation of SU(3)SU(3), since the Goldberger-
Treiman relation is known to be true only to 15%.
However, as we have already said, one could imagine
that the breaking of SU(3)SU(3) and SU(3) is
entirely unrelated to the breaking of SU(2)@SU(2);
that is, the «Hi is of the form given by Eqs. (3.5). In
such a case the deviations from the generalized Gold-
berger- Treiman relations for the strangeness-non-
changing currents are of order e" and clearly one cannot
hope to treat the results for the strangeness-changing
currents on the same footing. This means that if one
wants to derive verifiable sum rules for such a world,
one should concentrate only on Goldberger-Treiman
relations obtained for interactions in which strangeness
is changed. This means that in order to get a sum rule
one would have to include decay which requires
knowledge of the hard-to-determine coupling constant
C~q-. . However, when neutrino-production experiments
are available so that one can determine axial-vector-
current matrix elements between stable and unstable
particles, then a whole new set of sum rules are possible.

A second point which is of interest is that these
generalized Goldberger-Treiman relations can be quite
badly violated for matrix elements of the current
between opposite-parity states such as a nucleon and
Vo*. Since the discussion of this point comes up most
naturally after discussion of the theorems that can be
proved for meson-baryon scattering, we shall defer it
to the end of Sec. V.

Before concluding this section, one remark worth
making is that this technique is obviously easily ex-
tended so as to enable one to make predictions about
any process involving one soft meson. For example, one
could use this to get some predictions pertaining to
photoproduction amplitudes. The next section is de-
voted to a discussion of things to be learned from
processes involving two soft mesons.

(B'(P'),~ (&)
I
&I B(p),~-(v))

—=ua (p')I Ap, (v,x)+(A+q)DD (v,x)5ua(p), (5.1)

where

v=-,'(p'+p). (q+k), x=—q /~. (5 2)

Using this, we define the "spin-averaged amplitude"
to be

(P'+m~~
an p(v, x) =—-' Tr

I (A p (v, x)
4 2mii.

p++ (&+a)Ds-(v, x)) I (5.3)
2m' )

Similarly, the Z term can be most generally written as

(B'(p') IZ p(0) IB(p))—=us (p')ui~(p)~ a(t), (5.4)

where t= (p' —p)'.

V. MESON-BARYON SCATTERING

This section is devoted to a discussion of an inter-
esting theorem that can be derived for meson-baryon
scattering amplitudes. The theorem provides a way of
determining the value of the Z term at zero momentum
transfer by means of extrapolating experimentally
determined scattering amplitudes to an unphysical
energy using fixed-t on-the-mass-shell dispersion rela-
tions. Since the structure of the 2 term is determined
by the group-theoretic properties assumed for eH&, this
prediction, like those for the generalized Goldberger-
Treiman relations, provides us with a fair number of
verifiable sum rules.

Since the actual derivation of this theorem requires
the use of some notation which is developed in Paper
II, we have included it in the Appendix. At this point
we will only state the simplest and most useful version
of the theorem; in order to do so, however, we must
first define what we mean by "spin-averaged
amplitudes. "

We turn our attention to processes of the form
B+M ~ B'+3fs, where B and B' denote two arbi-

trary members of the baryon octet with four-momenta

p and p', respectively, and M and III' denote two
arbitrary members of the pseudoscalar meson octet
with four-momenta q and k. We can then write the
amplitude for such a process in its most general form as
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We then define a "spin-averaged Z term" by the
equation

p'+miz ) p+ma). (z)=-'. T
I

—
I

&. (z) (55)
2nz, . i 2m' )

With these kinematic preliminaries out of the way, our
result can be stated as follows:

Theorem: The spin-averaged amplitude for the
process 8+M —+ 8'+M~ at the point z = 0 and @=0,
is given, neglecting terms of order e', by the formula

L1/(2f-) (2')]~-~(0,0)
= (pol ) p

—-,'zL p(0)+ (0)]+0( '), (5.6)

where the term (poles) s is given (also to order e') by

—(g~)'$(mzz +miz) (miz' m—zz')'/16mzimiz ]
fcdi3 zin+z(1 —c)fiz zi~]fcdzi zz p+z(1 —c)fzz zz p]xIP -+(&~~), (5 &)

—', (nziz'+mgP) —mzz '

where g~=1.2 is the usual axial-vector coupling con-
stant and (1—c)/c gives the f to d ratio for the process
in question which we can determine by determining
the best value of c such that

shall therefore conclude this section with a discussion
of this point.

I.et us recall the form of the Goldberger-Treiman
relation for pion-nucleon scattering that reads

Gzz z3„-Gzzn—Pcdzz n +z(1 c)f~—zz.]. f (2mN) (gA) ivÃ+~ AN, (5.10)

Clearly, La.„p(0)+as (0)] can be readily evaluated
once one chooses a specific model for eX». If, for example
one chooses &BC» to belong to a Gell-Mann —Qakes-
Renner model, 0-p can be easily determined by applying
Eq. (3.13). Before concluding this section, there is an
important point to be made about difhculties which

might arise in the applications of the theorems just
stated.

As we pointed out in the Introduction and also in
the beginning of this section, the results that we derive
depend very strongly upon the use of an expansion to
lowest order in e. Clearly, if this is generally invalid,
then the theorems are untrue; however, it is possible
for the theorems to fail to apply even if, in general, an
expansion in powers of e is meaningful. The way this
can occur is if the point v= 0 and q k =0 lies close to a
resonance, since overly simple perturbation theory in
the neighborhood of such a point cannot be expected
to apply (due to the presence ot small energy denomi-
nators). More precisely, resonances can be expected
to be a problem whenever either of the following con-
ditions hold:

or

-', (mn, '+ mii') =mz (baryon-resonance) (5 g)

m '+no~'=m'(meson-resonance). (5.9)

For example, the I'o* can possibly make important
contributions to the ~' terms in processes like KE —+xZ

or KS —+ E . We show in the Appendix, that if the
generalized Goldberger-Treiman relations for Gg~y, +,

GIcn„-. , and G qY,* have fractional deviations (a term
which we shall define precisely) that are small in com-

parison to 1, then one can safely ignore the effects of
the I'o*.

It is interesting to note, however, that these fractional
deviations might be large even though e is small. We

where the coupling constants and the correction term
5 zz are defined in Sec. III. Most importantly, the
term 5 ~~ is defined to be

O'I ~.~-'"4) I &)=~n(P'h "N—x(p) &.~Nf
+pion pole (5.11)

and as such has the scale of a typical matrix element of
the divergence of the axial-vector current with its
pion-pole removed. Experimentally, 5 ~~ is known to
be on the order of 1 and 5 ~~G ~~ '=0.1.

Now let us consider similar Goldberger- Treiman
relations for such coupling constants as G~~~,+ or
G ~y,+ which, because the I o* is a scalar resonance,
read

GKNYO*= fE(mYO* mzz)gI7NY0*+~rcNYO*) (5 12)
and

G qY,+=f (mY,+—mq)g qY,++5.sY,~, (5.13)

where 817+&,+ and 6 z&,* are defined in analogy to Eq.
(5.11) as

(I"o*
I ~.~~'"

I &)=&Y.*(P')»(P)~~».*f~ '
+kaon pole,

(~.*l ~.~-"I»= —..*(p') .(p)~--.*f--
+pion pole.

(5.14)

0~ ~E-x&O~G

yy' 4G gy (5.15)

would be of order 1 as opposed to 6„~~=0.1. Clearly,

From Eq. (5.11) we see that there is no a pnorz reason
why biz&,+ and 8 z&,+ should not be of the same order
as b ~~, that is, of order 1. This has important con-
sequences since it is experimentally known that G~~y, +

and G qy, + are also of order 1, which means that the
fractional deviations defined by
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one reason for this could be that Gg~y, + and G ~y,+ are
suppressed in magnitude because of the fact that in
Eqs. (5.12) and (5.13) the factors gzNYoo and g, zYoo

are multiplied by baryon mass differences. Thus, small
values for Gg~y, + and G ~y,+ are consistent with values
of g of order 1, which is not the case for example in Eq.
(5.10).

Although no conclusive evidence exists that would
enable us to make a decision as to whether or not
Agcy, * and A„~y,+&&1, it is interesting to note that
taking the ratios of the expressions for GI7~y,+ and
G ~y,+ and assuming that the fractional deviations are
negligible and that gg~~,+=g ~y,+, as predicted by
S'U(3), we get

GKNYo* fK(mY o mN)

GIZYo fw(mYo mz)
(5.16)

The experimental situation seems to be consistent with
6's on the order of 0.2 0.3.'4

Regardless of whether or not the fractional deviations
for the Goldberger-Treiman relations in these specific
cases are small, the fact that they may not be small is
of real significance. We strongly suggest that those
readers who might be interested in actually using the
theorems quoted in this section read the discussion in
the Appendix, where we show precisely how the size
of A~~y, *, etc. , affects the applicability of these results.

then this continuation has the property that as we let
o go to zero (so that m ', mp', m7' and moo go to zero),
this amplitude goes to the scattering amplitude in the
symmetric theory. Furthermore, we showed that if we

go to the point

) =-', (q,+q4) (q,+q,) =0 and x=q2. qo=O,

"This fact was observed earlier by Gell-Mann, Oakes, and
Renner, Ref. 8.

VI. MESON-MESON SCATTEMNG AMPLITUDES

Since we feel it is highly unlikely that anyone will

measure general meson-meson scattering lengths in the
near future, we shall not discuss the theorems which
can be proven in this case in any great detail. Rather,
we merely note that in Paper II we show that if one
defines on an off-mass-shell continuation of the meson-
meson scattering amplitude by

(270) () (q)+qo+qo+qo)zV p&o(qy, qo qo qo)

= (qp —m.') (qoo —mp') (qoo —m, ') (qo2 —moo)

(c)„S ' (q)x (2f.) (2 ') (2f,) (2f„)(o Tl
m.'

B„rp'"(qo) B,m, .'o(qo) B.Vo"(qo))
(6 1)

mp' m„' moo

the amplitude goes to a constant (oA)) pvo which can
be evaluated from the formula

( A )- ~ =—(«ILQ ',
t Qv', LQ-', LQ "~ ]]]]IO&

+(oILQ ', LQ ',LQ-', LQv', ~~]]]]lo&
y(OILQ~o, LQpo, LQ.o, LQ,o,ae,]])]lo&), (6.2)

where &AC& stands for the Hamiltonian density at x=0,
t=0 and all commutators are equal-time commutators.

Clearly, this is a very general expression and can only
be evaluated if one picks a particular model for &AC~.

For example, if &BC~ is chosen to belong to a
(3,3)g (3,3) representation of SU(3)(3SU(3), then
Eq. (6.2) is easily evaluated using the formulas given in
Sec. III.

VII. DISCUSSION

Having now presented a detailed statement of some
of the results obtainable by the methods developed in
Paper II, we use this section to review what we have
discussed, raise what we feel to be important theoretical
questions, suggest possible avenues for meaningful
extension of this work, and emphasize what we think
to be the most interesting way in which to view these
results.

The first point is that to the best of our knowledge
these results, together with the results presented in our
letter on E&3 decays, ' are quite different from those
previously obtained. By this we mean that we have
obtained them by exploiting a single idea, that of ex-
panding in powers of a parameter e, and have not
invoked non-group-theoretical dynamical concepts such
as supposing that particular particles dominate various
dispersion relations. This seems to be a definite im-
provement in the state of the art, in that it greatly
reduces the number of unmotivated technical assump-
tions used in obtaining a particular result. Moreover,
the techniques which we have developed here and in
Paper II suggest many possible ways in which one can
hope to obtain additional interesting relations. The
single most important idea to keep in mind when
searching for such relations is that in a Goldstone-
boson type of symmetry, which is the kind we are
talking about in SU(3)(ISU(3), it is the deviations
from soft-meson theorems which are to be calculated.
Once one has fixed this point fimrly in one's mind,
many possibilities suggest themselves.

For example, consider a Gell-Mann —Oakes —Renner
model for SU(3)SU(3) and its breaking. It is then
easy to show, using only SU(3), that there are six
unknown parameters which specify the first-order
corrections to G~ ~~ and g~ ~~, that is, 12 parameters
in all. Two of these are related to the SU(3) singlet
part of the symmetry-breaking Hamiltonian, and the
other 10 to the octet piece. If we use only our knowledge
of the SU(3) structure of the theory, this does not
relate the 10 parameters coming from the octet part of
symmetry breaking in any way. However, if one uses
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the sum rules derived from generalized Goldberger-
Treiman relations treated in Sec. IV, one finds that
the first-order corrections to combinations of the form

GB'BM/f M (rrBi'+ rNB) gB'BM

are defined in terms of only two unknown parameters.
This clearly means that up to the specification of these
two parameters, the first-order corrections to g~ ~~
are given once those for G~ ~~ are specified. In other
words, one has a reduced number of parameters speci-
fying the corrections to SU(3) symmetry at the soft-
meson point. Clearly, one obtains a similar reduction
in the large number of unknown parameters needed to
specify the general first-order corrections to SU(3)
symmetry for meson-baryon scattering if one uses the
idea of an approximate SU(3)8SU(3) symmetry and
works at the soft-meson point.

Additional examples of interesting results that can
be obtained by these methods might be provided by
an investigation of photoproduction or electropro-
duction amplitudes at the soft-meson point, since first-
order SU(3)-symmetry breaking at this point should be
specifiable by a smaller number of independent param-
eters than is generally thought from arguments based
upon SU(3) alone.

There is one further avenue of possible future in-
vestigation which we feel is interesting enough to
mention. Thus, we conclude our discussion of sug-
gestions for future work by noting that there seems to
be room for extending the results we obtained for K~3
decay to other weak and electromagnetic processes. In
particular, there seems to be room for significantly
improving the treatments given to date of processes
like E~ 3x, q

—+ 3m., and E&4 decays.
We turn our attention to some more general questions

associated with the question of the relevance of calcu-
lations to order e. In particular, we list what we see as
the possible alternatives to be decided among by experi-
ment. These alternatives are threefold and can be
summarized as follows.

Case I:It could be that all of the results derivable by
these methods or at least a preponderant number of
them, work to order 10-20%. In that case, we are faced
with the difficulties of explaining the electromagnetic
masses of the pseudoscalar mesons as pointed out in
Paper I. Of course, if this turns out to be the only
anomaly, then one could have recourse to accident and
say that purely by chance a lowest-order calculation
fails to work for this special case. Another possibility
is that this mass differ ence is not purely electromagnetic
in origin.

Case II: There is nothing much to be said about
Case II, since by this we mean the case in which no
calculation of order e is reliable. Assuming that the
symmetrical predictions continue to be in fair agreement
with experiment, then one would conclude that the idea

of an approximate symmetry is correct, but that calcu-
lating to lowest order in symmetry breaking is not
useful. See Paper I for a discussion of this point.

Case III: This case could be thought of as a special
subcase of the first. Namely, it is one in which the
predictions involving purely strong-interaction proc-
esses work, but those involving weak or electromagnetic
processes fail. Since there is trouble with the electro-
magnetic mass differences of mesons, and since the
possibility exists that there might be difficulty with
the prediction for the ( parameter in K&s decay, this
might be the case in the real world. Such a situation
suggests an interesting possibility, that is, that the
weak and electromagnetic currents are not exactly
the currents of SU(3)SU (3), even in the symmetrical
limit. For example, J, could be given by

(7.1)

where the charge associated with E& is zero. In such a
theory there is no obvious way to make predictions
about processes involving the weak and/or electro-
magnetic interactions.

Finally, we discuss several theoretical points which
are related to the whole question of the structure of
the symmetric theory. The first point is that recently a
number of authors" have discussed anomalous terms
arising when one pulls derivatives through a time-
ordered product of current operators. Since our dis-
cussion of the symmetric theories involve such manipu-
lations, there is the possibility that there exists no
symmetrical world consistent with an SU(3)3SU(3)
symmetry of the type which we have discussed. More
pertinent, however, than the question of whether or
not formal Ward identities hold, is the question of
whether or not there exists a world in which all of the
usual soft-meson theorems hold in the form in which
they were derived in Paper II. Clearly, if no such
symmetrical world can exist, it is extremely difficult
to understand why one sees any traces of an approxi-
mate symmetry of the type which we have been
discussing, unless for some reason the anomalous terms
are always small.

It is an extreme but interesting possibility that
something like this does happen. In this case, one might
not need an explicit &II & to break the symmetry, since
the anomalous terms account for the fact that the
symmetrical predictions are only in approximate agree-
ment with the world.

A less extreme possibility is that symmetry breaking
is responsible for the introduction of anomalous terms.
For example, adding electromagnetism might give rise
to an anomalous commutator which would invalidate
the result of Paper I on meson electromagnetic mass

"S.Adler, Phys. Rev. 177, 2426 (1969); S. Adler and W. A.
Bardeen, ibid. (to be published); S. Adler and W. K. Tung, Phys.
Rev. Letters 22, 978 (1969); S. Adler and D. Boulware, Phys.
Rev. 184, 1740 (1969); R. Jackiw and G. Preparata, Phys. Rev.
Letters 22, 975 i1969l.



2340 R. DASHEN AN D M. WE I NSTEI N

differences. In this connection, it should be noted that
the anomalous terms found by Adler" do not effect
electromagnetic mass differences in order n but only
in order n'.

Obviously, the question of whether or not one must
consider any or all of these alternatives to the simplest
notion of an approximate SU(3)SU(3) symmetry
can only be resolved by the accumulation of experi-
mental data which would allow us to test a large number
of results of the type which we have discussed in the
preceding sections.
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APPENDIX

This appendix is devoted to outlining the proof of the
theorem on meson-baryon scattering amplitudes stated
in Sec. V. The notation and formulas used in this proof
are studied for the first time in Paper II of this series
and will be only briefly reviewed here.

Our starting point is the basic identity proven in
Paper II,

L1/(2f )(2fp)](B'+Mp(q) I
5 IB+M (k)&

= q„k„(B'I2'(vp" (q) v '"(—k)) I
B)*

+ (q./2f-)(B'I &p'"(q) I B+M-(k))*
—(k./2fp)(B'+M p(q) I

~-'"(—k) I
B)*

—l (q.+k.)f- .(B'I ~."(q—k) I B)
+i(B'lz.p(q

—k) IB)
+(B'I T(~p(q)~. (—k)) I

B)*, (A1)

where we have defined

&B'I &J"(q) I B&= d'* p+" '&B'I &«'"(x)
I B&,

(B'
I
8 (q) I B)=— d'x e+"*(B'

I
8 5 'v (x) I B)

(A2)

+i(B'
I
&p (q —k) I

B)—= d4xd'y e+"*e '" v

X~(x,—y,)&B'I CaP. (y),~, o(x)jlB&,

and where by the star notation

Le g, (B'I2'(~p"(q)~-"(k)) IB&*, «c j
we mean that one should write out the most general
expression for the time-ordered product of operator
matrix elements in question in terms of invariant
amplitudes Lwritten as functions of the variables q', k'
x—=q k, and v=-', (p'+p)(q+k) j and remove from the
relevant invariant amplitudes the poles which they
have at q'=my' and k'=m~'. In particular, if one

q.(B l~ "(q) IB+-.(k)&*.„...(q;, )

q„t P"G—i(q'; v, x)+k"G2(q'; v, x)

+q"G3 (q'; v,x)$, (A4)

k.&B'+M (q) I .'(-k) IB&*.„...(k;, )
=k,

l
P"Hi(k'; v,x)+q"H2(k'; v, x)

+k"Hg(k'; v,x)j,
where P"=2(p'"+pv) and where there are obvious
relations imposed by crossing symmetry between the
functions 6 and H. Of course, as noted before, the
various invariant amplitudes in this expression are
defined to be regular at the points q'=—mp' and 4'=—m '.

Examination of Eq. (A3), using the identities

(q+k) P= u, —

(q —k) P—=—', (ntii' —nzii') =0(e), (A5)

shows us that only the coefficient of the PI"P" term
gives a nonvanishing contribution to the amplitude at
the point q'=k'=u=x=o. Furthermore, this contri-
bution is explicitly of order e', and thus appears to be
unimportant when calculating terms of order c. Simi-
larly, if one examines Eqs. (A4), we see that only the
coefficients of I'& give rise to a nonvanishing contri-
bution at the point in question. While this term is
explicitly of order e, one can argue that it is in fact of
order e'. The argument goes as follows: If one considers
the functions Gi(0; v, x) and Hi(0; i,x) expanded in
powers of e, we see immediately that only the form
factors which are zeroth order in e contribute terms of
order e to the scattering amplitudes. However, if one
looks at Paper II one sees that in the symmetric theory
G& and H& must, by crossing synunetry, be odd functions
of v and thus vanish at v=0. Therefore, Gi(0,0,0) and
Hi(0, 0,0) are themselves of order e. Combining these
arguments, we are apparently led to the conclusion that
the terms involving 5"s do not contribute to the order-&
part of the meson-baryon scattering amplitude. We
emphasize the word apparently, however, since the
explicit power of e is not really enough. One must
exercise some care because of the fact that there can
be terms in the invariant amplitude which have de-
nominators which are themselves of order e and one
must be careful to keep such terms. In Sec. V we called

modifies Eq. (A1) so that all matrix elements are
replaced by their spin-averaged amplitudes as defined
in Sec. V, there are several invariant amplitudes to
study. More explicitly, we have

q.k (B,I
2'(&p'"(q) &-'"( k))—I

B)*.....(q', k'.v.x)
—=q„k.l P"P".Fi(q', k', v, x)+Pvq "F,(q', k', v, x)
+P"q"F3(q')k', v)x)+P"k "F4(q',k', v,x)
+PPkvF5(q2 k2 v x)+ qlkkvF (q2 k2 v x)
+q"k"Fi(q', k', vx)+q qv"F (q', k ,2vx)

+k'k "F (q' k' v x)+g'"F„(q' k' k' v x)j (A3)
and
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p+

k, Q q, p FIG. 2. Typical diagram that
can be enhanced if A~~y, + is
large in comparison to 1. Wavy
.lines attaching to boxes stand
for axial-vector divergences 8.

y%
0

t I'OSS8d
dlQg,

(c)

(b)
be careful in asserting that since the term

(Bl~ (V)~-(—&) IB)*

is of order e' it is negligible, as it might have contri-
butions from low-mass 5-wave resonances such as the
I'0*, as shown in Fig. 2. Now, although the vertices in
the diagram in Fig. 2 are each of order e, the fact that
the denominator is of the form [~ (ms '+oooo') —mro*2j '
tells us that if this difference happens to be small
(accidentally), the effect of this term can be greatly
enhanced. In order to see how this works in somewhat
more detail, consider the process KE —&LE and let
Ax~y, " be dined as in Eq. (5.15), so that the KXFo*
vertices are of the order Ag~y, Gg~y, *. It is easy to
convince oneself that the diagram in Fig. 2 is then of
the order

FxG. 1. Representation of the terms called (poles) p in the text.
Note that wavy lines attaching to circles stand for the axial-vector
current 5', and dashed lines for mesons. (~icxro'Gir~ro")'L1/(oooo' —oooro*') j (A6)

such terms "pole terms" and they arise because of the
possibility of diagrams such as those depicted in Figs.
1(a)—1(d). These diagrams are easily evaluated if one
realizes that one only wants the coefficient of the term
I'"I'" in the term containing two Xs and I'I" in the
terms containing one 5'. Straightforward calculation
gives the result quoted in Sec. V.

Besides the terms just discussed )which, following
the convention introduced in Sec. V, we call (poles) p j,
we need only keep the 2 term and remember that the
term (B'~ BB~B)* is explicitly of order o'. (Moreover,
explicit calculation of its pole term show that they do
not contribute to order o.) Once one observes that
crossing implies that the part of the amplitude anti-
symmetric in n and P vanishes at the point in question,
one is immediately led to Eq. (5.6).

Having completed the formal proof of the theorem,
we now discuss the point raised in Sec. V concerning

the fractional deviations in the generalized Goldberger-

Treiman relations. The point here is that one must also

at the point s =x=q'=k'=0. Using the formula

(1—ag~r, *)Grr„r, '= (2fu) (mr*—ooo~)gzxr, ,

we have Eq. (A6) equivalent to

+17Ã1'o" GICNYo'(2fk)ggNYo"

(ooo~+ooor, )(1—&rrxro")
(A7)

Equation (A7) makes clear that the size of the param-
eter Ag~y, * is what is important in determining whether
or not such pole terms in (B'

~
Bs(q)B ( Io)

~

B)*m—ake
large contributions to meson-baryon scattering ampli-
tudes at the unphysical point.

This example clearly exhibits the fact that the
presence of low-mass 5-wave resonances can seriously
affect the usefulness of our theorem. However, it is
interesting to note that, at least sometimes, one can
show that if their effects are important in scattering
amplitudes, then the fractional deviation of the appro-
priate generalized Goldberger-Treiman relation must be
large.


