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where j assumes values j=0, 1, 2, 3, with os —=1. Ex- The statement of the asymptotic SU(6)&v symmetry is
pressing P(x) and $(x) in terms of q(x), one gets now translated to that of

L,.(x): T4,'(x)
As (x)

:—iV4 (x)

0=1, 2)

(j=3)
(j=o)

lim t, dexe '"&* »(Ol(E, (x),E,e(y))+IO)

lV, (x): A,'(x)
T4s (x)=—Trs (x)

S (x)

(j=1, 2)

(j=3)
(j=0),

for the collinear momentum k of the form Eq. (A3). It
is easy to check that this gives Eqs. (20) immediately.
Similarly, replacing E; by I,;, we obtain the same
result. If we consider

K,.(x): T, s (x)

iA4 (x)

:—Vs (x)

R, (x): es;&.Vz" (x)
I' (x)

:—iTs4 (x)—=iT&s (x)

(j= 1, 2) (A9)

0=3)
(j=O),

lim i d'x e '"&* &(Ol (I.; (x)1V,e(y))+IO),

lim i d4x e—'"&* »(Ol (E;.(x)E,e(y))+IO&

up to the order 1/k, we find the asymptotic sum rules
(23).
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The sum rules of the preceding paper are investigated in detail in pole dominance. The ratio f~jf is
found to be near unity and all nonexotic baryons must satisfy an approximate mass formula &=a—bY
with the universal constant b m3 —m1—150 MeV, where m1, m2, and m3 are masses of bare quarks. More-
over, we compute m1 7 MeV and m3—156 MeV in a model where 55'(3) is exact except for the quark
mass term.

I. DEFINITION OF COUPLING CONSTANTS
' 'N the preceding paper' (hereafter referred to as I),
~ - we have developed several sum rules on the basis of
the asymptotic SU(6)&v symmetry. In this paper, we
study its applications, saturating the sum rules by pole
dominances. To that end, we define various coupling
parameters as follows.

(i) Vector:

(oI U."'(o) l~'(k)&=(2ksV) '"e (k)Gv6)

(Ol V (0) Ice,y(k)&=(2keU) '&se (k)Gv(te or y),

(1/V2)(OI V„&' '"(0)
I
E*+(k))= (2k, V) '~'e„(k)G (E*),

(1/&2)(OI V~&'—'"(0)ll&+(k)&=(2keV) '~'k„Gv(&),

where ~ means the 0 ~ meson.

*Work supported in part by the U. S. Atomic Energy
Commission.' S. Okubo, preceding paper, Phys. Rev. 188, 2293 (1969).

(ii) Axial vector:

(o I A."'(0)
I
A t"(k) &

= (2ko V)
—'"e,(k)GA(A 1) 1

(1/v2) (OI A „'-"&(0)
I
K„+(k)&

= (2k, V)-'&'.„(k)G„(K„),
(OIA " "&(0)I7r+(k))=(2ksV) '~sik„f. ,

(OIA " '&(0) IE+(k)) =(2ksV) '&'ik, fry,

(iii) Sca.lar:

(1/v2)(0 I
S" '"(0)

I &e+(k)) = (2ks V)- '"GB(x),

(1/&2)(0
I

Si'—'"(0)
I e+(k) &

= (2ks V)-'~'Gs(e),

where e is an assumed 0+ meson with l =1 and I'=0,
which may be' ~&v(1016).

(iv) Pseudoscalar:

(Olri &(0)
I

'(k)&=(2k, U)-'&'G ( ),
(1/v2) (0 I

P t'—"'(0)
I
E+(k) )= (2ke V) ' "Gp(K) .

' N. Barash-Schmidt et a/. , Rev. Mod. Phys. 41, 109 (1969).
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(v) Tensor:

(ol T„„&z (o) I p (k)&
= (2ko U)

—' "z[k„4„(k) k„e—„(k))(1/m p) Gz (p),

(I/v2)(0l T„„&' "i(0)
l
K*+(k))

= (2koV) '~'z[kp4„(k) —k„e„(k))(I/m»")Gr(K*) )I

&o
l
T""'(0)

l
&'(k))

= (2koV) "'z~„„),peg(k)k, (1/mii)Gr(B),

(I/v2) &ol T„„i-' ~(0) lK.+(k))
=(2koV) '"ze„pipers(k)kp(1/m»„)Gr(K~) )

where 8 represents' the 8 meson with J~=1+ and
G=+1. Note that, because of the G-parity conserva-
tion, we must have

(ol T„„&'&(0)
l
Ai'(k)) =0.

Actually, the 8 meson and A & meson will belong to two
different SU(3) octets; hence, we may expect to have
two types of E~ mesons with J~= 1+, I=—,', and I'= 1,
corresponding to A& and 8 mesons, respectively. Indeed,
experimentally' we may have such candidates at
M =1240, 1330, or 1775 MeV. Thus we shall distinguish
between two diferent Ez mesons simply by E& and
Ez' and, accordingly, dehne respective parameters by
adding the primes for the latter.

Now, the spectral weights p»(m), etc. , can be easily
computed by means of Eq. (18) on the pole approxima-
tion. For example, we have, for a, b=1, 2, 3,

p.z(m, P P) =Gi '(zr) —6(m' —m. ')8.g,

p, g"'(m, V —U)
=p, pi'&(m, V —V) =Gy'(p) 8(m' —m, ') 8.z,

p i'&(m, A —A) =G~'(Ai)B(m' —mg ')8 g

p. ,&zi(m, A —A)
=p, ,&'&(m, A —A)+iz f 'm 'B(m' —m, ')8,z,

p„~"(m, T T) =Gr'(B)8(m' m—zi')8 4, —

p.z&'&(m, T T)—
=G z(B)b(m' —mi4')B, z+Gz'(p)8(m' —m, ')8 z,

p, z(m, V —T) = —(1/mp)Gy(p)Gr(p) &(m' —mp') &.z I

p b(m p —A) = —(1/v2) f Gz(zr)8(m' —m ')8, &,

p, b(m, A T) =p, g(m, S—V) =0.—

The last relation follows simply from the G conjugation.
Examples of a=4, b=5 are

p„(m, S—V) = Gs(14)Gv(»—)8(m' m„'), —

p44(m, A T)—
= (1/m»„)Gr(K~)G~(Kg) 8(m' m»„')—

+(1/m»„') Gr(K/') Gg (K/') ri(m' m»„'), —
p44&'&(m, U —U) =p4zi'&(m, A —A)

=p4;&"(m, T—T) =0 (z=1, 2).

II. SUM RULES

%e can now apply the sum rules given in I. First, the
zeroth-order SU(6)zy sum rules, Eqs. (I19) and (I20),
lead to the results

(1/, )G"(.) =(I/--*)G"(K*)+G"()
(1/mA 2)GA2(A 4)+zf 2

= (1/m» ')G~z(K&)

+(1/m», ')G~'(K~')+z f»', (1)

(1/m, ')G '( ) =(1/m, ')G '( )+(1/m ')G '(8)
= (1/m»~') Gr'(K*)+(1/m»„') Gr'(K~)

+(1/m» ')Gr'(K~). (2)

Note that Eq. (1) is nothing but the ordinary first
Weinberg sum rule' with respect to the SIU(3) group.

Next, let us consider the sum rule (I15), which has
been obtained from equal-time commutation relations
(I14) and corresponds to the first-order broken SU(6) zy

symmetry

Gs(~)Gv(~)
=(1/ )G (K )G (K )

+(1/m», )G~(K~')Gr(K~') = —-,'v3ts) (3)

—(I/v2)f-G~(») = (I/m, )Gv(p)Gr(p)
=(V-.)~.+(~-:)&., (4)

(1/~2) f»Gp—(K) = (1/m»*) Gy (K*)Gz (K*)
= (&z) to —(kv'3) la (5)

We may remark that the first rela. tion of Eq. (4), i.e.,
(Qz)f Gr (zr—) = (Q—,')$0+(Q—', )(z, is exact in the soft-

pion limit if we recall Eqs. (I14) and (I16). This fact
suggests strongly that our pole approximation is a
reasonably good one. Similarly, the corresponding
relation of Eq. (5) implies that the soft-kaon limit is
also reasonable since it leads to the exact validity of the
relation.

Eliminating P, and (8 from Eqs. (3)—(5), we have one
more relation:

GB(K)Gv(14) = (I/&2) [f Gr (zr) f»Gp(K))—
= —-,'&3&8. (6)

This relation will be useful in the later applications.
Finally, the second-order broken SU(6)iy sum rules

(I26) are written as

Gs'(~)+Gz -'(~) =-,'[G~'(A &)+Gv'(p)) ——,
'f.'m. ', (7)

GB'(~) —G~'(~) =4[G~'(A i) —Gy'(p))
sf-'m-'=G~'(&) —G~'(p) (8)—

G 2(»)+GP2 (K) z [G~2(KA) +GA z(KA )+Gvz(K+) )
,' f»'m»' 24m„'—Gy—'(14), (9—)

8 S. steinberg, Phys. Rev. Letters 18, 507 {1967).
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Gss(,)—Gp2(E) =-;LG„2(K,)+G,2(K. )—G, (K*)1
—-' fir'mrr'+-'m 'Gv'(lr)

=Gr'(K~)+ G2'(K~') —G 2(Ka) . (10) 1 1 )m. '-
Gp'(~) =-,'Gv'(p) 1———

i (15a)

parameter with value near unity. Then one can rewrite
Eqs. (12) as

Gv'(p) =Gg'(2 i), (11a)

These are all we derive from our asymptotic SU(6)s
symmetries. Obviously, we do not have a suf6cient
number of equations to determine all these coupling
parameters. Here we assume, in addition, the validity
of the ordinary asymptotic SlF(2) )but not SW(3)] sum
rules for vector and axial-vector currents:

1 1 mq2-

8*' m, )
ms2 11(m. '

,G"(p) 1+-—,I—
ms'+m, ' 8 x2 (ms

(15b)

Gvs(K*) =G 2(K~)+G„2(K„'). (11b)

Notice that we do 2rot assume the second SU(3) sum
rules such as Gv'(E*) =Gv'(p).

Now, first from Eqs. (1), (2), (7), (8), and (11a), we
obtain the relations

ms2 1 1 (m.
Gr'(B) = Gv'(p) 1——4 . (15d)

ms2+m, 2 8 X'km,

Inserting values of Gp(2r), Gr(p), and G2(B) given by
Eqs. (15) into Eq. (4), we find the sum rule

Gp'(~) =2GV'(p) 2'sf-'m—-' (12a)

(12b)

1 m. 2

3 1——
~

= x2+- . (16)
24 X' mp) ms2+mp2 8 ms

mg 1 m7r mp
G~2(p) = G (p)+— f, (12c)

ms2+mp2 8ms2+m '

G"(B)=
mg 1 m7r mQ

Gv'(p) ——— f,'. (12—d)
ms +mp 8 ms2+mp2

x=Gv(p)/mpf ' (13)

Note that, if the Kawarabayashi-Suzuk. i—Riazuddin-
Fayazuddin (KSRF) formulas is exact, then we would
have x=1, while from Eqs. (11a) and (11b), together
with Eq. (1), we have'

x2 —22m~ 2/(mA 2 m 2)~] Q3 (14)

The results for Gr(p) and Gz(B) diRer slightly from
those obtained by other authors. 4 This is expected, of
course, since our sum rules di6er from those used by
these authors.

In order to analyze our results, it is convenient to
introduce a parameter x by

Using experimental values' for mg and m„we 6nd

x'= 1.05,

which is close the the previous value, Eq. (14).
We also remark that the exact U(6,6) theoryr gives

Gp(2r) =Gv(p), which differs by 20%%uo from our value
Eq. (15a). Actually, we may also obtain x= —1/V2 and
Gz(p) =Gv(p) if we follow the prescription given by
Sakita and Wali. 7 However, these second relations
critically depend upon a form assumed for the mass
term in the Bargmann-Wigner equation, as we shall
show in the Appendix.

We shall now proceed to the discussion of the E-type
sum rules. We have to solve the coupled equations (1),
(2), (3), (5), (6), (9), (10), and (11b). This is a very
complicated problem and we seek. here a numerical
solution in which Gv(a) is relatively small and frr/f is
of the order of unity. It appears that it is diTicult to
obtain a consistent solution of these equations when we
take m~~ =1320 and m~~=1240 MeV. Hence, we
assume m~~ =1780 and m~~=1240 MeV. Then we
evaluate

Alternatively, the value of x can be directly computed
from p' —+ ee rate by the formula fx/f. 1.07, — (18a)

F(p' —+ ee) =-'2r(e'/42r)'(1/m )f 'X'

Using the experimental value
~ f ~

=130 MeV from
w+ —+ p+p decay rate, we find x' 1.25&0.15 when we
use the experimental value for F(pe —+ ee) given by
Ting. ' In this note, we regard x as an adjustable

4 M. Ademollo, G. Longhi, and G. Veneziano, Nuovo Cimento
SSA, 540 (1968); P. A. Cook and G. C. Joshi, Nucl. Phys. 810,
253 (1969).

~ K. Kawarabayashi and M. Suzuki, Phys. Rev. Letters 16, 255
(1966);Riaznddin and Fayaznddin, Phys. Rev. 144, 1071 (1966).

6 S. C. C. Ting, in Proceedings of the Fourteenth International
Conference on High-Energy Physics, Vienna, 1968', edited by J.
Prentki and J. Steinberger (CERN, Geneva, 1968), p. 43.

Gv(z)~ 0.14f., — (18b)

Gp(K) 1.27mrr*f, (18c)

Gs(z)=1.24mx*f. , (18d)

Gp(2r) 1.27m,f, (18e)

where we assumed x'=1.05, i.e., Eq. (17) with m„=110Q
MeV. We remark. that values for fir/f, Gp(K), a,nd
Gs(&) a«relatively insensitive to value used for mx„,

B. Sakita and K. C. Wali, Phys. Rev. 139, 31355 (1965);
A. Salam, R. Delbourgo, and J. Strathdee, Proc. Roy. Soc.
(London) 284, 146 (1965); M. A. B. Beg and A. Pais, Phys. Rev.
Letters 14, 267 (1965).
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m&„, and nz„and hence they are more trustworthy.
However, the value Gv(«) is quite sensitive to small
variations for these mass values and may vary as much
as 50%. It is gratifying' to have f&r/f near unity.
Notice that our value of Gv(s) is somewhat smaller
than one obtained by Glashow and YVeinberg, 9 who
give Gv(«)/f I

0.41 in our notation.
Actually, relative signs among f, G~(z-), Gr (E), and

Gs(«) cannot be determined by our equations. By
choosing suitable phase factors for ~ and p state vectors,
we can assume hereafter that f 130 MeV)0 and
x 1.02)0 without loss of generality. Then, we have
selected appropriate relative signs in Eqs. (18) so that
they will be consistent with results of Sec. III.

We can now compute $s and $, from Eqs. (3)—(5)
to get

(19)ho= —1.24m, f ', js=+0.23m,f '.
fact that $s/$, = —0.18 may be interpreted to

indicate that the SU(3)-violating effect is of the order
of 20%.

Finally, we remark that in our approach we need the
existence of several octets for 0++, 1++, and 1+ mesons,
in addition to the ordinary 0 and 1—+ multiplets, so
as to saturate our sum rules. For example, if we have
no 8-meson contribution, we will have a serious

difhculty. Similarly, the existence of scalar mesons e and

a, and of two kinds of 1+mesons Eg and E~' is necessary
to satisfy our sum rules. It is amusing to observe that
we need more particles than required by the linear
realization of the U(6,6) group. Indeed, the numbers of
our multiplets are somewhat similar to those predicted
by the nonlinear realization of the SL(6,C)&8&SL(6,C)
or SL(12,C) group as has been given by Giirsey and
Chang. "

In this section, we shaH explore consequences of Eqs.
(20). First, taking a matrix element of both sides with
respect to the vacuum and one ~+ state, one immediately
6nds

(m, —mt)Gs(«) = —m„'Gv (~) . (21)

Using values of Gs(«) and Gv(«) given by Eqs. (18b)
and (18d), this gives

m3 —m~ '150 MeV, (22)

lim( o(k)
I
V„«-* &(0) le+(p))

( 1 frr)
=(4k p.l") "'I ———Ip„(24)

E v~ f.3 "'

=(4kop. l ') "' ~.(~). (25)

Inserting these results into Eq. (23), one obtains

(ms ml)GP(It) = (1/~2f&rmzs.

Because of Eqs. (18a) and (18c), we have

(26)

where we have again assumed m„~1100 MeV.
Next, let us take a matrix element of both sides of

Eqs. (20) between one-7rs and one-E+ states:

s(p. -k.)(~'(k)I I"." '"(0)l &+(p))
=z(ms mt—)(s'(k) I

S&' "&(0)
I
E'+(p)). (23)

Now we take the standard soft-pion limit k„—+0 on
both sides of Eq. (23), with

160 Me&, (2&)

&)„Ir„&4
—&s&(g) =t'(m —mt)S&4 's&(x),

g y„«+' &(g) = —s(m, —m )S&'+"&(~).
(20)

III. CONSEQUENCES OF PARTIAL CON-
SERVATION OF VECTOR CURRENT

AND MASS FORMULAS

In our derivation of asymptotic sum rules, the under-

lying assumption was that the SU(3) invariance is
broken only by mass difference among quarks. Then, if

mt, ms(—=mt), and ms are bare masses of three quarks,
we should have the partially conserved vector current
(PCVC) conditions

d'*(o
I
(S" '"(*),P"+'"(0))+le'(k)). (28)

We can evaluate this expression in two different ways.
First, we use the PCVC conditions (20) to get

I= (2ks V)—'"(—z)G~(vr)/ms —mt. (29)

which is very close to the previous value Fq. (22).
Actually, if we use Eqs. (21) and (26), together with
sum rules of Sec. II, v e could have computed the mass
of the ~ meson to be around m,~1100MeV.

Similarly, we compute

s H. T. Nieh Lphys. Rev. Letters 19,43 (196/) g computes f~/f~
to be 1.17 on the basis of the ordinary SB'(3) Weinberg sum rules.
However, he uses only one E& (&=1330 MeV) with the exact
KSRF relation, i.e., x= 1, and neglects the ~-meson contribution.

' See, e.g. , S. Weinberg, in ProceeCings of the Fomrteenth Inter-
national Conference on High-Energy Physics, Vienna, 1068, edited
by J. Prentki and J. Steinberger (CERN, Geneva, 1968), p. 253.

'0 F. Giirsey and P. Chang, Phys. Letters 268, 520 (1968);
F. Giirsey, paper presented at the Symposium on Hadron Spectros-
copy, Kesztheley, 1968 (unpublished).

%2(ms —mt) dms fp44(m, P—P) —p44—(m, S—S)j
m2

=f Gp(m). (30)-

On the other hand, we can calculate Eq. (28) by taking
the soft-pion limit k„~0. Then, comparing the result
w&th Eq. (29), we derive the sum rule
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which leads to

(m~ —m~)Gi ~ (m, —mi)S~s.

The Ademollo-Gatto theorem" will give

Gis= —lV'6,

(33)

(34)

although we need not use it for most of our applications
except for the fact that Gz& is not identically zero.

Now, if we appeal to the U(6, 6) theory, i we have

(35)

Together with Eq. (33), this gives

~A ~~~3 ~l ~ (36)

Actually, without using th. e U(6,6), we can obtain
Eqs. (35) and (36) as follows: In the qua, rk model, all
baryons are supposed to consist of three quarks. Since
they do not contain any antiquark, one may replace q
by q+ in the static limit. Hence, in this limit, one can
approximate

S«+is)(x) iV (4+is)(x) (37)

This immediately reproduces Eq. (35), and thus Eq.
(36), in the static limit. Of course Eq. (37) is not
I,orentz-invariant and we have to use it only in the
rest system. Actually, this naive approach immediately
gives us the relations

SSQ—SS+ )

yg™—mp~mg —ssg~w3 —~].)

(38a)

(38b)

m(n) —m(=*)=m(=-*) —m(Y,*)
=m(Y,*)—m(1t *)=m,—m, . (38c)

Alternatively-, these can be derived if we appeal to the
U(6, 6), so that matrix elements of S l +")(x) and
V„"+s) (x) are the same as in Eq. (35). From Eqs. (38),
one can estimate ass —m& again by

m, —mt~-,'(m-. —m)v) 187 MeV, (39)

ms —mi M(Yi*) —MPV*) 150 MeV. (39')
-" i%i. Ademollo sod R. Gatto, Phys. Rev. Letters 13, 264 (1965).

However, in the pole approximation, this equation
turned out to give Eq. (26) again, if we use Eqs. (6)
and (21).

Next, let us take matrix elements of both sides of
Eqs. (20) with respect to one-baryon states. For
example, we have

(p.—p, ')(P(p')
I V.'"'"(0)IA(p)&

= —(m, —mi)(P(p') S&'+")(0)IA(p)&. (31)

For small momentum transfer, one can set

(P(p') I V.'""(o)IA(p)&

i(mimi /pops' V') ')'Gi su(p')p„u(p), (32a)

(P(p ) I

S«+' )(0) IA(p)&

=( ~ /popo'V')'"S ~ (P') (P) (32b)

m=M(l, Y)~Ms —a Y (41)

for particle masses with the isospin I and the hyper-
charge I', where Mo is a constant independent of l and
Y and u is the universal constant a~(ms —mt)~150
MeV. Equation (41) is the mass formula that must be
valid for all nonexotic baryon multiplets. Also, it must
be emphasized that our derivation does not depend
upon a perturbation method with respect to the SU(3)-
violating interaction. If the perturbation is used, Eq.
(41) can be easily obtained, since in the first-order
perturbation the mass shift will be given by

with
DM =(ilHzli&,

Hr = —(2/~3)(ms —mi) d'x Sl')(x).

Replacing S&s)(x) by —iV&&')(x) according to the same
reasoning, and noticing that the hypercharge operator

These are again in reasonable agreement with the
previous estimates Eqs. (22) and (27), in both sign and
magnitude. Actually, we can improve the estimate
Eq. (39) as follows: If we use the standard SU(3)-
perturbation mass formula in the first order, we obtain

(ms m i)S+s
——,

' (g6) [-,' (m-. —m)v) ——,
'

(mx —mg) ]. (40)

Now, together with Eqs. (34) and (35), this gives

ms —mi —,'(m-. —m~) ——,'(mx —ms)~168 MeV, (39")

which is closer to other values.
Our approximation (37) will not hold for mesons,

since mesons contain antiquarks, so that the replace-
ment of g by q+ is by no means justified. We remark
also that analogs of the relations (38) should be valid for
all other nonexotic baryon multiplets, which are, by
definition, bound states of three-quarks. This simple
rule may be useful to phenomenological SU(3) classifi-
cations of higher baryon resonances. For example,
1V*(1518), Ys*(1690), Yi*(1670), and '*(1820) excel-
lently obey the analog of our mass formulas (38a) and
(38b) with ms —mr~150 MeV. Therefore, they may
form an octet with J =—,', although the spin-parity
assignment of the *(1820) is not yet known. ' Similarly. ,
iV*(1550) and Ys*(1670) could be forming a part of a -',

octet by our rule. A large deviation from Eqs. (28), if it
happens, must be attributed to a presence of a sizable
antiquark component in the multiplet under considera-
tion. Our method also indicates that possible con6gura-
tion mixing between two baryon multiplets does not
affect our sum rule, indicating that its effect must some-
how be reduced. This may account for apparent small

mixing between Ye*(1520) and Ys*(1690), or between
X(940) and X(1460).

Our results [Eqs. (38)j can be rewritten in the
compact expression



188 wsvi~p ro Tr c s v(~). spF c TRAL sUM RULEs. rI. AppLr cAT&oxs 2305

I' is given by

U = (—i) (2!K3) d'x V4&')(x),

we get &3f (i) = —(m3 —mi) U and, hence, we reproduce
Eq. (41).

As we indicated, one cannot use Eq. (37) for mesons,
so that we cannot derive relations like Eqs. (38). The
use of the U(6,6) theory is also not reliable in this case,
since many relations so obtained critically depend upon
the form assumed for the mass term in the Bargmann-
Wigner equation, because of large mass differences
among the 35-dimensional multiplet. However, one can
nevertheless find some relations that are less dependent
on assumed forms of the mass term (see Appendix).
Then, together with the PCVC condition Eq. (20), one
may obtain (see Appendix) the relations

Secondly, let us consider the partially conserved axial-
vector current (PC.AC) conditions

B„A„~ ) (x) = (1/%2)m 'f vr (x) (n = 1, 2, 3),
B„A„&'(x)=(1/%2)mx'felt. (x) (n=4, 5, 6, 7), (45)

rl„&„"'(x)=(1/v2)m, 'f,q, (x) (n=8).

In our approach, all mesons are supposed to be bound
states of a quark-antiquark system. Thus, Eqs. (45)
must be interpreted to define the fields 7r (x), E (x),
and p&(x). Then, it is by no means obvious whether
these form an octet operator or not. If we suppose they
do, we must have, for instance, a relation such as

d'x U4(' '"")(x),E4+,&(y)

=(1/~»-. (y)+-,(«).(y) ("=y.). (46)

4m''=m '+3m '

me@ m P

2 mKg2 —m~g2 m 2

mK+ —mp =m~ —m~

(42a)

(42b)

(42c)

(42d)

Together with Eqs. (20) and (45), this will give us
nontrivial relations. To see this, let us consider the
expression

I= i(0
~

d'x(5(' '"(x),K4+;5(y))+ ~
%3(k)) . (47)

These are nothing but the ordinary SU(6) mass
formulas.

At any rate, we find that our results are mutually
consistent with the value m3 —m~ 150 MeV.

To conclude this section, we make the following two
comments. First, the PCVC relations (20) give, among
spectral weights,

(mg —mi) 'p44(m, 5—S)
=m Lp&4

2 (m, U —V) —p«('~(m, U —V)], (43a)

One can estimate this in two different ways. First, let
us use the PCVC conditions (20) and integrate in part
to obtain

I=(2koV) '"(1/&2)1/(m& —mi),

where we used Eq. (46). On the other hand, Eq. (47)
can be computed by means of Eqs. (45) when we inte-
grate in part with respect to y rather than x. In this way,
we get

I= (2koU) '"Gr (ir)/fxmx',
(m3 —m&) p44(m, 5—S)=m ~p44(m, 5—V) .

Then, the sum rule Eq. (I15) leads to

(43b)
where we have neglected a term proportional to
k'= —m ' (i.e. , soft-pion limit). Equating both ex-

pressions, we find

m3 —m]

00

dm' —pq~(m, S—S) = i2%3$8. (44)
m2

It may be worthwhile to emphasize that the validity of
this relation is independent of our asymptotic SU(6)a
sum rules. Noticing the positiveness condition (Eqs.
(I11)and (I12)] for the spectral weights, an assumption
$8=0 implies the exact conservation law B„V„&4)(x)=0.
Together with the validity of SU(2) and hypercharge
conservation, this implies the exact validity of
the SU(3) group. Therefore, it is impossible to have
(s= (0~ 5"'(0)

~
0)=—0. This conclusion is independent of

asymptotic SU(6) a symmetry, and it will be relevant
to the theory of Gell-Mann, Oakes, and brenner, "who
show that $8 must be very small.

"M. Gell-Mann, R. J. Oakes, and B. Renner, Phys. Rev. 175,
2195 (1968).

(m3 —mi)G~(ir) = (1/v2) fxmrr'.

Comparing with Eq. (26), this gives

G~(lt) =Gi (~),

which in turn can be reexpressed as

~&b(fx f.)= &~(fr+2 f—-)—
(48a)

(48b)

if we use Eqs. (4) and (5). Unfortunately these relations
are not so well satisfied by our numerical solution,
although the defect may be due to the soft-pion assump-
tion. The nega, tive answer may imply that Eq. (46) is
probably not valid and that ir (x), E (x), and &8(x)
defined by Eqs. (45) do not form an octet operator under
the SU(3) group. We note that this conclusion is
manifest in the theory of Gell-Mann, Oak, es, and
Renner, "as we shall sec in. the next section.
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IV. BARE MASSES OF QUARKS

In Sec. III we have computed the difference m3 —m~.

We can compute m& and m3 individually if we further
assume that not only SU(3) but also SW(3) group is
exact except for the quark-mass term. Such a theory has
been proposed and investigated by many authors. " "
However, several interesting results have been recently
derived by Gell-Mann, Oakes, and Renner" on the
basis of this model.

Setting, as usual,

ep = (Qs) (2m&+'&&ss), ps = (2/v3) (&It—'&&ss), (49)

our hypothesis implies

B„A„"(x)=(Qss) epP (x)+esds, pP&'&(x) (50)

in addition to Eqs. (20). In terms of components, this
is rewritten as

derived a high-energy theorem on the basis of the
algebra of currents. He finds that nonzero values of m~

and m3 may be related to a possible breakdown of the
Pomeranchuk theorem at high energy and, by using
experimental data on high-energy o.(~+p) —o.(s p) and
o(E+p) &r(—E p) cross sections, he estimates m&~3 or
9 MeU and m3~70 MeU. These values are reasonably
close to our values [Eqs. (53)].Similarly, our estimates,
Eqs. (34) and (35), or the analogous relations for similar
quantities, are, if we use Eq. (53), in rough agreement
with experimental scattering lengths of meson-baryon
scatterings, as has been shown by Hippel and Kim. "
Although these facts are, indeed, very encouraging, we
may have some difficulties with this model.

From Eqs. (51c) and (51d), we obtain

r) A i &(x)+%28„A„&&(g) =2mi[P is&(g)+%2P i &(x) j
= (1/%3)(pep+ps) [Pip&(g)+v2P &P&(g)j. (54)

r)„A„i &(x) =(fist+ms)P'&(x) (a=1, 2, 3),
r)„A„i &(x) =(ipsr+ms)Pi &(x) (a=4, 5, 6, 7),

(51a)

(51b)

Therefore, in the SW(2) limit mr —+ 0, we have

r& A "&(x)= —v2B„A„"'(x), (55)

r&„A„is&(x)=-;(mi+2ms)P "&(x)

+-'s&2(ter —ms) P1"(x) (a =8), (51c)

B„A„"&(x)=-'s(2mt+ms)P&P&(x)

+-',v2(mt —ms)P "&(x) (a=0) . (51d)

which gives relations such as

fp= as~

where f„and a„are defined by

(56)

Comparing these with Eqs. (45), it is obvious that
pr (x), E (x), and r&s(x), so defined, will not form a
octet operator unless mq=m3, as has been mentioned
in Sec. III.

Taking matrix elements of both sides of Eqs. (51a)
and (51b) between the vacuum and the pr or E state,
one gets

f m '=v2(mi+ms)G~(7r),

fxmrrs =K&(mt+ms)G& (E) .

Using Eqs. (18), we calculate

mt ——ms 7 MeV, ms 156 MeV,

(52a)

(52b)

(53)

which is consistent with m3 —m~~150 MeU obtained in
Sec. III. Actually, Eqs. (52) give Eq. (26) in the soft-
pion limit m =0. Our estimates [Eqs. (53)] are in

rough accord with mi/ms~0. 042 obtained by Gell-
Mann, Oakes, and Renner. Similarly, small values for
m~ and m3 have been commented on by several
authors. "' ' In particular, Yomozawa" has recently

'3 M. Gell-Mann, Physics 1, 63 (1964); Phys. Rev. 125, 1067
(1962).

R. K. Marshak and S. Okubo, Nuovo Cimento 19, 1226
(1961);R. E. Marshak, N. Mukunda, and S. Okubo, Phys. Rev.
137, 3698 (1965); R. E. Marshak, S. Okubo, and J. Wojtaszek,
Phys. Rev. Letters 15, 463 (1965); W. P. Moran and R. E.
Marshak, Progr. Theoret. Phys. (Kyoto) Suppl. 37-38, 405 (1966).

~ Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345 (1961).' A. Salam and J. C. Ward, Nuovo Cimento 20, 1228 (1961);
20, 419 (1961).

'7 Z. Maki and I. Uemura, Progr. Theoret. Phys. (Kyoto) 38,
1392 (1967);H. Koyama, ibid. 38, 1369 (1967).

'8 Y. Tomozawa, University of Michigan Report, 1969
(unpublished); see also Phys. Rev. 177, 2288 (1969).

v2(O~A i'&(0) ~»(k))=(2kpV) '"ik„f„,
%2(O~A„& &(0) ~t&(k))=(2kpV) 'I iksa„.

(57)

Unfortunately, Eq. (56) is ra.ther difFicult to accept from
the SU(3) viewpoint, since, ordinarily, the r) meson is

expected to be dominantly an octet so that we should
have ~o.„(&&(f„~, in contrast to Eq. (56). Thus, if we

accept the Gell-Mann —Oakes —Renner model, we must
be prepared for a large SU(3) violation. Actually, a
large discrepancy between x —+ 2x and p —+ 2p decay
ratio may be due to such a mechanism. Similarly, if the
E meson is a 0 meson, then the abnormally large decay'
P. &E*E might b—e explained by a large SU(3) viola-

tion, provided that the E meson is a unitary singlet.
Finally, it should be emphasized that the smallness

of the bare masses of quark. s will not necessarily imply
smallness of physical quark. masses because of strong
interactions. Of course, it is very dangerous to believe
in the literal existence of quarks and in the Lagrangian
formalism we are more or less utilizing. Our hope is that
at least some features of our results may survive in the
future theory, as did Bohr's semiclassical theory of the
hydrogen atom even after the establishment of the
quantum mechanics.

"F.Von Hippel and J. K. Kim, Phys. Rev. Letters 22, 740
(1969); C. H. Chan and F. T. Meier. ibid 22. 737 (1969). .

APPENDIX

Here we investigate in some detail the U(6,6) version

of the Bargmann-Wigner equation for mesons. It can
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be written as

', (-y)„(B/»),)C (x) J+MC (x) =0, (A1)

where we regard C (x) to be a 12&&12 matrix. The most
general form of the mass operator M is obtained by
assuming

where

Ms ' = (ms —mr+ 2m' —2m~)

X (ms+m~ 4—mv 4—m~+6mr),
M v' = (ms+mr 2—mr) (ms m—p 2—my+2m~) .

(AS)

MC (x) =msC'+mr(y5C y5) +m5 (y)4y), )

+m~(iy), y5) C (iyn 5)

+mr Z (iv) v, )C'(ivies, ),
)))p

Only experimentally determinable quantities are mass
matrices 3fI' and M&'. Clearly, we have insufficient
numbers of equations to determine all of mz, m&, m&,

(A2)
m,4, and m

Now, writing C as Cs" (A, 8=1, 2, . . . , 12) in the
tensor notation, we can compute

where mg, m~, my, m~, and mz are independent of
y matrices, and operate on the SU(3) space by the
formula

(OIgg(x)qs(x) I C) ~ C s"

(A9)G~(~) =«(p) =G~(&) =Gv(&*).

moC'=my")C'+m()("(&C'+C'&). (A3) in the exact U(6,6) limit. Thus, one can calculate G) (m)

E (A3) ($) d (2) (g S p U A T)
and Gv(p) from Eqs. (A5) and (A6), to get

c numbers and the 3&3 matrix 8 is given by

0 0 0
0 0 0
0 0

(A4)

Now, following Samhita and Wali, ~ we expand C into

C (x) =S'(x)+iy5P'(x)+iyuVu'(x)
+iv5vuAu'(x)+ .'iLvu v.lTu'-(x) (A5)

where S', P', V', 2', and T' are 3X3 matrices inde-
pendent of y matrices. Ke added primes on these
quantities so as to avoid a possible confusion with
those used in I.

Inserting Eq. (A5) into Eq. (A1), we obtain

(ms+mJ +4mv+4mg+6mr)s'(x) =0,
(ms mz 4—mv —4m~+—6mr)P'(x)

(~/»—u) Au'(*)

(ms m~ 2—m&+—2m') V„'(x) = (8/Bx„)Tu.'(x), (A6)

(ms mr+2—mv 2m')A—„'(x)= (8/(|x„)P—(x),

(ms+mr —2mr) T„'(*)
= (8/»„) V„'(x) (8/ax„—) V„'(x)

From these equations, we Gnd

(C'I a~(x) vs(x) I
C').

In the exact U(6,6) limit, this is proportional to the
matrix element of C q~C ~ . Again, we find that most of
the relations so obtained depend upon the special
choice of mg. However, one can obtain some relations
that are independent of the choice. Some such rela-
tions are

(p0
I
S(4 $5)(Q)

I
It4 +) ((0

I

S(4 45) (Q) I

lt'0+)
= —I/Kz(yI s«-' )(o)

I
x*+)

=(s'
I

s(~'5) (0) IE+)
= —v3(~

I
s(~'»(0)

I
x+). (A10)

However, the relation between Gv(p) and f is depen-
dent upon special choices for mq. Sakita and Wali
choose essentially mz"', m8"', and m&('&/0, with all
other mo being zero, and this gives x= —1/V2, which is
not so good experimentally. Similarly, the ordinary
U(6,6) relations between coupling constants for UUP
and VPP vertices are dependent upon the choices of mq.

We next consider the matrix element

(CI MI')P(x) =0, —
(CI —Mv') V '(x) =0,

Together with the Ademollo-Gatto theorem for the

(A7) matrix elements of U„(4 ")(x),Eqs. (A10) and (20) give
the desired relations (42).


