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Spectral sum rules on the basis of asymptotic SU(6) w symmetry are given. It is shown that the SV(6)sr
group is likely to be a reasonably good asymptotic symmetry as far as the two-point function is concerned.

I. INTRODUCTION

'N recent years, we have seen several interesting
~ - applications of so-called Weinberg sum rules. ' While
many of these sum rules can be derived on the basis of
the algebra of currents, the physics underlying them is
also not difficult to understand. As Lehmann and
Kallen have observed' some years ago, the Fourier
transform of two-point causal Green's functions of, say,
two scalar mesons has exactly the same asymptotic form
as that of the corresponding bare Green's functions in
the infinite-momentum limit. This fact may be inter-
preted to imply physically that the kinematical term
will dominate eventually in the high-energy region over
all mass and interaction Hamiltonians. If this reasoning
is correct, we can easily understand the reason for the
validity of the Weinberg sum rules. By the same logic,
in the infinite-momentum limit, we should expect' that
the kinematical part of our Lagrangian will dominate
over all others, so that the causal two-body Green's
functions should manifest symmetries possessed by the
kinematical part in that limit. Thus, we should have
validities of asymptotic SU(3) and SW(3) symmetries,
which immediately give the first Weinberg sum rules for
these groups. As for second Weinberg sum rules, we may
probably see some effects of the mass and interaction
Lagrangian in the asymptotic symmetry, which may
violate these groups. It is then necessary for us to
consider at least the first-order breaking of the SU(3)
or SW(3) group in the study of the second sum rules. 4

Note that such behavior can be demonstrated in many
models, especially the cases of ordinary Lehmann-
Kallen suni rules, as has been emphasized elsewhere, 4

It is clear from the above argument that the ordinary
static SU(6) group cannot become an asymptotic
symmetry because the free-quark Lagrangian is not
invariant under it. However, the so-called SU(6)sr

* Work supported in part by the U. S. Atomic Energy Com-
mission.

' For a comprehensive account of this subject, see S. Weinberg,
in Proceedings of the Fottrteenth International Conference on High
Energy Physics, Vienna, 106$, edited by J. Prentki and J. Stein-
berger (CERN, Geneva, 1968).

2 See, e.g., P. Roman, Introduction to Quantum Field Theory
(John Wiley R Sons, Inc. , New York, 1968), Chap. II.

' This idea is essentially an extension of the so-called Kallen's
conjecture to internal symmetries.

'S. Okubo, Lecture Notes at University of Islamabad, 1967
(unpublished); in Proceedings of the International Theoretical
Physics Conference on Particles and Fields, Rochester, Aez York,
1967, edited by C. R. Hagen et al. (Wiley-Interscience, Inc. , New
York, 1968).
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group' can, in contrast, be a candidate for the asymp-
totic symmetry, since in a sense it leaves the kinematical
part of the Lagrangian invariant. As a matter of fact,
one can construct' a Lagrangian invariant under a much
larger group SL(12,C) if we admit a nonlinear realiza-
tion. As we shall see shortly, we can show that the
5U(6)w appears to be a reasonably good asymptotic
symmetry for the two-point function, at least up to its
first-order breaking.

On the other hand, we remark that the simple idea of
asymptotic syrrimetry must be somewhat modified for
scattering problems, first because the interaction
Hamiltonian is now responsible for the scattering and,
secondly, because the energy-momentum must satisfy
the mass-shell condition E„'=—ms' so that one cannot
take both spatial and time components of the four-
momentum k„ to be independently large. Nevertheless,
even for this case, it is tempting to apply a similar
argument. Suppose, for example, that both kinematical
and interacting Lagrangians are invariant under the
SU(3) group and that it is only a part of the mass term
that violates the SU(3) symmetry. Then, if one can
find a suitable experimental condition in which the part
of the mass terin violating the SU(3) would give a
relatively minor correction in comparison to the rest,
we will have an approximate SU(3) symmetry. Such a
situation hopefully may be operating in the high-energy
large-angle scattering region s)&

~
t ~)&tts. In contrast, for

the forward high-energy scattering, mass differences
between sr and E (or p and E*) are certainly not
negligible, as we may see from the peripheral or Regge
exchange mechanism. Hence, we may hope for the
validity of asymptotic SU(3), or even SW(3) sym-

metries, only for the extreme high-energy large-angle
scattering. ' As a matter of fact, the experiment shows

that the SU(3) is reasonably well satisfied' at such a
region for reactions yp ~ sr+st, E+A, and E+Zo, but not
at the forward direction. Also, we note that one can

'H. J. Lipkin and S. Meshkov, Phys. Rev. Letters 14, 670
(1965); K. J. Barnes, ibid. 14, 798 (1965).

P. Chang and F. Gursey, Phys. Letters 268, 520 (1968),
F. Giirsey, a paper presented at the Symposium on Hadron
Spectroscopy, Keszthely, 1968 (unpublished).

' Y. Hara t Progr. Theoret. Phys. (Kyoto) 39, 1020 (1968)]has
given some relations on the basis of asymptotic SS'(2) sym-
metries for large-angle scattering for EE —y 1VlV reactions.

88. Richter, in Proceedings of the Fourteenth International
Conference on IIigh Energy Physics, Vienna, 1068', edited by
J. Prentki and J. Steinberger (CERN, Geneva, 1968).
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apply a similar idea to three-point functions. Indeed,
some applications of it suggest reasonable success.

Unfortunately, then, we cannot apply the idea of
asymptotic SU(6) s symmetry for the scattering
problems, since we have to consider only the forward or
backward scattering in the SU(6)s group. However,
under a certain situation, it is possible that one can
apply it even for forward scattering. For example, we
know that asymptotic SW(2) synunetry for the Fourier
transform of forward amplitude

(~(P) I (~."(x)~."'(x))+Ix(P) &

—( (P) I(I'."(*)I'"'b))+I (P))

holds because of the Fubini —Dashen —Gell-Mann sum
rule. ' This case has been extensively investigated by
some authors" with success. Similarly, we note reason-
able validity of the Johnson-Treiman relation, " and,
recently, Meshkov and Ponzini" have shown that they
can roughly explain the high-energy photoproduction
of vector mesons on the basis of SU(6)s symmetry.
These, together with another ambitious attempt" at a
Reggeized SU(6)s theory, indicate that the SU(6)s
group may be a reasonably good symmetry at the high-
energy limit. Of course, this statement must be taken
with some caution because it automatically implies the
validity of SU(3) even for the forward direction. Pre-
sumably, it is rather the SU(4)s group which may
become a good asymptotic symmetry in the high-energy
region. Then, we have to take into account the effects of
first-order SU(3) breaking on all applications of SU(6) s
symmetry to scattering problems. This problem will be
treated elsewhere.

It is the purpose of this paper to investigate the
validity of the asymptotic SU(6)s symmetry in a much
more simple case of the two-point Green's functions.
Indeed, we shall see that it appears to be very good; the
detailed consequences will be given in the following
paper.

It may not be trivial to emphasize the incompati-
bility of SU(6) s or U(6,6) with the SW(3) group in the
framework of pure quark Lagrangian models. Indeed,
only the scalar g(x)q(x) is invariant under the former,

while only the vector g(x)p„q(x), or axial vector
g(x)y„y,q(x), is invariant under the SW(3) group. This
situation is rather puzzling since both groups seem to be
good symmetries. However, it appears that the SW(3)
group prefers nonlinear realizations, while the U(6,6)
chooses linear representations. If this is so, the pure
quark four-fermion model may be a bit misleading, or it
may be that the reality is very complicated and we have
to seek' nonlinear representations of a group larger than
both the U(6, 6) and the SW(3) group.

Finally, we remark that the idea of asymptotic

symmetry is consistent with the notion of the general-
ized algebra of currents" on the light cone, if relevant
cornmutators on the light cone show the required
symmetry properties under the group in question.
Although this approach is in principle better, we have
unfortunately no reliable way to calculate singularities
at the light cone except for cases of two-point Green's
functions.

IL LEHMANN-KALLRN REPRESENTATIONS AND
ASYMPTOTIC SU(6) s SUM RULES

Throughout this paper we shall assume the quark
model, at least to establish notations.

We set
S.(x)= —,'g(x)) .q(x),
E'(x) = -', ig(x) X.y,q(x),

V„'( )x= ,'ig(x))—I,,y„q(x),

A„(x)=-', ig(x)X.y„y,q(x),

T.. (*)=-'ig(x)) .[V.,V.]q(x),

where X, (a= 0, 1, . . . , 8) are the standard 3&& 3 matrices
with Xs——gs and we adopt the convention that Latin
and Greek indices refer to SU(3) and Lorentz spaces,
respectively. Also, we use the standard Dyson notation
with y5=y~y2y3p4. Sometimes it is convenient to intro-
duce the conjugate of T„„by
Z'„„.(x)= —-,'„„.,r., (x) =-,'ig(x)) .b„,p„]p,q(x) . (2)

Now, let Qz represent any of -', &,
&

—',4&s, ',i),&» —',-i4&„ps,
—,'iX.[y„,y„], and —,'iX.[y„,y„]y„and set

dtx e """'&«I (g(x)Q~q(x), g())Qsq(y))+ I o& —(o I g(*)Q~q(x) I
o&(ol g(r)Qsq(r) I o&}. (3)

s J.Schechter and G. Venturi, Phys. Rev. Letters 19, 276 (1967);S.Okubo, Ann. Phys. (N.Y.) 47, 351 (1968);L. H. Chan, L. Clavelli,
and R. Torgeson, Phys. Rev. 185, 1754 {1969).

S. Fubini, Nuovo Cimento 43A, 475 (1966); R. F. Dashen and M. Gell-Mann, in Proceedhngs of the Third Coral Gables Conference
on Symmetry Principles at High Energies, University of Mzanzi, 1966, edited by A. Perlmutter, J. Wujtzszek, G. Sudarshan, and B. Kur-
gunoglu (W. H. Freeman and Co., San Francisco, 1966).

D. S. Xarayan, R. P. Srivastava, and R. P. Saxena, Phys. Rev. 16?, 1379 (1968); V. S. Mathur and R. X. Mohapatra, ibid. 173,
1668 (1968).

~ K. Johnson and S. B.Treiman, Phys. Rev. Letters 14, 1178 (1965);J. C. Carter, J.J. Coyne, and S. Meshkov, ibid. 14, 523 (1965);
14, 850(K) {1965).

13 S. Meshk. ov and R. Ponzini, Phys. Rev. 175, 2030 (1968).
I4 R. Delbourgo and A. Salam, Phys. Letters 28B, 497 (1969).
"S.Okubo, Physics 3, 165 (1967); in Proceedhngs of the Fourth Coral Gables Conferences on Symmetry I'rznciples at High Energies,

Urtieersity of 3liami, 1967, edited by A. Perlmutter and B.KurSunojlu (%. H. Freeman and Co. , San Francisco, 1967).
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ion for I»(k):LK) representation forthe Lehman-KallenThen one can write t e e

k„k„

)

dm —pAB, 44m —,&'& m, (4)
m2

.&z& m)"'(m)+ p~a, ».

impose t..ee trac

~3) m.
th

'
i i -at we have

( ) = &z& m =p», „» (m).

th
'

it is obvious t a

&z& (m) = pz&g „„=, m .
the definition, i i

(') m ) PAB, „„(&) pAB, p

the commus. ,3) and (4), we haCorresponding to Eqs.

p»»",»&(m) =o

ve also the LK rep

(7)) h(x —y, m)dm m pAB~ m(o I Lv(~)Q~v(~), ~(y)Q~v~v(y)3Io) =

'k =— = mz —

I
p»& &(m)+zk»pg

m
' ousl, we&"( ) bonds to the so-called Schwinger term. o

(5)

last term corresponds to the so-ca e
eless con i

'

ei hts are deined byAlso, the spectral weig s

0 ~(0)a &(0)I )( IWO)(. «
n+0

&'& (m)+zk»p», »&'8(kp)I I&»„pg
(2zr)'

r ions for individual components:t to define LK representations for in iviore convenienlications, it is moFor practical app ic ', mo

(S,S')=

(P P')=
0

(V»' V') =

(A A ')=
0

dm' p, &, (m, S-—S
k'+m'

&" m V —V),dm' —p, q m,
m2

1
dm' —p g m, A —A),

m2

1
dm' p, &, (m, P P), —

k'+m'

, V —V) —n„n„&,
&'& m, V—V)+—k»k„p, &,

&z m,
k'+m'

, A —A) n„n„—"& m, A —A)+—k»k„p, &,
&z m,dm' b„„p,g(') m,

k'+m'

(T'. »-p') =
0

5 —g„py„.)p.,&'&(m, T—T)

+ (8» k,kp+t&„pk»k &'&»pk, k —5„ » p
— ' . m

(S',V„')=ik„
0

(P,A„')=ik„
0

1
dm' p, &, (m, S—V),

k'+m'

1
dmz p. &, (m, P—A),

k'+m'

n 8»pn„n i—'&„n»np)—(8»~nynp+8ppn»nag»p p» n dm' p.g&'& (m—, T T), (9)—
m2

1
p. &, (m, V T), —

k'+nz'
dm(V„',T p')=i(5» kp b»pk—

—b k) m A T), —lm p~b m)

ro r. e . K oto) 14, 596 (1955).

k'+m'

ro r. Theoret. Phys. (Kyoto

0

Goto and T. Imamura, Progr. eev. Letters 3 296 (1959);T. Got
th. ....,.... Sh g, Phy.

'7 Notations are t e
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=D- &'('m & ('&(m 8—B)o0
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da'c. ,(m, V —T)(C„.

(0IP.'( ),T- '(y)710
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Xh(x —y, m).

n e ual-time commuutations, h e the following equa — iAlso, we have
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Now, let us assume that the theory becomes asymp-
totically SU(6) s -invariant when we let k ~ ~.
Although we could do this in a purely SU(6)s frame-
work, as we shall show in the Appendix, here we shall
utilize the notation of U(6,6) symmetry, 's which is a
group of 12)&12 matrices with U satisfying the condi-
tion Ufy4U=y4. However, in order to keep the free
kinematical term invariant, we must impose an addi-
tional constraint U '(ipk)U= (iyk), i.e., iyk must be
taken" to be formally invariant. Then for k ~ ~, the
statement of the asymptotic SU(6)s symmetry is
equivalent to"

lim I~~ (k) =ai tr (Q~Qs)+as tr(Q~) tr (Qn)

+a, (1/k') trLQ„(iyk)Q~ (iyk) 7

+a (1/k') tr(Q iyk) tr(Qniyk), (17)

where a~, a~, a3, and a4 are some constants. Comparing
this with Eq. (4), and noting the condition equations
(5) and (6), we obtain the sum rule

1
dm' —pgn „,"&(m)

m2

= Lt (Q. ,Q. )—:~..t (Q.v Q.v )7

+csLtr(Q~y„) tr(Q~y„) ——'8„„tr(Q~yz) tr(Q~~x)7

+(A ~8). (18)

Note that terms such as 8„„tr(Q~Q~) do not appear
because of the traceless condition equation (5).

Equation (18) is equivalent to

00

dm' —p. st'&(m, V —V)
m2

= —8ci8, s —8cs tr(X,) tr(Xs), (19a)

1
dm' —p.sts&(m A —A)

p m

00

dm' p, st'& (m—, T T) = —8ctb.s. (19—b)
m2

It is interesting to notice that if a&0 or b&0, then this
gives

00 ] 00

dm —p st l(m V —V)= dm —p s l(m A —A)
p m p m 2

dm' p.st'l (m, T —T) = —8ctb.s-
m2

(aAO or b&0) . (20)

' B. Sakita and K. C. Wali, Phys. Rev. 139, 81355 (1965) j
A. Salam, R. Delbourgo, and J. Strathdee, Proc. Roy. Soc.
(London} 284, 146 (1965);M. A. B.Beg and A. Pais, Phys. Rev.
Letters 14, 267 (1965).

'~ This is equivalent to the inclusion of the so-called irregular

It is remarkable" that the first relation of Eq. (20) is
nothing but the first Weinberg sum rule for the asymp-
totic SW(3) symmetry. As we have remarked in the
Introduction, we should keep in mind the fact that the
U(6,6) group and SIV(3) group have no relation to each
other, since the scalar g(x)q(x) is the only invariant
under U(6,6),while the vector g(x)y„q(x) and axial
vector g(x)y„ps'(x) are sole invariants of the SW(3)
group. The fact that we reproduce the SW(3) sum rule
from SU(6) s is highly encouraging.

The equivalence of the tensor and vector spectral
sum rule in Eq. (20) has also been obtained by some
other authors. "It can also be obtained from the Jacobi
identity

0ILT4,.(*),l V4 b),T„„(s)77I0)

+&0 I LV.'(y), LT„„(s),T„.(*)77 I 0)

+&0ILT"'(z),LT- (*),V '(3)77I0)=0,

as has been noted, " if the Schwinger terms are all
c numbers, and if we use the equal-time commutation
relations

L Vs (x),T"'(Y)7*o=so= —f-sT"'(x)~"'(x—x)

+ (Schwinger term),

LT4~ (x),T b)7.o so=i:d=.s.e~,.~A~'(x)~"'(x —y)

+f,&,$8„sV '(x) —5„&V '(x)75 "(x—y)

+(Schwinger term) (k&4).

The proof, then, essentially goes in the same way as the
ordinary proof of the first Weinberg sum rule. "How-
ever, the formal use of a Jacobi identity is rather
suspect. 2' Indeed, a similar identity among spatial
vector currents leads'4 to a contradiction, unless the
Schwinger term is a q number. Similarly, a Jacobi
identity among S'(x), S'(y), and V„'(s) (pW4) is
easily verified to give a contradiction. Of course it may
be that a Jacobi identity holds only when we consider
quantities having fourth-component indices such as
V4' or T4& . Anyway, we take the view that we may use
a Jacobi identity unless we encounter a manifest
contradiction with known facts.

terms. For an extensive review of U(6,6) or U(12) theory, see
review articles by H. Ruegg, W. Ruhl, and T. S. Santhanam
[Helv. Phys. Acta 40, 9 (1967)j and by R. Delbourgo, M. A.
Raschid, A. Salam, and I. Strathdee Dnternational Atomic
Energy Agency Report, Vienna, 1965 (unpublished)].

"This fact has been already noted in Ref. 4.
' M. Ademollo, G. Longhi, and G. Veneziano, Nuovo Cimento

SSA, 540 (1968); P. A. Cook and G. C. Joshi, Nucl. Phys. $10,
253 (1969)."S.L. Glashow, H. J. Schnitzer, and S. Weinberg, Phys. Rev.
Letters 19, 139 (1967).

» K. Johnson and F. E. Low, Progr. Theoret. Phys. (Kyoto)
Suppl. 37—38, 74 (1966); G. Konishi and K. Yamamoto, ibid. 37,
1314 (1967).

'4 F. Buccella, G. Veneziano, R. Gatto, and S. Okubo, Phys.
Rev. 149, 1268 (1966).
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Another way of deriving Eq. (20) is to calculate the
Schwinger terms for equal-time commutators directly
by the limiting procedure, as has been indicated in
Ref. 4. In this way, one obtains Eq. (20) again, even
including the case with a=b=O. At any rate, we believe
that the validity of Eq. (20) is reasonable and that
there are some theoretical grounds for it. Together with
the other sum rules, Eqs. (15), which will be shown to
be also derivable from the asymptotically broken

SU(6)s, these indicate, indeed, that the SU(6)s group
may be a reasonably good asymptotic symmetry in the
high-energy limit, as far as the two-point functions are
concerned.

III. ASYMPTOTICALLY BROKEN
SU(6) s SYMMETRY

In the previous section, we derived an asymptotic
SU(6)&r sum rule in Eqs. (19) and (20). Here let us
consider sum rules involving pg~, „"' and p&~( ). For
these, we have to consider terms of the order 1/k and
1/k', respectively, when we let k —& oo for I»(k). As we
have emphasized in the Introduction, it is then likely
that we have to consider some effects of symmetry
violations. For example, consider the LK representation
for the Green's function (P,A), and apply, the idea of
asymptotic SU(3) symmetry. When k~ ~, then it
decreases as 1/k, as we see from Eq. (9), and hence we
should expect an asymptotically broken SU(3) sym-
metry in the first order. Indeed, this is precisely what is
happening as we see from the sum rule Eq. (15b).
Analogously, for SU(6)s, we have to take into account
the first-order breaking of SU(6)s symmetry. Now,
taking the quark Lagrangian model as a guide, we

suppose that it is the mass term bmg(x)lisp(x) that
violates both SU(3) and SU(6)w groups. Then, our
argument suggests that we expect to have

lim I»(k)
z

=0(1)+—Q n;
k' ',i

Z

X(t LQ l'Q l (vk)] —(A Il))+ ZP'—
k' ', ~

X (tr(Q~X;) tr[Q»l~, (yk)]
—(A ~ 8))+O(1/k') (21)

for some constants n;, and p,;, where the term O(1) is
given by Eq. (17), and the summation over i and j runs
over only i= j=0, i=0, j=8, and i=8, j=O cor-
responding to the first-order SU(3) violation. Then
Eq. (21) leads to the sum rule

dm'p» „is&(m)

=Z ~.,[«(Q~l 'Q.l,~.)—(A ~ Il)]

Furthermore, because of the charge-conjugation in-
variance of the theory, it is not dificult to show that we
must have P,,=O in Eq. (22). Then, in terms of com-
ponents, Eq. (22) is rewritten as

dm'p. b(m, S—V) =— dmsp, b(m, A T)—

= —4(g-,') (~os —~so)fs.b, (23a)

dm'p, b(m, P—A) =— dm'p, b(m, V T)—

4[s&o~ab+ (&os+&so) ("i/s)dsab]

»m I»(k) =o(1)+o —~+I»"'(k)+O~ —
~,

kk/
'

Igi& "&(k)

1
=—&a*[t (Q l'Q ~')+(A &)]

k' ', ~

+—+ f.,[«(Q.l .) «(Q.~,)+(A - Il)7
k' ', ~

(24)

+—g k;,[tr(Q&qk&;Q~qkx;)+(A ~8)]
k4 ', ~

1
+—Q l;,[tr(Qgyk&~;) tr(Q»ykX, )+ (A c-+ Il)],

k4 ',i

where the summation over i and j runs only over 0 and
8, and g... f;,, k;, , and I,, are some constants. Equation
(24) gives two sum rules for

dm'p» „„&'&(m) and dm'p» o& (m) .

However, the simultaneous validities of both sum rules
are shown to lead to the relation

dm'[p, P&(m, A —A) —p, bo&(m, A —A)]

dm'p. b"'(m, V —V),

(23b)

It is remarkable that these relations are essentially the
same as Eqs. (15a) and (15b) if we have nos ——0 with the
identification Ps=4(gs)noo, $s

——4(gs)nso. The fact
that our procedure essentially reproduces Eqs. (15) may
be taken as other evidence of the correctness of the idea
of broken asymptotic SU(6) &r symmetry.

Encouraged by this fact, we may consider the sum
rule up to the order 1/k'. We must now consider SU(6) s
violations up to the second order. Thus, we may write

++~ [t (Q & ) t (Q & ) (A &)] (22) which is very undesirable since in the soft-pion limit the
left-hand side vanishes identically. However, the sum
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rule involving p~i), „.&3&(m) is probably too strong, since
a similar one is already given by Eq. (18). As a matter
of fact, a similar difhculty arises even for asymptotic
SW(3) or SU(3) symmetries for (VV) or (AA)
Green's functions when we consider higher-order effects.
Presumably, for the sum rule involving p~a, „„&3&(m), we
must also consider possible SU(6)s-violating inter-
action Hamiltonians. Hence, we take an attitude that
the second-order asymptotic sum rule, Eq. (24), must
be valid for the one involving p~Bo&(m), but not
pz», »&»(m), i.e., we should only use

dm'p~a &'&(m)

=Q g,,Ltr(Q~I&, QaX))+ (A ~ 8)7

+P f,)l tr(Qg&&, ) tr(Qi&X;)+(A ~ 8)7

If fs, and l88 are small, i.e., if we can neglect the second-
order SU(3)-breaking effects, then Eqs. (26) will be
valid also for a=b= 8.

Our sum rules, Eqs. (26), differ from and are more
complicated than ones suggested by other authors. "
Applications of our sum rules will be given in the
following paper.

Utv«=v4 (A1)

Now, the SU(6)s subgroup of U(6,6) is defined by the
further restrictions on U,

APPENDIX

Here we consider a classification of 5, V, A, T, and I'
operators on the basis of the SU(6)s group. ~ To that
end, we first note that the U(6,6) group is delned as a
group consisting of 12X12 matrices satisfying the
condition

U '(i')—U=iyk, detU= 1, (A2)

for .all collinear four-momenta k. For simplicity, let k„+4+ t,;Ltr(Q~y„I&;) tr(Qi)y„X,)+(A ~ B)7' (25) be a momentum along the z axis, i.e.,
st p

Incidentally, our philosophy would be correct if we have
a purely vector four-quark interaction of the form

(qy„q)(qy„q), as the SU(6)&&-violating interaction, and
if we have to add the first-order breaking e6ect of such
a term to the right-hand side of Eq. (24). Then we
would still have Eq. (25) but not the sum rule involving

pea, »&'&(m). The presence of such interaction implies
that we may have a specific SU(6)s-breaking inter-
action corresponding to a sum of 35280280(9189
g 40S dimensional representations.

At any rate, Eq. (25) gives, for cases aWO, 8 and

bNO, 8, the relations

dm'l p, &, (m, S—S)+p &, (m, P P)7—

k„= (0,0,k,iko) . (A3)

Then Eq. (A2) gives

v U=vv4, v U=U&. (A4)

If we use the Dirac representation for y matrices, then
Eq. (A4) implies that U must have the form

&V 0
!U=!

40 o avo.g)
(A5)

where V is a 6)& 6 unitary unimodular matrix belonging
to the SU(6) group. Corresponding to Eq. (A5), let us
decompose q(x) into

dm2Lp, &'&(m A A)+p,—"&'( mv —V) (A6)

—-',p. ), &»(m, A —A) —-',p, &,
&'&(m, V —V)7

where P(x) and o 3/(x) are six-component spinors. Then,
when we let q(*) U, (.,), we h.ve

~i &7

dm'Lp, &, (m, S—S)—p, &, (m, P—P)7
y(x) ~ Vy(x), g(x) ~ Vt(x). (A7)

dm2! p, &,
&i&(m, A —A) —p, &, &i&(m, V —V)

——p, & (m, A —A)+—
p $& (m, V —V)7

dm'l 2p. &, &'&(m, T T) p. &, &2&(m) T T—)7— —

=2 2 g')Ltr(P„&& I&bI&))+(a~ b)7 (a, b/0, 8). (26b)

Hence, if we write these components as p~(x) and
$~(x) (A = 1, . . . , 6), then p~ and $~ are covariant
spinors in the SU(6) s group. Thus, one can form the
following four types of 36-dimensional SU(6)s tensors
out of @ and $:

LJ-(x)= kL~t (x)~-~) v (*)+tt(x)~-~jt(x) 7,
1V; (x)=-,'L&ot(x)P, o,q(x) —Pt(x)X,o;P(x)7,

It'-(x) = kl:o t(x)I&-~)4(x)+8 (*)I&-~)& (x)7,
1&'., (x)= —-', iL&ot(x)X o;&(x)—tt(x)X o;q (x)7,



2300 SU SUM tI OKUBO 188

where j assumes values j=0, 1, 2, 3, with os —=1. Ex- The statement of the asymptotic SU(6)&v symmetry is
pressing P(x) and $(x) in terms of q(x), one gets now translated to that of

L,.(x): T4,'(x)
As (x)

:—iV4 (x)

0=1, 2)

(j=3)
(j=o)

lim t, dexe '"&* »(Ol(E, (x),E,e(y))+IO)

lV, (x): A,'(x)
T4s (x)=—Trs (x)

S (x)

(j=1, 2)

(j=3)
(j=0),

for the collinear momentum k of the form Eq. (A3). It
is easy to check that this gives Eqs. (20) immediately.
Similarly, replacing E; by I,;, we obtain the same
result. If we consider

K,.(x): T, s (x)

iA4 (x)

:—Vs (x)

R, (x): es;&.Vz" (x)
I' (x)

:—iTs4 (x)—=iT&s (x)

(j= 1, 2) (A9)

0=3)
(j=O),

lim i d'x e '"&* &(Ol (I.; (x)1V,e(y))+IO),

lim i d4x e—'"&* »(Ol (E;.(x)E,e(y))+IO&

up to the order 1/k, we find the asymptotic sum rules
(23).
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The sum rules of the preceding paper are investigated in detail in pole dominance. The ratio f~jf is
found to be near unity and all nonexotic baryons must satisfy an approximate mass formula &=a—bY
with the universal constant b m3 —m1—150 MeV, where m1, m2, and m3 are masses of bare quarks. More-
over, we compute m1 7 MeV and m3—156 MeV in a model where 55'(3) is exact except for the quark
mass term.

I. DEFINITION OF COUPLING CONSTANTS
' 'N the preceding paper' (hereafter referred to as I),
~ - we have developed several sum rules on the basis of
the asymptotic SU(6)&v symmetry. In this paper, we
study its applications, saturating the sum rules by pole
dominances. To that end, we define various coupling
parameters as follows.

(i) Vector:

(oI U."'(o) l~'(k)&=(2ksV) '"e (k)Gv6)

(Ol V (0) Ice,y(k)&=(2keU) '&se (k)Gv(te or y),

(1/V2)(OI V„&' '"(0)
I
E*+(k))= (2k, V) '~'e„(k)G (E*),

(1/&2)(OI V~&'—'"(0)ll&+(k)&=(2keV) '~'k„Gv(&),

where ~ means the 0 ~ meson.

*Work supported in part by the U. S. Atomic Energy
Commission.' S. Okubo, preceding paper, Phys. Rev. 188, 2293 (1969).

(ii) Axial vector:

(o I A."'(0)
I
A t"(k) &

= (2ko V)
—'"e,(k)GA(A 1) 1

(1/v2) (OI A „'-"&(0)
I
K„+(k)&

= (2k, V)-'&'.„(k)G„(K„),
(OIA " "&(0)I7r+(k))=(2ksV) '~sik„f. ,

(OIA " '&(0) IE+(k)) =(2ksV) '&'ik, fry,

(iii) Sca.lar:

(1/v2)(0 I
S" '"(0)

I &e+(k)) = (2ks V)- '"GB(x),

(1/&2)(0
I

Si'—'"(0)
I e+(k) &

= (2ks V)-'~'Gs(e),

where e is an assumed 0+ meson with l =1 and I'=0,
which may be' ~&v(1016).

(iv) Pseudoscalar:

(Olri &(0)
I

'(k)&=(2k, U)-'&'G ( ),
(1/v2) (0 I

P t'—"'(0)
I
E+(k) )= (2ke V) ' "Gp(K) .

' N. Barash-Schmidt et a/. , Rev. Mod. Phys. 41, 109 (1969).


