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We present here a derivation of Weinberg's formulas for the algebraic structure of current algebra and
superconvergence sum rules in the case of massive pions, using the infinite-momentum method. We show
that Weinberg's formulas are closely related to the fact that there is no T'= 2 part in some double commuta-
tion relations between axial charges Q5, Q5~ and the generators of inhomogeneous Lorentz transformations.

I. INTRODUCTION

&~URING the past few years, a large number of
current-algebra sum rules and superconvergence

relations have been derived using various theoretical
ideas that include current algebra, partial conservation
of axial-vector current (PCAC), dispersion relations,
Regge-pole theory, etc. A powerful assumption that has
been used to extract useful relations is the saturation
assumption, which asserts that a few low-lying single-
particle states dominate the dispersion integral. Many
algebraic relations between coupling constants and
masses have been obtained in this way. ' In particular,
Gilman and Harari' saturated all m.-p scattering sum
rules at t=0 by m., co, and A1, and obtained many results
that are in good agreement with experiment. They also
considered the problem of saturation for /NO sum
rules. ' In the hope of providing a general algebraic
formalism for t= 0 scattering that might serve as a basis
for the applications of chiral dynamics in the future,
Weinberg derived an algebraic relation involving masses
and axial-vector coupling matrices. His relation is more
general than that of Gilman and Harari. Specifically,
Weinberg concluded that the axial-vector coupling
matrices X and the isospin matrices T form a repre-
sentation of chiral SU(2) XSU(2), and that the mass
matrix m' behaves as the sum of a chiral scalar and 3,

chiral four-vector with respect to the commutation
relations with X and T. Furthermore, he was able to
express one of the superconvergence relations for pion
scattering as a statement about the matrices X, and
concluded that the matrix mJ„ is also the sum of a
chiral scalar and the fourth component of a chiral
four-vector. '
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Historically, the statement about the commutation
relations among the I's and T's was 6rst derived by
Dashen and Gell-Mann using the ~p~~~ method. '
However, it was stated in Ref. 4 that there are diffi-
culties in trying to derive the algebraic relation by the

~ p ~

method.
It is the purpose of this paper to derive Weinberg's

results using the jpt —+~ method when the pion is
massive. Besides merely providing an alternative de-
rivation, the present approach has the following ad-
vantage: We can generalize the method to derive similar
algebraic relations for the local current algebra originally
proposed by Dashen and Gell-Mann. ' In Sec. II we
start with the derivation of Weinberg's first algebraic
relation [X',[X',ms))r=s ——0 using the

~ p ~~ method.
In Sec. III we consider the behavior of the axial charge
Qs under I.orentz transformation. In that section we
derive Weinberg's second algebraic relation

[X-,[X',mJ„)), ,=0

after introducing the concept of the little group of the
Lorentz transformations. In Sec. IV we shall discuss
some of the possible generalizations.

II. DERIVATION OF ALGEBRAIC RELATION
[X.,[X',ms)), ,= O

We consider in this section the case in which the pion
is massive. We assume that the time derivative of the
axial charge Qs'(i) satisfies

where D'(i)==s[Q&'(i), H)=dQ&'/di, s and S(i) is an
isoscalar. Equation (1) is true in the a. models as well as
in the free-quark model. "

R. F. Dashen and M. Gell-Mann, in Proceedings of the Third
Coral GaMes Conference on Symmetry Principles at High Energies,
University of 3IIiami, 1966, edited by A. Perlnutter, G. Sudarshan,
and B. Kuryunoglu (W. H. Freeman and Co., San Francisco,
1966).

'R. Dashen and M. Gell-Mann, Phys. Rev. Letters 17, 340
(1966).
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Fubini, G. Furlan, and C. Rossetti, Nuovo Cimento 40A, 1171
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723 (1967).
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We can rewrite Eq. (1) as

LQb, LQb' &]]r=2=o

where the label T=2 on any matrix 8 ~ means

pub gab+gba 2bobgcc

(2)

We recall that the axial charge Qb' is defined as

Qbb=— d'x A b'(O, x) = d4x b(t)A "(O,x)

In order to get physical results from Eq. (2), we
follow Fubini and Furlan" in taking the matrix element
between single-particle states Iap X) and IPpe&). Here

y and pp are in the s direction, and P is the helicity. The
single-particle states are normalized in such a way that

(-p.~l-p. '~') =b 'b"'(p- —y-')

Now we make the following important assumption:
We can neglect the contributions from the pair states, as
zvell as from the continuum to the T= Z part of the matrix
element of Eq. (2), in the limit of I p I

—b~ . This is related
to the fact that the integrand in the continuum con-
tribution behaves as b

&"' ' as v —&~,i2 with nr=2(0)
(0,"and the contribution of the pair states behaves as

I p I

' as
I y I

~~ ."Under this assumption, we conclude
in the spirit of single-particle saturation that

[X (X),[XbP,),Z]],=,=0,

d'x 88(—n x)A'"

where n= (1,0) is the timelike unit vector, and 8 is the
usual 0 function:

0(a)=1 if a)0
=0 if u(0.

It follows that the charge of Qb' under the pure
Lorentz transformation is given by

bQbb=&Qbb& ' —Qb'

d4x 8„0( n' —x)A'" — d4x 8„0( nx)A—'"

d4xa„g( —n' *)—e( n. ,)]Ab,

where X (P,) is defined by d'*[0(—n'. *)—0(—n x)]a A '„, (10)

[X.(Z)].,b'(p —y') —= lim (apl~ I Q, I
pp'Z), (6)

l pl~~

and the energy matrix E is related to the mass matrix
m' by

&= (m'+ Iyl')'"= IyI+m'/2IyI+o(fyl ') ~

In fact, Eq. (5) should be read as

[X.(Z),[X'( ), IpI+m'/2IpI+O(lpI-2)]], =,
+0(Ipl ') =o

From this we extract the relation

[X'P ),[XbP ) ]m]&=&——0. (g)

This is precisely the result obtained previously by
Weinberg. We have succeeded in deriving Weinberg's
first algebraic relation in the case of a massive pion
using the I pl

—b~ method without any complication.

III. DERIVATION OF ALGEBRAIC RELATION
[X.,[Xb,ms„]], ,=O

We have seen in Sec. II that we derive Weinberg's
relation [X', [X,bm']]r~=0 by studying the behavior
of Qb' under time translation, i.e., studying O'. We here
ask ourselves the similar question, What is the behavior
of Qb' under the pure I.orentz transformation&

[Q (0),bQ. ']

d'*(~(—' *)—~(—n *)) [Q '(0) ~"A ' (o *)]

when we consider the infinitesimal transformation,
cj"A b, ~ 8"A b„(O,x). We assume as before that

[Qb', 8"A b„]r=2——0 at equal times, (11)

which is true in the 0- model and in the free-quark
model.

Under this assumption we have [Qb', bQbb]r=~ ——0 for
an infinitesimal pure Lorentz transformation, or

[Q, [Q, ',N]] =,=0 (12)

where Ã is the generator of the pure Lorentz trans-
formation.

In fact, here we are interested only in a special sub-

group of the homogeneous Lorentz transformation,
namely, the little group' that leaves the momentum

p~= (E,= (m, '+p')'i', 0, 0, p) inv—ariant. The unitary
operator corresponding to the element in this little

where 0(—n' x) —8(—n x)WO only in the region
bounded by the hypersurface e.x = 0 and m' x=0. One
obtains from this

"S.Fubini and G. Furlan, Physics 1, 229 (1965).
"See, e.g., S. Adler and R. Dashen, Current Algebras (W. A.

Benjamin, Inc. , Xew York, 1968), Chap. 4.
'3R. de Alfaro, S. Fubini, G. Rossetti, and G. Furlan, Phys.

Letters 21, 576 (1968). See Ref. 3.

'4 For a general discussion of the problem of the little group and
the definition of spin, we refer to the article by A. S. Wightman,
in Dispersion Relations and Elementary Particles (Wiley —Inter-
science, Inc. , New York, 1960), pp. 161—226.
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group can be expressed as e'" ", where

The following properties of 8'~ are easily established:

W&P, =O, LW",P~j=0,
[W";W~j= i."—» P,W. ,

LW" M~"j= g»W" g""W—~

where M&"= —M"& are generators of the homogeneous
Lorentz group.

Explicitly,
W'= —p J,

W= —p'J+ p XN, 1V' Mo'

LW', Mo'j = PW', M"j=0.

Using Eq. (12) and the fact that Qii is invariant under
translation and rotation, one proves easily that

Here J is the usual angular momentum matrix defined
to act on the helicity indices only. Equation (17) was
erst derived by %einberg using the superconvergence
relation.

IV. DISCUSSIom

So far, we have succeeded in deriving Weinberg's
results in the case of a massive pion using the ~pj~~
method of Fubini and Furlan. We have also pointed out
the connection between Weinberg's results and the
absence of a T=2 part in some double commutators
between the axial charges Qi', Qqi and the generators
of inhomogeneous Lorentz transformations. In this
section we want to mention some of the possible
generalizations.

(1) Our present method can be easily generalized to
the case of local current algebra proposed originally by
Gell-Mann and Dashen. One relation that can be
obtained reads

EQ...LQ.',w jj.=.=o,

LQi LQi' W'jjr=i=0.
(15a)

(15b) Lx( )P'( ) '+

It is well known that the little group provides a co-
variant description of the spin'; in particular,

8, W~Lm„sj0o)= m,ni—(J)...~tm„sj0a'),
n, W~fm„sj, po)= m, n, (J).—.~(m„sjpo')

(p in the z direction).

Here A& is any unit vector in the 1-2 plane, and J acts
only on the helicity indices a.. The second equation is
derived from the first by using the fact that 8' and 5"
are invariant under the boost in the s direction.

To extract the physical content of Eqs. (15a) and
(15b), we take their matrix elements between two single-
particle states ~opJ ) and ~Ppeiie), andlet ~p(~~. In
this limit the little group is the same for all particles.

The following is our essential assumption: 8"e assume
that we can neglect the contributions from pair states and
the continuum to the T=Z part of the matrix element of
LQi' LQi~,ni Wjjin the limit of ~p~~~.

The single-particle contributions can be readily
evaluated in this limit. We end up with the result

This can be viewed as a generalization of Weinberg's
relation.

(2) The little group has been proved to be an im-
portant tool in the Sec. II. We may go one step further
than Sec. II by considering a 6nite transformation.
In fact, if the pion is massless, we can prove that
LQii, exp(in' Wp) j=0. Although the

~
p(~~ method

is no longer appropriate for the case of the massless
pion, we can use the dispersion approach of Fubini" to
obtain useful results from LQii, exp(in, Wq) j=0.The
result we can obtain is PX LX',exp( —in' Jmp)jjr=q
=0. We will not attempt to derive this or discuss its
possible consequences here. They will be left for a future
publication.
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