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In the quark model, the leading baryon trajectory is resolved into infinitely many degenerate trajec-
tories. An exchange-degeneracy pattern of periodicity 6 j=6 is obtained. At finite physical values of the
spin, only a 6nite number (increasing with the spin) of these infinitely many trajectories support particles.
A general hadronic mass formula is proposed.

1. INTRODUCTION

'HE absence of exotic hadrons $i.e., baryons other
than SU(3) singlets, octets, or decimets, and

mesons other than nonets, etc.] that couple very
strongly to the usual mesons and baryons is an experi-
mental fact. Channels with exotic quantum numbers
can "communicate" with normal channels through
crossing (e.g., E+p~E+p with K p~ K p). Thus,
the absence of very strong resonances in the exotic
channel leads to dynamical consequences in normal
channels. These consequences take the form of ex-

change degeneracies between various normal-channel

Regge trajectories. For mesonic trajectories, exchange
degeneracy has been explored in detail. For baryons,
exchange degeneracy has been considered more recently.
The difficulty of the problem is due to our lack of
knowledge of the detailed baryon spectrum. Following
Schmid's' proposal of baryonic exchange degeneracy,
Capps' studied the exchange degeneracy of baryonic
SU(3) multiplets. This work, however, is confined to
processes involving as external particles only the 36
ground-state mesons and 56 ground-state baryons. He
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also assumes that the leading baryon trajectories are
an even-signature (56, L=nz&(s))+ trajectory and an
odd-signature (70, L=n7e(s)) trajectory. The former
supports the particle multiplets (roughly equally
spaced in mass squared) (56, L=O)+, (56, L=2)+,
(56, L=4)+, , while the latter supports (70, L= 1),
(70, L=3), (70, L=5), Exchange degeneracy is
imposed in the form n5&(s)=n7p(s), and of certain
relations between the residues. In this scheme, the
absence of 20-plets is just a consequence of the limita-
tion to 35-56 scattering rather than an actual feature
of the baryon spectrum. In the processes MM —+ BB,it
requires the presence of exotic resonances. To avoid
this undesirable feature, Mandula et al.' have suggested
that an cree-signature 70 trajectory is degenerate with
the even-signature 56. While this achieves the desired
result it also confronts one with the unattractive (and
experimentally catastrophic) feature of a low-lying
(70, L=O)+ supermultiplet. A possible way around
this difficulty was proposed by Mandula, Weyers, and
Zweig, 4 who suggest that there exists a hierarchy of
exchange-degeneracy principles and that the (56,L= 0)+
—(70, L=O)+ degeneracy is far from the top of this
hierarchy and, therefore, is badly broken. Thus, the

' J. Mandula, C. Rebbi, R. Slansky, J. Weyers, and G. Zweig,
Phys. Rev. Letters 22, 1147 (1969).

4 J. Mandula, J. Weyers, and G. Zweig, Phys. Rev. Letters 23,
266 (1969).
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even-signature 70 trajectory exists but way below the
56 trajectory. The corresponding particles are there-
fore much heavier.

In this paper we wish to expand the scope of these
investigations, exploring some features of baryonic
Regge trajectories in a quark model. Baryons, being
built of three rather than two quarks, have more
degrees of freedom than mesons. In particular, there
are increasingly many possibilities to form states of
maximum orbital angular momentum as the mass of
the state increases. This allows an infinite degeneracy
of the leading baryon trajectory. It is this feature of
baryonic Regge trajectories that we describe in Sec. 2.
In Sec. 3 we derive a general hadronic mass formula
describing the transition from the quark model's
U(6) && U(6) &&0(3) symmetry to the chiral U(2) && U(2)
symmetry.

rI = (m„'—moI)/p'. (3)

As e increases the value L=ri gets occupied by more
and more multiplets. We present in Fig. 1 the super-
multiplets appearing on the trajectory (2) for 11&~8.'
We see that at +=0, there "starts" an even-signature
trajectory (marked by the first vertical dashed line in
Fig. 1) of 56-plets. At n, = 1, there starts an odd-signa-
ture trajectory of 70-plets. At m=2, we see the first
recurrence of the 56 trajectory that started at rI=O
and a new even-signature 70 trajectory starts, etc. The
general rule is that at'

2. INFINITELY DEGENERATE LEADING
BARYON TRAJECTORY

To describe the possible infinite degeneracy of the
leading baryon trajectory, we consider the case of three
quarks in a harmonic-oscillator potential. The baryon
mass spectrum is then

m„'= mo'+p'rt,

where II is the radial quantum number (number of
oscillator quanta). At mass m ' there is an "accidental"
degeneracy. The orbital angular momenta L of the
degenerate states range from 0 to e. Each value of L
may be occupied more than once The parent (leading
Regge trajectory) is given by the equation

(2)

where )using Eq. (1)j
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FIG. I. Supermultiplets appearing on the trajectory I=n for n(8.

56~+ t'56q-
(»)'

I ~; (7o)' (7o)-;
2OJ &2Oi

'

All these trajectories are degenerate. Trajectories that
start at a certain value of e, extend below that value of
II, but they do not support particles (the spaces marked
by blanks in Fig. 1) with L(rI. Thus, the leading baryon
trajectory is infirtitety degerterate. Yet at any finite
physical value of the spin, only a finite number (in-
creasing with spin) out of these infinitely many de-
generate trajectories support particles.

Now, let us see the way in which the exchange de-
generacy of Regge residues ensures the absence of
exotic resonances in the crossed channel. A trajectory
that "starts" at certain value L must have zeros in its
residues for L&e that cannot be present in trajectories
that start at L'~& L—2. Therefore, the exchange-
degeneracy pattern should be such that cancellations
occur only among trajectories "starting" in neighboring
(i.e. , diA'ering by 1) values of L. The "natural" pattern
is therefore

t56—
(56)'~(») (7o)+~I; (7o)+~(70)-.

&2O

e= 0,
=3m&0,

=3p+1
q

=3p+2
q

a 56 trajectory of even signature starts;
a new 56 and a new 20 trajectory of
signature (—1)'" start;
a new 70 trajectory of signature (—1)'"+'
starts;
a new 70 trajectory of signature (—1)'"
starts.

where the sign indicates the "orbital" signature (which
is equal to the parity). We see that the patterll is
periodic. It repeats itself every sixth value of L. From
(4) the leading baryon trajectories will follow the
periodic exchange-degeneracy pattern

' This is a straightforward consequence of the group-theoretical
arguments of G. Karl and K. Obryk, Nucl. Phys. BS, 609 (1968);
%. Thirring (private communication).

(IO)' (g) ; (g)' (1o) (8)' (g) ; (4b)

The next-to-leading trajectories obviously also follow
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a periodic pattern:

10 +
8 ~ (8)—,

10
+-+

~ 1.
(8) ~ (8)+, (10) ~-+ (8)+, (8)-+-+ . . . (4c)

We have checked (see Appendix A) the patterns (4b)
and (4c) in 35-56 scattering and 35-70 scattering. The
D/F ratios and other Clebsch-Gordan coeKcients pre-
dicted by U(6)s XO(2)r„are such that the absence of
exotic baryons in both s and I channels is simultaneously
implemented (some of these results are contained in
Ref. 3). In 35-56 scattering, of course, all 20's decouple.
Observe that we require cancellation among the leading
trajectories LEq. (4b)] and next to leading trajectories
LEq. (4c)] separately. We use only the SU(6)-vertex
predictions but not any collinear four-point predic-
tions. As such, 'our results are not sensitive to mass
splittings within SU(6) multiplets.

In 35-20 scattering, the 56's decouple. This requires a
shifting of the pattern by one unit for this case since
the first (n= 0) 56 does not have a 20 partner. Thus, for
35-20 scattering, we have

(70) (70)+, (2o) (70)'
(7o) ~ (20)+ . (5)

and similar shifts in the patterns of leading trajectories.
In this case the D/F ratio of +1 for the coupling of the
J=L+,' octet of the 70-to the J=L+ ', octet of the-
20 and the 0 octet mesons is just that required by the
(20) c-+ (70)+ and (70) +-+ (20)+ links in the pattern
(5). Thus, this periodic (again with period AL=6)
pattern is consistent for 35-20 scattering as well.

We have implemented in all these cases the absence
of exotic resonances in all baryon-number-one channels.
In the BB—+ MM channel, we have to invoke ideas of
the type advanced in Ref. 4 in order to rid it of exotic
states. Thus, somewhere at higher masses we have to
find the 70 L=O multiplet and its recurrences, daugh-
ters, etc.

Besides the implications for the baryon spectrum, an
important consequence of the infinite degeneracy of the
leading baryon trajectory concerns near-backward
meson-baryon scattering. In this region one can param-
etrize the meson-baryon scattering amplitudes in terms
of a few Regge poles with smoothly varying residues.
If there are infinitely many degenerate trajectories, then
these smoothly varying residues are actually some effec-
tive residues obtained from alt' these trajectories. Then,
it would not be surprising if, upon extrapolation of these
smooth residues to the mass of the first physical particle
Lsay, the h(1238) on the 6 trajectory], they would not
match the value of the residue obtained from the elastic
width (i.e., from one trajectory). Such a mismatch seems
indeed to occur for the 6 trajectory. 6

s R Aniatiii (Private conittiuiltcstion).

An important experimental test of our proposal is
the following. We predict that at L=2 along with the
Regge recurrence of the 56 we should have also a
(70, 1; L=2) multiplet. This means in particular an
octet of J =~+. This octet contains an I=O Y=O
baryon A7/s+, If sich a A7/Q+ is found in the Z-GeV mass
region (i e ,. i.n the L=Z mass region), this tvi// be strong
evidence in favor of our scheme, as opposed, say, to a
scheme where all even I. multiplets are 56's and all oddI multiplets are 70's.

In this paper we have confined ourselves to leading
(parent) trajectories. Satellite (daughter) trajectories
can be discussed along the same lines and will be also
infinitely degenerate. The details, however, will be
different for second and higher daughters. For first
daughters in the harmonic-oscillator model, the se-
quence of appearance of new trajectories is the same as
for the parent.

3. GENERAL HADRONIC MASS FORMULA

Our discussion so far has kept within the quark
model and the U(6) X U(6) XO(3) classification of
hadrons that it entails. Experimentally, the chiral
U(3)XU(3) for, more accurately, U(2) X U(2)] classi-
fication is more realistic for classifying Regge trajec-
tories. Indeed, we have ns(s) —tt~(s) =n„(s)—a (s) = st

and not 1 as expected from U(6)XU(6)XO(3). We
therefore ask ourselves whether chiral U(2) XU(2) can
be obtained by a suitable breaking mechanism of
U(6) X U(6) XO(3). The clue to this problem is that in
the U(2) XU(2) limit there are still a number of un-
wanted degeneracies' like

m '=m ' m'=m'=0
along with the desirable relations such as

m~ 'mg '.m '.m, '=3:2:1:1,
m/1' ms/' —m' ——m '=md ' m '=m ' etc. , (6b)

(the equality of the slopes of a// hadronic Regge
trajectories) .

The fact that the 8 and 3~ mesons are degenerate,
along with Eq. (6c) in this limit excludes the possi-
bility of an I S force producing the bulk of the mass
splittings. We first classify all hadrons according to
U(6) XU(6) XO(3). Mesons belong into (6, 6; L =a+bt)
representations and baryons into (56,1; L =c+dt),
(70,1; L =e+ft), etc. , representations. Let us label each
hadron H by the following quantum numbers: r =No. of
quarks+No. of antiquarks in H, 8=baryon number of
H, 11 =No. of lan+No. of li in H, L =total orbital angular
momentum of quarks in H, S= total spin-angular

7 M. Ademollo, G. Veneziano and S. Weinberg, Phys. Rev.Letters 22, 83 (1969); P. G. O. I'reund and E. Schonberg, Phys.Letters 2SB, 600 (1969).
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momentum of quarks in H, J= total angular momentum
of H, m=genealogic radial quantum number defined
such that m=0 for particles on parent trajectory, e=i
for ith daughters, and X=all other quantum numbers
such as SU(6) multiplet, SU(3) multiplet, isospin, etc.
We now write down a mass formula that depends on
these quantum numbers in such a way that the initial
U(6) X U(6) XO(3) syinrnetry is broken down to
U(2) XU(2) and the relations (6) hold. This formula is

(see Appendix 8)
m2(v, B,vg, L,J,n,S,X) =mv'(L+ J+2n)

+m, 'Ln
I
BI+ (1—n) (v —2))+-', mx'vv), . (7)

It contains only one unknown parameter: n. This
parameter o. fixes the dependence of m' on v and should
be measurable once exotic resonances are firmly
established. The over-all m„' factor in the second term
has been adjusted so that the empirical formula

Thirring for a very useful conversation on the harmonic-
oscillator model.

APPENDIX A

The method for checking baryonic exchange de-
generacy is well known. Here we simply give a brief
derivation of one of our new results. Consider the case
of 35-20 scattering and, specifically, the scattering of the
0 octet on the 'LL+~f~ octet of the 20. Only 70's and
20's can contribute, since the 56-35-20 coupling is
forbidden. The leading J=L+$ trajectories of the
70 and 20 are, respectively, an octet and a singlet. For
an octet and a singlet to cancel in all exotic channels
Lusing the well-known 8X8 —+8X8 SU(3) crossing
matrix), one finds that the octet has to couple with
D/Ii =+1.This is precisely the D/Ii ratio predicted by
U(6)s XO(2)r„. Our other checks can be made along
the same lines.

mQ = 2mp2=3 2 (8) APPENDIX 8

is obeyed. This corresponds to a&(0) =4, ~&(0) = —4.
It is interesting that with formula (7), alt nonstrange
hadronic Regge trajectories (mesonic and baryonic)
with v ~& 3 become equally spaced. Their zero intercepts
a(0) =+-,', +4, 0, —~i, ——,', . . . The last term has been
arranged to implement the quark-model mass formula'

(mrr' —M ')/(m-. '—Mn') =-'

and the analog formulas for v) 3. The full U(6) X U(6)
XO(3) symmetry breaking in (6) originates in the
terms proportional to J and v~. This formula should be
useful in future discussions of the relation of U(6) and
chiral-type symmetries in strong interactions.

4. CONCLUSIONS

To sum up, in this paper we have shown that because
of their qqq structure, all baryon trajectories including
the leading (parent) baryon trajectory are likely to be
infinitely degenerate, while supporting a finite number of

particles at each finite physical value of the spin. We
have presented a specific mass formula LEq. (6)) that
allows the transition from the supersymmetric U(6)
X U(6) XO (3) case to the more realistic chiral

U(2) X U(2) case to be made.
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d=f. (82)

The equality of the slopes of all Regge trajectories
then requires that

d= f=0 and b+c=const independent
of v, v)„B, X. (83)

The relations

m'(2) 0, 0, 0, 1, 0, 1, Y=O) I=1)=m '

m'(2, 0, 0) 0) 0, 0, 0, V=O) I=i) =m '=0

and

m'(2, 0, 0, 1) 1, 0, 1, F=0, I= 1)=m& ' =2m '

then require that

a~8 0) v=2 0)=
and predict mg, '=3m, '.

b=c=m'p

To ensure that at the A2 mass we have an I.=O,
J =1 "daughter, " we require that e=2mp'. The 8,
v, and vq dependence of a is explained in the main text.
This concludes our argument for Eq. (7).

We present here our argument in favor of the mass
formula (7). The fact that alt trajectories must be
straight lines means that m' must be of the form

m'(v, B,vi, L,J,n,S,X)=a+bL+cJ+2dL S
+en+ fS(S+1), (81)

where all coeKcients a f can—be functions of v, B, vi,
and X.

The chiral mass formula m~'=mg, ' implies that


