PHYSICAL REVIEW

VOLUME 188,

NUMBER 5 25 DECEMBER 1969

Additional Relations between Spin-Density Matrix Elements*

RoBerT L. THEWS
Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627
(Received 11 August 1969)

The spin structure of amplitudes for the joint production of a baryon and meson resonance of arbitrary
spins has been investigated. Both meson-nucleon and photon-nucleon interactions have been considered. If
the production is dominated by the exchange of a single set of quantum numbers, relations between spin-
density matrix elements exist in some cases and provide an experimental test for this mechanism. Com-

parisons with data are given for some reactions.

I. INTRODUCTION

HIS is an extension of previous work! on quasi-
two-body reactions initiated by pseudoscalar
mesons on nucleons with a single meson or baryon
resonance in the final state. References to this work will
be denoted by RT. The more general quasi-two-body
reaction is studied here, with both a meson and baryon
resonance in the final state. In addition, the same reac-
tions are considered when initiated by photons. A
summary of the formalism and notation is presented
below. The reader is referred to RT for further details.
Consider the s-channel process A4B— C4+D. We
look at the decay of particle C or D in the ¢-channel
frame.? Then the spin-density matrix elements pnm can
be expressed in terms of the helicity amplitudes
Fyppaae for the crossed- (&) channel process 4+C
— B+D. The relation is

2 Faxpoaanl o agm™
AAMABAD

Pmm’cz (1)
> [ Faoaacl?

MAABACAD

for particle C, with a similar expression for particle D.
The independent measurable density matrix elements
for a spin-J particle are

Pmm,y 0< mS J
Repmn, lnf <mSJ
and
Pm—m if J is an integer.

Relations between spin-density matrix elements
follow from relations between the {-channel helicity
amplitudes required by conservation laws for the
exchange of definite quantum numbers such as parity,
isospin, G parity, and, for Regge trajectories, J parity.
[o=P(—1)7 for Bosons or ¢=P(—1)7=12for fermions,
where P is parity and J is the spin of a particle lying
on the trajectory.] The results are summarized in RT
(7)-(13) and will be used extensively in the following
derivations.

* Work supported in part by the U. S. Atomic Energy
Commission.

1 G. A. Ringland and R. L. Thews, Phys. Rev. 170, 1569 (1968).
2 K. Gottfried and J. D. Jackson, Nuovo Cimento 33, 309 (1964).
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For the meson spin-density matrix elements pmm/, We
look for relations similar to those for single-meson
resonance production [RT (36) and (37)]. For a single
exchange with J parity oz, the results are

Repmm"l_U'Vo'E(- 1)m’ Repm,-m’

=Z/ Re(Fm,)\n_a'N*O'E(—'1)"_)\Fm,—~7\-n)
n,\

X(F o an—0owsag(—=1)" M0y _n)* (2)
and
Repmm —oyor ( —1)™ Reppm,—m =4 ReFm,%%Fm/,%%*
+Z’ Re(Fm,)\n—FUN*(TE(— 1) "‘_)\F‘m,—)\—n)
n,\
X(Fm’,)\n_}—o'N*a'E(_ 1)n—)\Fm’,—)\—n)* 5 (3)

where Z,,)/ denotes the restricted sum #>0, A==43,
ns#%\, and the normalization factors have been omitted
for simplicity. For a single-meson resonance production
the only # value is +3% and the square of (2) leads
directly to the relations RT (36) and (37). However,
when Jy«>%, the sum over # values produces inter-
ference terms in the square of (2). These terms prevent
the relations RT (36) and (37) from being valid in the
general case. However, one can still use the terms with
m=m' to derive inequalities involving the diagonal and
antidiagonal elements. For this case, all the elements
are real, so that the relations will hold for an arbitrary
number of exchanges with the same J parity. One
writes each /-channel helicity amplitude F, . as a
product of a residue function and a rotation coefficient
R (B)dna,n" (x), where x is the cosine of the {-channel
center-of-mass scattering angle. Then one uses the
parity relations

Rm,—)\—m= ON *U'ERm,)\n (4)
and the relation for rotation coefficients
dn—)\,mJ:L_- (—' 1)n_)\d)\—n,m',
=[x+ =@— D] fnn"(r2), (S)

where 7=min(m, n—\) and only leading-order terms in
direct-channel energy (s) are kept in f/. Part of the
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summation in (2) can then be substituted in (3) to yield
Prm—0v05(—1)"pm, = 4F 1y 332
(Ziii: Z: 3:)2(pmm+am(— 1", )
R an fmpmn? (1,2)\?
<(x+1)’”— (x—l)'")

X (1) (= )7 P 1) (g —1),

+ 3

n—A<m

(6)

where 8= (x—1)/(x+1)>1 for the physical s-channel
region x< —1. Since all terms not involving the spin-
density matrix elements are positive definite, we get an
inequality

ovor(— 1) pm, 02> Gu(®)pmm,

2(x2—1)m™
Gm(x)= >0.
(wH1)2m4 (x—1)2m

(M

where

®)

Thus we have both a restriction on the sign of pm,—m and
a lower bound for its magnitude. The result can be
stated in the following way. For the production of a
meson resonance with J parity oy along with a baryon
resonance of arbitrary quantum numbers via the ex-
change of an arbitrary number of trajectories with the
same J parity og, the sign of pm—m must be
ovop(—1)"+ and the magnitude must satisfy

2@ —1)" [om,—m]
E+H "+ E=1P"" pum

)

—_

where the upper bound comes from parity conservation
alone. For m=1 we see that the lower bound is identical
to that in RT (39), where the baryon is restricted to
spin § but m is arbitrary. It is easily seen that
Gmi1/Gn<1, so that the price of allowing arbitrary-
spin baryon production is two weaken the lower bound
for high-spin mesons.

As an example of the application of these constraints,
consider the reaction 774 p — (%, f)+At++. Data are
available at pion lab momenta of 4.0 and 8.0 GeV/c¢
for the p° and «°, and 8.0 GeV/c for the f°.2 For p° and
o’ the sign of p1,_1 must equal the J parity of the
exchange og, and the inequality

x2—1 Ipl,—-ll
< <1 (10)
%241

P11
must be satisfied. For o° the sign of p1,1 is positive so
that if there is a dominant J-parity exchange it must
be positive; the p, for example. However, the element pqo
only receives contributions from negative J-parity
exchange,? and it is nonzero in this reaction. As a further
check, we plot the lower bound (10) and the data points
in Fig. 1. It is seen that the data points fall well below
the lower bound, indicating again the necessity of both
positive and negative J-parity exchanges. For g° pro-
duction, the sign of p1,—1 is not determined within
experimental errors, although the central values are
negative. The element poo is also nonzero, so that the
signs are consistent with a dominant negative J-parity
exchange, such as the pion. However, Fig. 2 shows again

3 Aachen-Berlin-CERN Collaboration, Phys. Letters 22, 533
(1966).
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that the lower bound (10) is violated, so that both
positive and negative J-parity exchanges are needed.

For f°production, we have bounds on the magnitude
of ps,—2 and p;,—1 as well as prediction for their sign.
Unfortunately, the analysis of the angular distribution
for f° decay indicates a negative value of pss. This can
come about only when the decaying object is not in a
pure spin state, so that the contribution of background
events must be substantial. Thus a meaningful inter-
pretation of the spin-density matrix elements for this
reaction is not possible.

Data also exist for the processes K—+p— (o,0)
+V*(1385) at 4.1 and 5.5 GeV/c.t The leading candi-
dates for exchange are the K and K*. Since they have
opposite J parity, the sign and magnitude of p1_3
should give information on whether one or the other or
both are dominating. For p production the sign of
p1,—11s negative, indicating negative J-parity exchange.
But the ratio | p1,—1|/p11 exceeds unity, indicating J 1
components in the p-decay products, and preventing us
from determining if positive J-parity exchanges are also
present. For ¢ production the sign of p;_; is not well
determined, but the nonzero values of pgo require some
negative J-parity exchange. The ratios are

pl,—l/P11=0'50—0.86+1'17 at 4.1 GCV/C
=—0.23_0,41+0'40 at 55 GCV/C.

Since average (x?—1)/(x>+1) values are typically
around 0.6-0.8 at these energies, it does not seem that
the lower bound for |pi1,—1| can be satisfied if it is
negative, so that there is an indication of positive
J-parity exchange.

4 J. Mott et al., Phys. Rev. 177, 1966 (1969).

For the baryon density matrix elements p,,/, one can
write the expressions (assuming single trajectory
exchange, so that all amplitudes have equal phase)

(Reppn)?= )‘Z, N Foal o For ol nrne (11)
and -
(Repn,—n )= > (=1
mN,m! N
XE 3l — s For ool o\ (12)

If no meson resonance is produced, we have m=m'=0,
and the terms with A%\’ in (12) cancel, so that we can
write

(Repnn’)2+ (Repn.—n')2 = PanPa’n’ ,

which is RT(19). However, when we allow m to be
nonzero, the terms with different values of m interfere,
and no general relation is evident. One cannot a priori
restrict the sum to m =0 values, since an exchange that
couples to m=0 will in general also couple to m><0. But
if oyog=-1, the m=0 amplitude will not be present,?
and we have only m=20. This may be useful in the pro-
duction of vector and axial-vector mesons where only
m= =1 values are present, and one can be related to
the other by parity conservation. The relations are

F_iyn=—0aF1n, n—A>1 (13a)
Foipn=—(1/@)F1rn, n—A<—1  (13b)
F_ian=F1iyn, n—A=0 (13¢)

a=(1—2)/(1+=2), (14)
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where x is the usual cosine of the {-channel scattering amplitudes:
angle, and we have dropped lower-order terms in the +a)?
direct-channel energy (s). The sum in (11) and (12) is punpyy— (Repay)®— (Repn,—3)?= B (1+a)*yA?
over A\==1%, so that if we restrict #,n'>%, case (13¢) a
will never occur. Then it is easy to derive the following (1+a)* (1+a)?
relation: A2B? (Repn,—3)?.  (20)
2a

4a(Repnn)?+ (1402 (Repn,—n)?

= (1+a2>2pnnpn’n’ . (15)

Note that as s— o, x— — o away from the forward
direction, so that ¢ — —1 and (15) becomes identical
to RT(19). However, close to the forward direction x
remains finite and the correction terms in (15) are
quite important, even at high energy. When we allow
n'=3%, the relations become more complicated:

Repny= (1—a)A B+ogon:[ (1442 /a]JCD, (16)
Repn,_%= 2AD+0’EG'N*(1—0>BC, (17)
prn= (14a2) (424-C?), (18)
pP1= ZB2+[(1+02)/02]D2 ) (19)
where
A=Fi3n, B=F1y,
C=F1,_3n, D=Fy;.

It can be seen that no combination of the off-diagonal
elements can be expressed as some function of the
diagonal elements alone, so that an expression of the
type (15) is not possible. One can get an upper bound
for a similar expression, using the following procedure.
First, the correction terms are expressed in terms of the

The right-hand side of (20) is then maximized with
respect to 42 and B?, using the upper bounds implied by
(18) and (19). The result is

prnpiy— (Repny)*— (Repa,—3)*

(1+a)?
S PrnPii—
14-a?

Note that the expressions (20), (21), and RT(19) are
useful for determining if more than one exchange is
present only when the J parity of the exchange has
already been determined by looking at the meson spin-
density matrix elements. If poo=0, and the meson has
J=1, we can use (19) or (20) to determine if more than
one exchange with cg= oy is present. If poo=1, we can
use RT(19) for any meson spin to determine if more
than one exchange with ocg= —ov is present. Potential
candidates for this type of analysis are the reactions
7N — (pw,f)A and KN — K*A. At presently available
energies, all of these are in the intermediate region as
far as the preceding tests are concerned, in that poq is
not either exactly zero or 1. In addition, analysis of the
meson density matrix indicates that these reactions
probably require exchanges of both J parities (see
Sec. I).

(14a)?
(Repa,—p)?*.  (21)
2a
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TaBiE L. Test of relation (24) for the reaction y+p — (o%w® + .

Reaction  E, (GeV/c)  cosfem. 2

v+p— 4P 2.5-3.5 0.975-1.0 0.029_¢, g1510-012
0.95 -0.975 0.020_9,¢1510-022

09 -0.95 0.024 _g g15710-012

0.7 09 0.009_,g1210-012

3.5-5.8 0.975-1.0 0.027_9.01010-011

0.95 -0.975 0.005_, p1510-012

09 -0.95 0.022_¢, 1570015

0.7 -0.9 —0.046_0, o35 70-026

vtp—®+p  1.4-25 095 -1.0 0.018_¢,g1710-014
0.9 -0.95 —0.0002_,gg6™0-020

0.8 -0.9 0.047 _q. 01570015

0.6 -0.8 0.038_g. 02770920

2.5-5.8 095 -1.0 0.014_, g1910-015

0.8 -0.95 0.006_0,g26™0-02

L. y+N—V+N

We divide this section into separate consideration of
exchanges according to their coupling to nucleons.

A. Pion-Type Exchanges

Pion-type exchanges contribute only to #-channel
amplitudes with equal nucleon-antinucleon helicities.
One can then write the usual combination of density
matrix elements:

Repmntov(—1)® Repm,—n
=2 Re(Fy3,1m==F 3 —1m) (FyyinEF - 10)*

=2 Red A % (22)

For a single-pion-type exchange, all amplitudes will

have the same phase, so that we can write
(Red A, 2¥)2= | A+ |2 A,.*]2. (23)

This can be translated into an expression for the off-
diagonal matrix elements in terms of the diagonal ones
(pmm) and antidiagonal ones (om,—m). It is

2(Repm, 4n)*

PmmPnn

=ltenent[(1—ed)(1—e?) ]/, (24)

where (25)

Em= (_ l)m m,—m/Pmm-
Because of the presence of both =1 helicity photons,
there are no lower-bound inequalities for the e,. Of
course, the upper bound is still unity from parity con-
servation alone.

B. A;-Type Exchanges

Ar-type exchanges couple only to unequal nucleon
helicities. Due to the presence of spin flip, the analysis
is a little more complicated, and the details are pre-
sented in the Appendix. The results are helicity-
dependent, but all of the expressions reduce to (24) in
the limit of high energy for nonforward scattering.

ROBERT L. THEWS
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C. o-Type Exchanges

p-type exchanges contribute to all helicity amplitudes.
In the square of the expression for the off-diagonal
matrix elements, there are interference terms between
amplitudes with equal and unequal nucleon helicity.
These cannot be canceled by any combination of diag-
onal and antidiagonal elements. Relations of the type
just discussed for pion- and 4:-type exchanges do not
exist for p-type exchanges. Lower bounds for e, also
do not exist because of the presence of both =1 helicity
photons.

In summary, for the reaction y+N— V+N the
only tests possible are for the presence of a single
m-type or a single 4 1-type exchange. We can examine the
reactions y+p— (p%w®)+p. The necessary data exist up
to 5.8-GeV/c¢ photon energy.’ To test for =-type ex-
change, we use (24) with m=1, and =0, and define

(26)

With the energy- and momentum-transfer values used,
the x values are large enough so that (AS5), valid for
A:-type exchange, is essentially identical to (24). Thus
2 should be zero for either a single n-type or a single
Ar-type exchange. Of course, it may be accidentally
zero for some other mechanism, so that we can only
perform a negative test. If 2 is nonzero, we can be sure
that a single w-type or A;-type exchange is not
dominating.

The Z values for p° and «® production are shown in
Table I. For p° production, almost all of the T values are
more than one standard deviation from zero. This is to
be expected, since the energy dependence of this reaction
indicates a diffractive mechanism,’ or Pomeranchon
exchange, which is a p-type trajectory. For o produc-
tion, some of the 2 values are consistent with zero,
indicating that pion exchange may be dominating. The
largest violations come at low energy and high momen-
tum transfer, where other mechanisms might be expected
to be more important.

Z=3poo(p11—p1,-1)— (Repio)?.

IV. y+N— V+N*

Since all exchanges couple to ¢-channel amplitudes
with arbitrary N and N* helicities, the results of
Sec. III indicate that no relations of the usual type
exist for the meson density matrix elements. Similarly,
the results of Sec. IT indicate that no relations of the
usual type exist for the N* density matrix elements as
long as the meson spin is nonzero. Thus we are left with
only one case to consider—the reaction y+ N — P+ N*,
where P has zero spin, and consider the N* density
matrix elements. Since the photon has only helicities
=1 and P has only zero helicity, this is equivalent (in
an exchange model) to the reaction w-+N — V-+N*
where the meson has only helicity 4-1. This reaction

% Aachen-Berlin-Bonn-Hamburg-Heidelberg-Miinchen Collabo-
ration, Phys. Rev. 175, 1669 (1968).
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was considered in Sec. II [Egs. (13)-(21)], and the
results derived there apply as well to this case. For
matrix elements with all helicities > %, we get the rela-
tion (15). For matrix elements involving helicity %,
we get the inequality (21). Note that for the photo-
production reaction we do not have to restrict the J
parity of the exchange, since the 41 helicity states are
automatically the only ones populated for real photons.
The inequality (21) has been compared with the data
on y+p— 7 4A*t+ and the results are shown in
Fig. 3. The upper bound [right-hand side of (21)] is
plotted as a continuous function of momentum trans-
fer, using exact x values and the {-averaged density
matrix elements. The data points for the left-hand side
of (21) denoted by Z, are plotted with calculated errors.
It is seen that 2 exceeds the upper bound by a substan-
tial amount for all energy intervals except the highest,
indicating that perhaps a single exchange is becoming
dominant at high energy. In any event, it is clear that
a single exchange is not adequate to explain the spin
structure of this reaction at the lower energies.

V. SUMMARY

It may be useful to restate the most important
results.

(1) The relations derived here are useful to test the
compatibility of data with an exchange model before
performing a comprehensive data fitting.

(2) Only the negative results say something definite.
Positive results merely indicate a compatibility.

(3) The relations are basically of two types. The
inequalities for the diagonal and antidiagonal meson
elements depend on equal J parity of all exchanges.
The relations involving off-diagonal elements for both
mesons and baryons depend on a single exchange but
arbitrary quantum numbers.

(4) These relations are by no means exhaustive. For
arbitrary high-spin resonance production, almost all
of the off-diagonal elements must be determined by the
diagonal ones, since the number of elements grows like
J? while the number of exchange amplitudes grows only
like J. The form of these additional relations is not
evident, so that presumably they must be computed on
an individual basis.

APPENDIX

A4;-type exchanges couple only to /-channel ampli-
tudes with unequal nucleon helicity. Since the helicity
flip at the nucleon vertex is always 4=1, the coefficient
which relates positive- to negative-helicity amplitudes
depends on the helicity flip at the photon vertex, which
in turn depends on the meson helicity. We must con-
sider four separate cases. We suppress the nucleon
helicities for convenience and consider a single 4;-type
exchange so that all amplitudes will have the same
phase. The parameter a defined in (14) is also used.

SPIN-DENSITY MATRIX
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(1) m=1,n=0:

Repyo= (Fu/a)[ (a—DYFu—ov(@*+1F_11], (A1)
poo=(2F1¢?/a*) (a*+1), (A2)
pu=2F 1+ (1+a?)F 122, (A3)

p11= 20y (a—1)Fyaf . (A4)

These can be converted into an expression for Rep:

4(Rep1o)? B [(me+1+ (1 —ned) 2]

, o (AS)
Poop11 ﬂ1[1+(1—ﬂ1€12)1/2]
where ¢; is defined by (25),
m=2(a*+1)/(a—1)2= (1+42)/a?, (A6)

and x is the usual cosine of the /-channel scattering
angle. From the reality condition, we also get an upper
bound for e; which is more stringent than that implied
by parity conservation alone:

ler] = |p1,—1]/pu< x| / (14a2)1r2, (A7)
(i) m>2, n=0:
Repmo=F1{2F1n—av[ (14+a®)/alF_1n}, (AS8)
pmm= (14-a?) (F1m2+F—1m2) ’ (AQ)
pm—m=4acy(—1)"F_;, Fy,.. (A10)
Again we can solve for the off-diagonal elements.
4 (Repmo)2 [1 + (1 “nmem2>1/2+7lm5m]2
= , (A11)
POOPmm ﬂm[l + (1 "‘77m€m2)”2]
where
(@®41)2 /14422
N = =< ) . (A12)
4q? 1—a?
Also, we get another upper bound for €,, m>2:
|pm—m| a2—1
| &m| = < . (A13)
Pmm x2+1
(i) m>2, n=1:
Repmi= (1—a)FinF 1+ (14a)F_1,.F_ 11, (Al4)
ay Rep,,,,_1= (d— I)F_lan—I- ZaFlmF_n. (AIS)



2270 ROBERT L. THEWS 188

The results are
4(Repm1)?  {[14+ 1A —nmen?) 2141 —n1e2) 2] n1mm! Peren)?

, (A16)
PmmP11 771[1+(1_77m€m2)1l2][1+(1_7’1512)1/2]

4(Repm,—l)2 {7]161[1+ (1 _nmfmz)llzj_{_nmfm[l_l" (1 _7’1612)1/2]}2 (A]_'])

PmmP11 1+ (A= nmend 21+ L —me2)?]

(iv) m>3, n>2:
Repmn: (1+d2) (FlmF1n+F—lm —ln) ) (AIS)
Uv(— 1)" Repm,_n= - 2(1(F_1mp1n+F1mF_1n) . (A19)
The result is

2(R€pm,in)2/pmmpnn= 1+77m€m€n:':[(1~77m5m2) (l—nﬂeﬂz)___lllz' (AZO)
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Infinitely Degenerate Leading Baryon Trajectory*
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In the quark model, the leading baryon trajectory is resolved into infinitely many degenerate trajec-
tories. An exchange-degeneracy pattern of periodicity A j=6 is obtained. At finite physical values of the
spin, only a finite number (increasing with the spin) of these infinitely many trajectories support particles.

A general hadronic mass formula is proposed.

1. INTRODUCTION

HE absence of exotic hadrons [i.e., baryons other

than SU(3) singlets, octets, or decimets, and
mesons other than nonets, etc.] that couple very
strongly to the usual mesons and baryons is an experi-
mental fact. Channels with exotic quantum numbers
can “communicate” with normal channels through
crossing (e.g., K*p — K+p with K—p— K—p). Thus,
the absence of very strong resonances in the exotic
channel leads to dynamical consequences in normal
channels. These consequences take the form of ex-
change degeneracies between various normal-channel
Regge trajectories. For mesonic trajectories, exchange
degeneracy has been explored in detail. For baryons,
exchange degeneracy has been considered more recently.
The difficulty of the problem is due to our lack of
knowledge of the detailed baryon spectrum. Following
Schmid’s! proposal of baryonic exchange degeneracy,
Capps® studied the exchange degeneracy of baryonic
SU(3) multiplets. This work, however, is confined to
processes involving as external particles only the 36
ground-state mesons and 56 ground-state baryons. He

* Work supported in part by the U. S. Atomic Energy
Commission.

t National Science Foundation predoctoral fellow.

1C. Schmid. Nuovo Cimento Letters, 1, 165 (1969).

2R. H. Capps, Phys. Rev. Letters 22, 215 (1969); and to be
published.

also assumes that the leading baryon trajectories are
an even-signature (56, L=ass(s))*t trajectory and an
odd-signature (70, L=azo(s))~ trajectory. The former
supports the particle multiplets (roughly equally
spaced in mass squared) (56, L=0)*, (56, L=2)*,
(56, L=4)*, - -, while the latter supports (70, L=1)",
(70, L=3)~, (70, L=35), - - -. Exchange degeneracy is
imposed in the form as(s)=aro(s), and of certain
relations between the residues. In this scheme, the
absence of 20-plets is just a consequence of the limita-
tion to 35-56 scattering rather than an actual feature
of the baryon spectrum. In the processes MM — BB, it
requires the presence of exotic resonances. To avoid
this undesirable feature, Mandula et al.3 have suggested
that an even-signature 70 trajectory is degenerate with
the even-signature 56. While this achieves the desired
result it also confronts one with the unattractive (and
experimentally catastrophic) feature of a low-lying
(70, L=0)* supermultiplet. A possible way around
this difficulty was proposed by Mandula, Weyers, and
Zweig,* who suggest that there exists a hierarchy of
exchange-degeneracy principles and that the (56,L=0)+
— (70, L=0)* degeneracy is far from the top of this
hierarchy and, therefore, is badly broken. Thus, the

3 J. Mandula, C. Rebbi, R. Slansky, J. Weyers, and G. Zweig,
Phys. Rev. Letters 22, 1147 (1969).

*J. Mandula, J. Weyers, and G. Zweig, Phys. Rev. Letters 23,
266 (1969).



