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For multiparticle reactions involving massive particles of any spin, the amplitudes introduced by Bali,
Chew, and Pignotti (BCP) are considered as functions of the scalar products between four-momenta. A

method previously used by Trueman for 2-to-2 particle reactions and by this author for multiparticle
helicity amplitudes is used to classify and explicitly extract the kinematic singularities of the BCP ampli-

tudes. This method concentrates on the Lorentz-group parameters that define the state vectors in terms
of which the amplitudes are constructed. The basic assumption is that the kinematic singularities of the
amplitudes are due solely to the singular behavior of these group parameters on certain surfaces, given by
the vanishing of particular Gram determinants, in the space of the invariant variables. The kinematic
singularities take a form which seems suitable for analyzing kinematic constraints in a factorizable multi-

peripheral model.

I. INTRODUCTION

'N a previous paper' we investigated the kinematic
- singularities of helicity amplitudes for multiparticle

reactions between massive particles of any spin. The
procedure employed was based on a method used by
Trueman for 2-to-2 particle processes. 2 Trueman ob-
served that the state vectors used in forming helicity
amplitudes become ill defined on certain surfaces in the
space of the invariant variables. This is so because the
Lorentz-group parameters —viz. , for helicity states the
hyperbolic and polar angles of the particles's three-
momenta —become singular when expressed in terms of
the scalar variables as soon as particular Gram deter-
minants formed from the four-momenta vanish. Under
the assumption that this is the only source of kinematic
singularities in the helicity amplitudes, Trueman was
able to explicitly extract these singularities by giving
the expansion of the amplitudes near each singularity
surface. The method was then generalized to multi-
particle helicity amplitudes by this author.

From the point of view of applications, the multi-
particle helicity amplitudes do not seem very useful.
Instead, Bali, Chew, and Pignotti (BCP)'4 introduced
another set of amplitudes which are most convenient in
formulating multiperiph eral—in particular, multi-
Regg- models; we shall call them the 8CP amplitudes.
In introducing their amplitudes, BCP applied group-
theory techniques developed by Toiler and his col-
laborators. ' 8 The, BCP amplitudes have been further
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elaborated, in particular, by Chew and DeTar (CD).'
Multiparticle amplitudes which are essentially the BCP
amplitudes have been investigated by Toiler' "and by
Koba."

In this paper we consider the BCP amplitudes as
functions of the invariant variables formed from the
four-momenta of the reacting particles, and we investi-

gate their kinematic singularities in these variables. As
for helicity amplitudes, the basic assumption is that
these singularities occur whenever one of the Lorentz-
group parameters, considered as a function of the in-

variant variables, is singular. Although the details
deviate from the procedure for the helicity amplitudes,
the technique used here is by and large the same. It
permits us to explicitly extract the kinematic singu-
larities by giving the expansion of the amplitudes near
each singularity surface.

We do not in this paper treat 2-to-2 particle reactions;
we only consider processes with at least three particles
in the final state. The BCP amplitudes in the former
case reduce to helicity amplitudes in a crossed (l)
channel, " and their singularities are already known. '

We begin in Sec. II by reviewing the definition of the
BCP amplitudes'4 in the CD version, ' noting that in
order to obtain unambiguous amplitudes we must be
more specific in places where CD leave a choice open.
In this procedure, we give the explicit expressions for
the Lorentz-group parameters in terms of the invariant
variables. The kinematic singularities of the amplitudes
are then treated in detail in Sec. III under the assump-
tion that they arise because of the singular behavior of
the group parameters. The results are summarized in
Sec. IV in a way most suitable for application. A few
concluding remarks on our approach appear in Sec. V.
An appendix reviews our notation for determinants,

No attempt is made in this paper to actually apply
our results in an analysis of concrete multiperipheral
models.

9 G. F. Chew and C. DeTar, Phys. Rev. 180, 1577 (1969).
M. Toiler, Nuovo Cimento 62A, 341 (1969).

"Z. Koba, Nucl. Phys. B8, 351 (1968).
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Fro. 1.Multiperipheral chain
for the reaction (2.1) with the
notation for momenta, masses,
spins, and magnetic quantum
numbers.
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II. BCP AMPLITUDES

Consider the multiparticle reaction

a+b ~0+1+ +a+ (I+1), I)1 (2.1)

in which particle j, for j=a, b, 0, 1, . . . , m+1, has mass
M, WO, four-momentum p, = (E,,p,), spin a;, and mag-
netic quantum number m;; the precise meaning of m; is
given later.

The particles are ordered in some definite, although
arbitrary, way to yield the "multiperipheral chain" of
Fig. 1, and we introduce the four-momentum transfers

j a
j=p

for j=1, 2, . . . , v+1, (2.2)

and the momentum transfers squared,

t, =Qi'. (2.3)

A. Choice of Lorentz Systems

Following BCP,' and, more particularly, CD' (see
also Ref. 7), we now introduce a series of Lorentz
reference systems to be used in defining the particle
states when constructing the 8CP amplitudes. As
already mentioned, in this procedure we have to be more
specific than CD concerning the choice of space axes;
we comment in Sec. V on this question.

First, define the rest system bp for particle 0 to have a
three-dimensional coordinate frame with its s axis along
Qi ———y, and its y axis along QiXyi (see Fig. 2).

We consider physical values of the four-vectors until
Sec. II D; in particular, each Q; is supposed to be a
spacelike vector, so that with the metric (+, —,—,—)
one has t, -.0.

The multiperipheral choice of variables should in the
context of this paper be regarded as purely a book-
keeping device, not implying any assumption of dy-
namical character, although of course our investigations
ultimately aim at multiperipheral models.

A rest system b for particle a is obtained next by a
boost B,(oe) along the s axis from the system bo. Here,
and throughout this paper, a Lorentz transformation
always means an active transformation; in the present
context, for example, the boost B,(uo) transforms the
four-momentum for particle 0 from rest into its value in
the system b . As a consequence, one has

cosh+, = (p.pp)/(M Mp),

sinhnp ——A~(p. ,pp)'"/(M, M p);

(2.4a)

(2.4b)

the notation for Gram determinants follows Ref.
reviewed in the Appendix. Moreover, the s axis in b is
along yo ——Qi and the y axis is along QiXyi, as exhibited
in Fig. 2.

Note that in the CD terminology our choice of b,
implies that r, =1, so that their system (O,r) coincides
with b, .

Next, one defines a Lorentz system (1,/) in which Qi
has only a (positive) s component, the z axis being
parallel to y„while the y axis is still along QiXyi. It
follows that the system b, is obtained by a s boost
8 (itp) from (1,/), and that

coshqe ——Ag(p Qi)'"/[M. (—ti)'"] (2.5a)

sinhq = (p.Qi)/[M. (—t )'"]. (2.5b)

For further use we also note the expressions

cosh(ne —qe) =a~(pe, Qi)'~'/[Me( —ii)'~'g, (2.6a)

sinh(ne —go) = (—poQi)/[M&&( —ti)'"j. (2.6b)

In analogy to the definition of bp, one defines for each
final-state particle j for j=1,2, . . . , v+1, a special rest
system fi, by requiring the z axis to lie along Q;, and the

y axis to be parallel to y, iXQ; (Fig. 3). By a z boost
B,(n, ), one then obtains a Lorentz system (j,r) in which

Q; has no energy component, the z axis is along Q, , and
the y axis along y;,XQ, . It follows that in this system
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p, is parallel to the s axis, as exhibited in Fig. 3, and that

coshnj= 62(P Q )'"/I Mj( t;)'"]— (2.7a)

sinh;= ( p,e,)//M— , ( t,)'"), —
for j=1, 2, . . . , 22, 22+1. (2.7b)

Next, one defines another Lorentz system (j,l), for
j=2, . . ., 22+ 1, by requiring as in (j,r) the vector Q, to
have no energy component and the s axis to lie along
Q, , but now p, 1 is parallel to the s axis and the y axis is
defined to lie along p, 2XQj (Fig. 3).

Evidently, for j=2, . . . , 22+1, the system (j,t) is
obtained from the system (j,r) by a succession of two
Lorentz transformations, the first being an x boost
B,(/j) a,nd the second a rotation R, (j1j) around the z

axis. It is straightforward to deduce

Here we have again used the notation for determinants
introduced in Ref. 1 (see also the Appendix). Moreover,
we have anticipated the immediate conclusion that the
results above also apply to the case j= 1, only that
pg ——0.

Note that our choice of three-dimensional reference
frames implies that, in the CD notation, v, =0, for
j= 1, 2, . . ., 22+1, so that j1j is just the "Toiler angle";
see Sec. V for further comments.

Furthermore, it follows that the Lorentz system

(j,r) is obtained from the system (j+1, l) by a s boost
B,(q;), with

(2.108)coshq, = (-e.e;+1)/I:(—t )'"(—t.+1)'"]

»nhqj= &2(ej Qj+1)'"/I (—t,)'"(—t,+1)'"]
for j=1, 2, . . . , 12. (2.10b)

Pj 1—
cosh$j=

~2(ej Pj--)'"~2(Q1 Pj)'"-Q1 Pj-
(—t )'j" hL(2Qpj, i,p,)]'"

sinh$, ='
~.(e„p,-.) ~.(e„p,)"

for j=1, 2, . . . , 12+1, (2.8b)

(2.8a) It remains only to define the special rest frame b& for
particle b to have its s axis along Q +1=—p„+1 and the

y axis parallel to p„&(Q„+1(Fig. 4). In the CD language
this means choosing r&= 1. Clearly, the system (22+ 1, r)
is obtained from b& by a s boost B,(q„+1), where

coshq„+1——62(e„~i pb)'"/L( —t„+1)'"Mb], (2.11a)

sinhq„+1= (—Q„+ipb)/L( —t„+1)'j2M1]. (2.11b,'

B. Definition of State Vectors

cosy;= j (Q„p, ,p, .)'"j (Q„p. .—.p, )'"—

j—~

X

E(Qj&pj 1&pj&pj 2)I —62(Qj&tp—j 1)]-
sing~ =

(e,2p ',P -2)'"~2(Q P 1,P-)'"-
for j=2, . . ., 12+1;

pal=0.

(2.9a) The rest fra, mes b, , for j=u, b, 1, . . . , 12+1, as intro-
duced above, are chosen to be the frames in which the
rest states IO,m;) are defined; m; denotes the magnetic
quantum number, and the usual Condon-Shortley phase
conventions are understood.

In an arbitrary reference system ("the lab system")
(2.9c) the state vectors

I p;,m;) are, following BCP and CD, ob-



188 KINEMATIC SINGULARI TIES OF M ISL TI PARTICLE AM PLI TUBES 2257

PJ )

2)

-J ii bj'Pj=0

FIG. 3. Lorentz systems
associated with an internal
vertex j,j=2, 3, . . . , e, of the
multiperip her al chain. Only
the xs planes are shown; the
three vectors drawn have no
y components.

z, (j,E):(QJ) =0

Bz(tz )

«J+f

'
i (j,r):(Q)0=0

«J )I

Q.
'

(j+~&/)'(Qj+~)o=0
«J

J-I i PJ
PJ i iiQ ~ Pj) «J+I

R,(+.) eg. ) B,(q )

pit

I p.,m. &= IO,m. ),

I pp, mp&=B, (ns) IO,mp),

(2.12a)

(2.12b)

I pt, mt) =B,(qp) B,(gt)B, (nt) I O,mr), (2.12c)

I pb,~.)=B (~o)B.(kt)B.(Vr)~.(ps)B.(b)B.(~2)

B*(eb t)&.(»)-B*(tb)B.(~b) I0,~b)
for k=2, . . . , n+1, (2.12d)

lpb, ~b)=B.(Vo)B.(k) . .~.(l. )
XB.(f +t)B,(q„+t) IO,mb& (2.12e.)

tained by applying the series of I orentz transformations
that take a vector from the system b, , over the system

(j,r), and down through the multiperipheral chain to
the system b„ followed finally by a I orentz transforma-
tion from b to the lab system. The reaction amplitude
is independent of this last transformation. "

It is convenient for our purposes to use the freedom
in the choice of the lab system to specify it differently
for each particular application. As an example, if the
lab system is taken as the system It „one has

and the final state

If&=II lp, ~ &=—l{pf},{~}), (2 14b)

are given by

2'{ }=({mf},{pr}I
2'I {p'},{m,}). (2.13)

Here, the state vectors in Eqs. (2.14) are of course the
BCP ones defi'ned above. Moreover, {m} stands collec-
tively for all magnetic quantum numbers, while {m;}
and {mf} stand for those of the initial and Anal state,
respectively; similarly, {p;}and {pf}denote collectively
the momenta.

0+i 0n+I

'Qn+i =
pb

Bb(u) =e—'"~b,

Eb(s)=e '"" for k=x, y, s.

(2.13a) Qn+i

(2.13b)

In terms of the generators Jb and Kb (for k=x, y, s)
for rotations and boosts, respectively, the operators
defitiing the states read

Bz«n+i)

QAfj, ,
~n, ---'

I

l
I

(n+I r) (Qn+i) O bb: Pb=O

Pb

~n+ i

C. Definition of BCP Amplitudes "~n+t
Elz(qn+i)The reaction amplitudes, being the expectation value

of the T matrix between the initial state

I &)= I p.,~.& I pb,~b)=—I {p'},{~'})
FIG. 4. I orentz systems associated with the rightmost particles

of the multiperipheral chain. Only the xs planes are shown; the
(2 14a) three vectors drawn have no y components.



2258 8 E NGT E. Y. SVE NSSON

~~(Qi P.) =o (2 16c)

d&(Q, ,P; i,P,) =0 for j=1, 2, . . . , n+1. (2.16d)

We have not listed here the singularities due to the
vanishing of the above-mentioned pseudoscalar prod-
ucts; they can be treated by the method used for helicity
amplitudes in Ref. 1.

It is convenient to have the following concepts and
notations, introduced in Ref. 1. An amplitude T( l is
said to be b-aea/ytic if it is analytic, except possibly for
dynamical singularities and for the occurrence of the
pseudoscalar variables. Moreover, the notation

g(Z) ~ f(Z) at Z=ZO (2.17a)

means that g(Z) f(Z) is b-—analytic at Z=ZO, and

g(Z)-x f(Z) at Z=ZO (2.17b)

means that g(Z)/f(Z) is b-analytic at Z=ZO.

III. KINEMATIC SINGULARITIES

Each of the singularity surfaces (2.16) is now treated
one at a time, by use of the general procedure described
in Ref. 1.As we shall see, special attention must be paid
to those surfaces pertaining to the left and right ends of
the multiperipheral chain of Fig. 1.

In the treatment, we assume that whenever one of the
Gram determinants (2.16) vanishes, all the others do
not. As was discussed in Ref. 1, the problem of "coin-
ciding singularities" is really a harmless one in the sense
that the combination of the separate singularity struc-

D. Variables and Analyticity

The amplitudes Tl l are liow considered as functions
of all the scalar products P,PI„j)k (for j, k=a, b, 1,
. . ., n+1), subjected to those restrictions that arise
from energy-momentum conservation and from mass-
shell conditions. Some of these questions were treated
in Ref. 1, where additional references are quoted, and
we do not discuss them further here. The same applies
to the fact that the reaction amplitudes are also func-
tions of the pseudoscalar products that can be formed
from four linearly independent four-vectors.

As is natural from the way in which the BCP ampli-
tudes are defined, we shall most often use those com-
binations of the scalar products given by f;, Q,p;,
Q,P, i, etc. It should be kept in mind, though, that not
all of these are independent.

Following Refs. 1 and 2, the assumption is now that
kinematic singularities of the BCP amplitudes occur
whenever the Lorentz-group parameters (n, ,q, ,$, ,p, )
considered as functions of the scalar products are
singular, and that this is the only source of kinematic
singularities in the amplitudes. If follows from Eqs.
(2.4)—(2.11) that kinematic singularities could occur on
the surfaces

f, =0 for j=1, 2, . . . , n+1, (2.16a)

A&(Q, ,P,) =0 for j=1, 2, . . . , n+1, (2.16b)

tures on two (or more) of the surfaces (2.16) gives the
structure of the coinciding singularities also.

A. $,=0 Singularity for j= 1, 2, . . ., n+1
If the masses obey M /Mo and M„+&&M&, the

treatment in this section applies without restrictions.
The case when these inequalities are not true is treated
in Secs. III B and III C.

At 3, =0 we find from Eqs. (2.5)—(2.8) that n, , q, i,
q, , and j;are singular. In fact, using the notation (2.17),
we And" at t, =0,

n, + La —', ln( —t,)] if Re(P,Q,) &&0

for j=1, 2, . . . , n+1, (3.1a)

q, + L+-', ln( —t;)] if Re(Q;Q;~i) &&0

for j=1,2, . . . , n, (3.1b)

q; i-+ l

a-', ln( —t;)] if Re(Q, Q, i)&&0

for j=2, . . . , n+1, (3.1c)

&& (—t,)'" if Re(Q,p, ) Re(Q,p, i))0,
i~--x (—t,)'i' if Re( Qp, ) Re(Q,p, ,) =0

for j=1, 2, . . . , n+1, (3.1d)

while those cases not covered by the general formulas
are

qo ~L+—' ln( —t )] at t =0
if Re(p,Qi) &&0, (3.1e)

q„+i-~ L+-,' ln( —t„~i)] at t„~i 0——
if Re(Q„~ipi) && 0. (3.1f)

Now, since Re(Q, Q,+i) equals Re(Q, p, ) at i, =0, with
similar relations for the other real parts entering in
Eq. (3.1), it follows immediately that

q, ,+q, is analytic at t, =0
if Re(Q,p, ) Re(Q,p; i))0, (3.2a)

q, &
—q, is analytic at t, =0

«(Q,p, ) «(Q,p; i)«
for j=1, 2, . . . , n+1; (3.2b)

note in particular the correlation with Eq. (3.1d).
If, in the definition of the state vectors, the lab

system is chosen as the system b„ it follows from Eqs.
(2.12) that the potential singularity at t, =0 for
j= 1, 2, . . ., n+ 1, will occur only in the states

l
pj„mI, )

for k= j,j+1, . . . , n+1, b If here kW j, o. ne may use
commutation rules for Lorentz-group generators' to
deduce

~*(q - )Il.(l')Il. (q') = -pl —'(q - +q )&*]
X expL —i$;(E, coshq, —j„sinhq, )), (3.3a)

"For a function I=f(Z) that is positive in the physical region
the continuation of I'~2 is throughout this paper de6ned to have a
positive real part or, if I&0 is real, to have a positive imaginary
part. Therefore, we shall always in a statement referring to the
sign of Re(g, '12) include the implication that if Re(N'") =0 but
u/0, we mean the sign of Im(N" ).



188 KINE MAT I C S I N GULAR IT IES OF M ULT I PARTICLE AM PL I TU DES 2259

B. $&=0 Singularity for M, =MO

In this mass configuration we have

so that Eqs. (2.5) and (2.6) imply, in the notation
(2.17),

(3.5a)qo )& (—ti)'" at ti ——0,
no —

qo && (—ti)'" at ti ——0, (3.5b)

while ni and qi have the behavior given by Eqs. (3.1a)
and (3.1b) for j=1.Finally,

which from the relation (3.2a) shows that this product
of boost operators is analytic at t;=0 if Re(Q~P;)
XRe(Q,P; i) is positive. If it is negative, one must
instead write

B*(q -i)B.(4)B*(q )
= exp[ i—(q, , q—;)K.]exp[ —i(in-)K,]

Xexp[ —i($;—iver) (K, coshq; J„s—i nh q)] (3.3b)

to obtain an analytic expression.
For the state

I y, ,m, ) the only modification is that the
boost operator B,(n,) replaces B,(q,) in Eqs. (3.3); the
conclusion again is that there are no singularities.

In summary, there are no t, =0 singularities in the
state vectors (2.12). By assumption, there are therefore
no kinematic singularities in the BCP amplitudes at
t;=0. This conclusion applies at t&

——0 only for M, A%0
and at t„+&——0 only for M„+&/M&. If these inequalities
are not fulfilled, there will be singularities, as discussed
in Secs. III B and III C.

and, furthermore,

exp[i(iqi)~ ]B (—qo)

=exp[iqo(K, coshqi+iK, sinhqi)] exp[i(iqi) J„].
(3.8b)

Therefore, from Eq. (3.7a), we have

I
p.,m. &

= ( ) exp[i(iq, )Jo] I
0 m~&

= ( ) 2 I
O m ')d-. -.' (—iqi)

mQ I

where the dots indicate factors that are analytic at
tg

——0.
In an analogous fashion, we find

Ip„mo&=(. . ) exp[i(iq, )j„]IO,mo&

mp'

As a consequence, the amplitudes may be written

TIm) =~Imp', . . . ; m~', mO'l~m~'m~ ( &qi)d—mO' —mo ( iql) p

(3.11)

where the functions 3 ( I are all b-analytic at t& ——0, and
where a sum over m ' and mo' is understood. The
kinematic singularity of the BCP amplitudes T( ) at
t~

——0 for 3f =MD is therefore contained in the two d
functions of Eq. (3.11).They may be coupled, and the
resulting d function explicitly expanded in powers of
(—ti)'" in a manner used many times in Refs. 1 and 2.
We give this expression in the summary, Eq. (4.1).

C. f„+&=0 Singularity for M„+&=M&

sinh&i ——i at ti ——0,
cosh(i ~ (—ti)'" at ti ——0,

from which we conclude

(3.6a) An argument paralleling that of Sec. III B shows that
the amplitudes have the representation

Timj Bi. . . , m„+I';m~, mo')dmo'mo ( iqn)

(,+-',i~-~ (—t,)'I' at t, =p. (3.6c) „„.„„„.-+i(—iq„), (3.12)

No other group parameters are singular at t~= 0.
It is here convenient to identify the lab system with

the system (2,t), so that

Iy. ,m. )=B,(—qi)B, (—(i)B,(—qo) O,m. ), (3.7a)

Ilio mo&=B (—qi)B*( ti)B (no —
qo) Ip, mo&, (3.7b)

where the functions 8( I are all b-analytic at t +y=0 if
M +~=M y, and the kinematic singularities of the
amplitudes therefore are contained in the d functions
with the singular argument given by Eq. (3.1c) for

j—n+ 1~

I y„m, &=B,(~,—q, ) I o,m, ). (3.7c)
D. Ao (Q,,P,) = 0 Singularities for j= 1, 2, ..., n

No other states have parameters singular at t~ ——0. Note
also that e&—qj is analytic at t& ——0, implying that
I pi, mi& has no singularity either.

Now, the commutation relations for Lorentz-group
generators allow us to write

=exp[i((,+ ',in.) (K. coshqi——J„sinhqi)]
Xexp[—i(—',in)K,]exp[i(iqi) J„], (3.8a)

For convenience, the two cases ho(Qi, p )=0 and
Ao(Q~~i, p„+i)=0, affecting as they do the two extreme
vertices in the multiperipheral chain, are treated
separately in Secs. III E and III F.

Since

~o(Q~~P~) =~o(Qt, Qi+i) =~o(Q~+i)pi), (3 13)

it follows from Eqs. (2.7)—(2.9) that n;, q;, $;, j;+i, and
ti;+i are singular at Ao(Q;,p;) =0 for j= 1, 2, . . ., n. In
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particular, when the notation (2.17) is used, Next, use

x tDp&+&(Q~, p )] I at Dpi+~(Q, P ) =0 (3.14a) exp( —iq,K,) exp( —it;+iK,) =exp( —i(;+iK,)

where the determinant hp(Q;, p,) has been factorized
into the two functions'

D""'(Q,p') =Q P,~'~, (—~,)'". (3.«b)

Similarly,

0- LD '+'(Q Q+)]'" «D '+'(Q, Q )=o,
(3.15a)

~,-i-- LD"-'(Q„Q,'.)]"' at D.~-'(Q;, Q,, ) =o,
(3.15b)

where we introduce

Dp"'(QJ Q2+i) =QJQJ+i~ (—t )'"(—4+ )'" (3 15c)

Moreover, for the x-boost parameters we find, at
~.(Q„Q„')=o,

XexpI —iq, (K.- cosh';+i+ J„sinh(,+i)] (3.18b)

to find that the two operators 8 (&;) and 8, (&,+i) have
been brought to adjacent positions in the operator
product.

Now, provided Dp&+'(Q;, Q;+i) =0 and Re{ },
XRe{ },+i is negative, our being able to handle the
operators as we did, together with the behavior (3.15a),
(3.16), and (3.17), shows that the operator product has
no singularity here. For the remaining three combina-
tions of the signs x and 5 in Eqs. (3.17c) and (3.17d), an
appropriately modified procedure shows that in no case
have the states IpI„mI, ) (for k= j+1, . . . , n+1, b) any
singularities at 6&(Q;,P,) =0 (for j= 1, 2, . . . , n)

It remains to consider the state
I p, ,m, ). Here, the

singularity is contained in

8*(~,)8.(-,) I
o, ,&

~;—,C~-:»~.(Q„Q„)]

for Re{ .},=—Re (—t)—'" &&0, (3.16a)

= expL —i(n, %2iir) (K, cosh(, —J„sinh(, )]
XexpL&i( —',i~)K,] expI &i(i&,)J„] I O,m, )

=( ) P IO,m, ')d,', '(Wig, ), (3.19)

4+i-+ L~ p»~p(Qi, Q~+i)]

, , Qi+i p~
for Re{ },+i=Re —

(—t,+i) '"
2+i Pf+i

(3.16b)

where the dots indicate factors that are analytic at,
respectively, D&'+'(Q;, p, ) =0.

In summary, the BCP amplitudes may be written

TI ~=Ct. . . ,', . . . , . ,i'~&"'d;, ~(~i&,), (3.20)

Here, the notation for Gram determinants follows Ref.
1; see also the Appendix.

Finally, for the s-rotation angle one has

~, — E&.(Q,Q+)]'" t ~ (O', Q,+)=o,
(3.17a)

while a short calculation using in particular the deter-
minantal identity (A5) of Ref; 1, leads to

cos&, = S «a (Q, ,Q, )=0, (3.17b)

R-(~+i)8*(4+i)= exp( —i4+iK.)

XexpL ip;+&(J, c—osh$, ~i Ksi (n;+h)].i(3.18a)—

x=&1 if Re{ },Re{ }+i&&0, (3.17c)

5= a1 if D, '+'(Q, ,Q,+i) =0, (3.17d)

where the notation introduced in Eqs. (3.15c) and
(3.16) ha, s been used.

The states (2.12) affected by 6&(Q, ,P,) =0, j= 1, . . . ,
n, are

I pa, mi), k= j, j+1, . . ., n+1, b For all exc. ept
k= j, the relevant operators 8,((,), 8, (q,), R, (p,+i),
and 8 ($;~i) are treated as follows. First, commute to
obtain

Dp&~'(p. ,pp) =p.ppaM, M p, (3.22)

the usual arguments lead, in the notation (2.17), to

Vp+2i~-x LDp"'(P. Pp)]'" at Dp"'(P. ,pp) =0,
(3.23a)

vp~pi~-x LDp' '(P. ,Po)]'" «Dp' '(P.,Po) =o

if M, &+ 3IIp (3 23b)

where the functions CI )(+&(&' are all b-analytic at,
respectively, D&&+'(Q;,p,) =0 for j= 1, 2, . . . , n, so that
the kinematic singularities of the amplitudes are con-
tained in the d functions. The explicit representation of
the amplitudes in powers of D2'+'(Q, ,p,)'" is given in
Eq. (4.4).

E. A&(Qi, p ) =0 Singularity

The group parameters, being singular, are now o, o

and fi It is ther. efore convenient to identify the lab
system with the system (1,r), in which

I p.,m. )=B.(—ti)8, (—qp) O,m. ), (3.21a)

I pp, mp)=8 ( Pi)8 (np gp) IO,mp), (3.21b)

and no other states contain any singular parameters.
If Ap(p„pp) is factorized into
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The case M, =MD, already treated in Sec. III B, is
neglected in Eq. (3.23b). Similarly,

qo
—oo —-', i~-)& LD~'+'(p. ,po))'"

In particular, using the notation (2.17),

~;—LD."'(Q;; P;—.,P;)]'"
t D."'(Q,-; p,—,p, )=0, (328)

at D~(+& (p„po) =0, (3.24a)
LD ' '(Q;P- P)]'"

qo
—nb+ 2bir X LD2' '(p. po)]'"

at D2' &(p„po) =0 if M &&Mp. (3.24b)

Finally, as in Sec. III D,

D, (—i (Q;; p;, ,p, ) =0, (3.28b)

where D~(Q;,p, i,p, ) have been factorized into the two
functions'

cosh(i

Siilll/i
— (~(Q ))-'" «&.(Q )=o (325)

(3.28c)
Consequently, the same technique as used in Eqs.

(3.19) and (3.20) leads to the representations
Moreover, both sine and cosine of p; and p;+y behave as

(3'26a) $63(Q, ,p. ..p,)]—'i', and a short calculation showsT(ml =&tmb', . . . ; m ', mbldm ' (&&i)dmb'mb (&&i) ~

where the functions EI } are all b-analytic at tang, +i= %tang; at D3(+'(Q, ; p, i,p~) =0. (3.29)

It follows immediately that

p;&p,+i is analytic at D3(+i(Q, ; p, i,p;) =0. (3.30)

D i+)(p p ) —0

In the state vectors
~ pb, mb) (for k= j+1, . . .,

(3.26b) n+1, b), we find, for the relevant operators,

p; i,p, ) —0. A similar argument using instead Eq.
(3.28b) leads to the conclusion that the product is
analytic also at Da( '(Q, ; p, i,p,)=0.

Concerning the state ~p, ,m, ), the appropriate pro-
cedure is to write

F. A~(Q„+i,Pb) =0 Singularity

Arguments similar to those in Sec. III E show that
the BCP amplitudes have the representations

where the functions F( I
(+& are all h-analytic at R, (p;)B,($,)R, (Ii,+i) =R, (li, +IJ,,+&)

D2( i(p„po) =0 provided M, &&MD, the signs in Eq.
(3.26b) correlate with this inequality. Again the P~ ~'( ' ~'+'+ " ' ~'+')
explicit dependence on LD~'+i(p„po))'i' is given in the th t th. t d t l t t D &+i~so t at t is operator pro uct is ana ytic at
summary, Eqs. j4.2j and (4.3j. ~ ~ ~ ~

T(m) Q. . . , m +y';mnmb'Inismb'mb (b$n+1)

Xd„„„.„„„."(i~.„), (3.27a)

where the functions G( } are all b-analytic at
D, (+i (Pb,P„~i)=0, and

Ttml R. . . , mn+y'; mn, mb' I dmb'mb (+b5n+1)

Xd..„...„-"(~it. ), (3.27b)

where the functions HI }(+) are all b-analytic at
D2 (Pb P +1) 0 if Mb& M +i,' the signs in Eq.
(3.27b) correlate with this inequality.

G. ck~(Q, ,P, i,p, ) = 0 Singularities for j=2, 3, . . ., n

The cases j=1 and ii+1 are slightly more compli-
cated and are treated separately in the two following
sections.

It is clear from Sec. II A that only $, , p, , and p,+i are
singular at &3(Q,,P, i,P,) =0, for j=2, 3, . . . , n

R, (p,)B,(f,) =expL —i),(E, cosy; E„si p;n))—
)&

exp�

( ip,J,)—(3.32)

in order to find that the singularity of this state occurs
only in a factor exp( —ip, m;) at D3'+i(Q;; p; i,p;) =0.
By a similar argument, the singularity at D3 (Q;;
pj i pj) =0 may —be isolated in a factor exp(ip, m, ).

As a consequence, the kinematic singularities of the
amplitudes are given by the representations

T[ }=V( )(+'~" exp(Hip;m, . ), (3.33)

where the functions Ã~ }(+~(&) are b-analytic at, re-
spectively, D&(+'(Q, ; p, i,p;)=0 for j=2, . . . , n; the
notation. (3.28c) is used. The angle p, is given by Eqs.
(2.9).

Because the angle p, depends on the pseudoscalar
product e(Q, ,P; i,p, ,p, ~), the singularity (3.33) cannot
be written unambiguously in powers of PD3(+'(Q, ;

p; i,p,)]'"; this circumstance is discussed in relation
to Eq. (4.50) of Ref. 1.
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H. As(Qt, Ps,Pt) =0 Singularity

Here, $r and ps are singular; in particular, Eqs.
(3.28) apply also in this case with j= 1. It is therefore
convenient to identify the lab system with the one ob-
tained from (l,r) by a s rotation R.(—p,), in which
system the states containing any singular parameters
are

I p„m, )=R,(—Jlls)B, (—)r)B,(—qp) IO, m, ), (3.34a)

I p0 ms) R ( P2)J3 ( $1)B (Qo 'Iio)
I O,mo), (3.34b)

Ipt mt) =R*(—~s)& (~t) Io,m, ). (3.34c)

The usual technique therefore allows us to write

T} }=X} }
&+}o} exp[ —its(Wm, &ms+mr)), (3.35)

where the functions N( l(+&('& are b-analytic at, respec-
tively, Ds'+}(Qt', ps,Pr) =0 in the notation. (3.28c). The
singularity of the amplitudes is thus contained in the
exponential factor, with ps given by Eqs. (2.9) for j=2.

I. As(Q„+t,P,P +r) =0 Singularity

In a manner analogous to the treatment in Sec. III H
one deduces the representation

T} }=1V} }~+'&"+'}exp[wig„+t(mb —m +t)], (3.36)

where the functions N I )
(+) ("+') are 0-analytic at,

respectively, Ds'+'(Q +r', p„,p„+r) =0, andy„+r is given
by Eqs. (2.9) for j=m+1.

IV. SUMMARY OF RESULTS

In summarizing the findings of the detailed investi-
gations in Secs. III A through III I, it is convenient to
appeal to the multiperipheral picture, Fig. 1. Indeed,
our results show that the kinematic singularities of the
BCP amplitudes, apart from the &s(Qr, Po Pr) =o
singularity, are always associated with a particular
vertex in the multiperipheral chain. Of course, this is
just a reliection of the way the BCP amplitudes are
dined. We now proceed to exhibit our results in the
concepts and notations laid down in Fig. 1.

A. Leftmost (p —p, —Qt) Vertex

There is a t&
——0 singularity only if the masses are

equal, M, =Mo. In that case, invoking a method applied
several times in Refs. 1 and 2, one concludes from Eq.
(3.11) that the amplitudes have the representation

(o., op J) exp[rsivr(/+m) j
J'=s r =s km, —ms m) [(1+m)!(J—m) }g'"

X(—tr) "[m(—tr)'"] aJ }~}' ' (4.l)

where the standard notation for Wigner's 3-j symbols"

"A. R. Edmonds, Angular Momentum in Quantum Mechanics
(Princeton University Press, Princeton, N. J., 1957), pp. 46 8.

is used, and where the functions ug, ( l&» have no
kinematic singularities" at t~=0 provided M, =MD,
they are, moreover, independent of the magnetic
quantum numbers m, and mo.

Note that the singularity structure (4.1) is very
similar to that of the 2-to-2 particle helicity amplitudes
as given in, e.g. , Eq. (4.5) of Ref. 2. As there, suitable
linear combinations of the amplitudes may be formed
which have still simpler kinematic singularities; viz. ,
they equal a power of (—tt)'}' times a function kine-
matically regular at t&=0.

At the incoming-state threshold tt (M,+——Ms)' for
the tt channel, i.e., the reaction @+0—& 1+2+
+(rb+1)+5, one may, from Eq. (3.26a), deduce the
representation

o, o, J exp[—,'i7r (J—m)j
~-ou-o mg mo m J m.' J—m ' '"

X[—t,+(M +M, )sj-~~s

X(m[—tr+(M +M )']'")&e~ {„}&&', (4.2)

with all the functions ez, ( I
&» kinematically regular at

4= (M +Ms)', and independent of m, and ms. The
analogy to the 2-to-2 particle helicity amplitudes, Eq.
(2.14) of Ref. 2, is evident.

Similarly, at tt (M ———Ms)', and depending on
whether M, &Ms or M, (Ms, Eq. (3.26b) may be
transformed into the representations

(o. os J) exp[-', irr(Jam))

D5+m) }(J m) ljt—is

X[—tr+(M —Ms)'] ~Is

X (m[ —tr+ (M, —Ms)'j'") &fg }„}&"' '+', (4.3)

where the functions fq } }'""+},being independent of
m and mo, are without kinematic singularities at the
tr-channel pseudothreshold tt = (M, —Ms)', and the
signs correlate to the mass inequality M, &&MO. The
2-to-2 particle analog is now Eq. (2.21) of Ref. 2.

The "Toiler-angle singularity" at As(Qr, po,Pr) =0 is
exhibited in Eq. (3.35) and further commented upon in
Sec. V.

B. Rightmost (pb pr Q„—+r) Ve—rtex

By Eqs. (3.12) and (3.27), the singularities involving
only the variable t„+& are obtained from the results of
Sec. IV A if the substitutions u~ b, 0~(rb+1), and
t~ ~ t +~ are made throughout.

The Toiler-angle singularity at hs(Q„+r, p„,p„+,)=0
is exhibited in Eq. (3.36).

"In these summary sections we use phrases like "have no
kinematic singularity" to mean "be b-analytic" as given prior to
Eq. (2.17), and in Ref. 1.
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C. An Internal (Q,—p, —Q;+l) Vertex for j= 1, 2, . . ., n

From Sec. III A, the BCP amplitudes have no kine-
matic singularities at t;=0, with the exceptions already
covered by Eq. (4.1) and its rightmost vertex analog.

Furthermore, the results of Sec. III D, in particular
Eq. (3.20), imply

expL.",in. (o;Wm, )j
P(o,+m;)!(o;—m, )!J"
X (t,+l+P(—t,)'"&i&.]'}
Xp (m, t t,+l+((—t;)'I'&i3I;)']'~'}"

Xe( )(+)(»(», (4.4)

where the functions c( I
&+'&&'&» are independent of m;

and have no kinematic singularities at the "threshold
parabola"' t;+l (t (2AM——;)', respectively, for each

~ ~ ~ ) So

Finally, the Toiler-angle singularity at

is exhibited in Eq. (3.33).

V. CONCLUDING REMARKS

%e have in this paper investigated the kinematic
singularities of the BCP amplitudes as functions of the
invariant variables. In its choice of variables our
approach generalizes the conventional lines followed for
2-to-2 particle reactions, where a knowledge of the
kinematic singularities in terms of invariant variables"
is essential in understanding the kinematic constraints
that any model, in particular the Regge-pole model,
must obey.

Toiler and his collaborators' '" have taken another
approach. They consider the amplitudes as functions of
the momentum transfers squared and of certain Lorentz-
group parameters which are similar, although not
identical, to those specified by BCP' and CD,' and
proceed to show that, with proper conventions, there
are no kinematic singularities in these variables. More-
over, as a consequence of having "too many" variables
in this group-theory approach, the amplitudes obey
certain covariance conditions.

The amplitudes in the BCP and CD conventions,
being a particular realization of the Toiler amplitudes,
are still not unambiguously defined, since they leave
open the choice of the y axis in the definition of the rest
system b; for each of the reacting particles; it goes
without saying that this is not a defect of their con-
ventions. In the CD language, it means that the two

5 See, e.g. , Ref. 1 for a list of references.
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APPENDIX: NOTATION FOR DETERMINANTS

For convenience we repeat here the determinantal
notation of Ref. 1.

The Gram determinant between two sets of e four-
vectors (q, } and (r,} is denoted

-r1 r2 . rn-
(A1)

and the symmetric ones

Finally,
g1 g2 ''' gts

6(I/i g2 (t8 II4) 4 l (Il (t2 (t3 (I4 (A3)

where e„),„„is the completely antisymmetric isotropic
tensor with fp123= 1.

s-rotation angles v; and p, are not uniquely defined.
However, the "Toiler angle" (o, = v,+tl;+l is unique once
the other conventions have been accepted. '

In order to have a unique set of amplitudes in our
approach, we have had to specify unambiguously the
rest systems b;, amounting to a more or less arbitrary
definition of the angles v, and p,;. However, from the
fact that co, is independent of this definition it follows
that the only place where these conventions are of any
importance is in the 63=0 singularities exhibited in
Eqs. (3.34), (3.36), and (3.37). Namely, independent
of the choice of y axes, if there is a kinematic singularity
at a surface hl ——0, it will occur in (a product of) factors
e' ~'&, where the sine and cosine of the angle P are
proportional to (Al) '"; we have not speci6ed the
arguments in the 63 Gram determinant here, since they
may depend on the conventions. Moreover, the (l priori
possibility exists that some convention could be found
for which there are no 63——0 singularities at all. Ke have
not been able, however, to find such a convention, at
least not without introducing other singularities.

Apart from these circumstances, related to the choice
of s-rotation angles, the kinematic singularities of the
BCP amplitudes involve only the momentum transfers
squared in a way which seems useful for a subsequent
multi-Regge-pole analysis incorporating problems aris-
ing from spin.


