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Model for Indefinitely Rising Regge Trajectories*
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The model for indefinitely rising Regge trajectories is based on the l-excitation scheme. It has been
suggested that the effective strength of forces due to Regge-trajectory exchanges increases with energy in
order to overcome the centrifugal repulsion. The output Regge trajectory is thus pulled up with energy.
The suggested energy increase is simulated in a simple manner by considering a Yukawa potential with an
energy-dependent coupling strength. It is found therein that the output trajectory must grow at least as
fast as gs. Furthermore, accompanying the leading trajectory there occurs an infinite set of trajectories
associated with higher radial quantum numbers. Trajectories characterized by finite radial quantum
numbers are "parallel" to the leading trajectory for large s. The various resonances occur in a well-specified
pattern. This pattern has been compared with the nonstrange baryon spectrum and is compatible with it.
The behavior of Imn and some multichannel effects on Rem are also discussed.

I. INTRODUCTION

HE dynamical explanation for high-rising Regge
trajectories n has brought forth some interesting

speculations. For the single-channel Vukawa-potential
scattering, the Regge trajectories fall down very rapidly
after a few—two or thre" particle manifestations. This
has led many authors' to believe that an explanation
for the empirical behavior of trajectories lies in the
multichannel nature of the problem. With the Car-
ruthers-Nieto model as a starting point, it has been sug-
gested that Reo. is built up not by an addition of orbital
angular momenta, the l-excitation scheme, but by an
increase in the spin of the internal particles, the orbital
angular momenta being kept low in this case. Thus, as
the energy increases, it is thought that we are always in
the neighborhood of two-body channels formed by par-
ticles, one of them at least having a high spin and low
1. Such a channel, it is supposed, gives rise to a resonance
with high spin and mass. We thus have a set of reso-
nances with increasing spin and mass. It is not clear,
however, that this set of resonances arises from the par-
ticle mainfestations of a single Regge trajectory. From
the dispersion relations for n, though, one sees that a
sharp increase of Imo, due to the opening of a new chan-
nel raises the Rem, successive increases would raise
Reo. with energy. It is thus conceivable that the set of
resonances mentioned above do lie on the same trajec-
tory. In the present paper, we consider the opposite
point of view, namely, that the increase in Reo, is pri-

marily due to the increasing orbital angular momenta in

a single channel, and present the consequences of such

a scheme. Multichannel effects are supposed to be
small, and are taken into account while discussing Imo.
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(+)=—positive signature, (—)—=negative signature,
I=—isospin of s channel,

q'= Ls —(nt+t ) ']Ls —(nt —tt) ']/4s,

and J= l&-,', where the symbols have their usual mean-

ing. In the above, V+ represents an equivalent potential
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FIG. 1. Illustration of the condition which q'/g has to fulfill in
order to produce the maximum ro and minimum r00 of @(r).

~ See, for instance, B. M. Udgaonkar, High Energy Physics and
Elementary Par ticles (International Atomic Energy Agency,
Vienna, 1965), p. 791. The neglect of t-channel exchanges in
this model may be considered as a first approximation. It may
turn out ultimately that t-channel exchanges are not perturba-
tive. But even in this situation the I-channel exchanges must play
an important role since the 6J=2 rule is true for the empirically
observed baryon Regge trajectories. In any event, we regard this
model as a motivation for the general dynamical scheme outlined
subsequently.

To develop our ideas, we focus on the nucleon tra-
jectory and the 6 trajectory. Singh and Udgaonkar'
have shown within the static-model formalism for the
rrlV single channel that I= ss, J'=-/+srandI= rs, J=/ —sr,

odd 3, reciprocally bootstrap to a very good degree, and
that the forces in I= —,', J=/ ——', and I=-'„J=/+ ,', odd-
1, are weak. . Our erst concern is to formulate the above
bootstrap of the nucleon trajectory and the 6 trajectory
in a nonstatic language.

The classic example of the l-excitation scheme is, of
course, the radial Schrodinger equation. We rely heavily
on such a differential equation to provide the nonstatic
language as well as the dynamical expectations. I.et us
consider the differential equation

d'1/r+ /(/+1)—+ q'+ J'r+ — —i/r"=0,
dr2 r'
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arising from the exchange of Regge trajectories in the
t and I, channels. '

We now incorporate the results of the static model in
terms of the above symbols and focus our attention on
the I= ~3 states of the s channel. First, it is required that
for

I=-,', J=/+-,', negativesignature, V~s )0. (1.2)

Since in the static model the dominant force in the I�—'„
=J=�—',, l odd, states arises from the nucleon-trajectory
exchange, we have for

I=a, J=l+s, Uses —&P Vs~„(I=a,tt), (1.3)
s 088

under the sharp-resonance approximation for the
exchanged nucleon trajectory. In (1.3), the term
Vs~s(I=a, m) refers to the effective potential arising
from the exchange of an I=-,', J„=n——,', n odd, m„'
=(J„a)/b—Particle, in the I=as, J=/+s, s-channel
states.

The dynamical picture of the static model now implies
that Vgs(I= —,',n) is the dominant element when
s=(J a')/b', —J=/+ —',, 3= m, n odd, and that it gives
rise to sufficient attraction to form a resonance. It is
clear as to what thismeans; in (1.3), Us~s is an energy-
dependent equivalent potential whose strength in-
creases with energy. The increase in strength overcomes
the repulsion for high / in the region r = 1/m„and gives
rise to a resonance. The Rem for the 6 trajectory is thus
pulled up with energy.

We now point to a major consequence resulting from
the above assumptions. Evidently if V3/2 V3j2
&((I=s,n) yields suKcient attraction to form a reso-
nance with J=I+,', l=n, s-=(J a')/b', i—t must also
form resonances in the lower partial waves l=n —1,
n —2, 1, 0 for energies in the neighborhood of in-
terest. Thus, in explaining the leading 6 trajectory, we
obtain an infinite number of accompanying trajectories

3 L. A. P. Bali,zs, Phys. Rev. 137, B1510 (1965); 139, B1646
(1965); J. Finkelstein, ibid. 154, 1596 (1967); L. Durand III,
ibid. 166, 1680 (1968); S. Frautschi and B. Margolis, Nuovo
Cimento 56A, 1155 (1968); S. Frautschi, 0. Kofoed-Hansen,
and B. Margolis, ibid. 61A, 41 (1969). In the work of Durand,
the idea of an equivalent potential representing a Regge-trajec-
tory exchange is implicit. The underlying idea in the works of
Frautschi et al. also involves the notion of an equivalent potential
arising from a Regge-trajectory exchange. However, the use of
the eikonal approximation therein requires that dibaryon Regge
trajectories do not rise inde6nitely. This requires cancellations
among the exchanged boson-trajectory potentials so that, for
large s, the net force is weak or highly repulsive. Similar cancel-
lations, or repulsions, must also occur in order to avoid the so-
called exotic Regge trajectories. The mathematical requirements
placed on the exchanged Regge trajectories will be different from
those placed by the "duality" idea. It would be of interest to
explore their consequences. For example, the static-model gen-
eralization to SU(3) (Ref. 2) required the octet and the decuplet
(as well as their respective l-excitations among themselves) to be
degenerate in mass. In the nonstatic language, this would mean
that the octet trajectory is degenerate with respect to the de-
cuplet trajectory. The forces in the exotic representations turn
out to be weak in the static model. The static model is perhaps an
indication of what one may expect in the nonstatic version of
conditions excluding the possibility of exotic Regge trajectories.

with l= 23, separated by roughly an integer. Within our
framework, the interpretation is clear; the leading
trajectory corresponds to resonances whose P's have no
node in the interaction region, the next lower trajectory
to resonances whose f's have one node, and so on. We
may thus denote the trajectories by n, m=0, 1, 2, 3,

~ ~ ~, where m refers to the radial quantum number.
The above argument may be repeated verbatim for

the I= —,
' states of the s channel with the E-trajectory

exchange replaced by the 6-trajectory exchange. The
pattern for the output nucleon trajectories is the same
as above with the 6 trajectories replaced by the nucleon
traj ectories.

The general dynamical scheme that emerges from the
above discussion is that the attractive strength of the
force arising from Regge-trajectory exchanges increases
with energy. The increase in the attraction is sufficient
to counteract the repulsion due to high orbital angular
momenta associated with a two-particle channel whose
internal particles have low spin. The output Regge tra-
jectory could thus rise indefinitely with s. Furthermore,
as a consequence of this dynamical scheme, trajectories
distinguished by their radial quantum numbers accom-
pany the leading trajectory, separated roughly by a unit
from each other. We thus expect such a pattern to be
present in the hadron spectrum.

To gain a better understanding of the pattern for
Ren„, as well as the behavior of Imo, we have studied
the differential equation (1.1) with

V=g(s)e ""/r, g(s))0, s&sp)0.

The coupling strength g is considered to be energy-
dependent, monotonically increasing with energy. We
thus simulate in a rather simple fashion the suggested
increase in strength of the Regge-trajectory-exchange
equivalent potential. ') The resulting differential equa-
tion is studied in Sec. II. It is found therein that

Ren = cn+u+—b+g,
n=0, 1, 2, , (~, c=&2

4 The equivalent potentials for unequal-mass spinless external
particles are well known. In these cases, a single Regge-trajec-
tory-exchange equivalent potential has the form

00
~
—rQt'

V(s, r) = dt'absLfa(si')g
tl r

where fz{s,t') is the Regge-trajectory exchange amplitude. It is
clear from this expression that the effective strength of the force
is in a sense an average over the various exchanged particles.
The residue function and the trajectory function of the exchange
determine the variation of V (s,r) with s. The study of this varia-
tion, though amenable in principle, is complicated. A rough pre-
liminary numerical calculation with rapidly decreasing F,& for the
spin-zero equal-mass problem suggests that trajectories are indeed
pulled up in the manner suggested. We would like to state here
that equivalent potentials for unequal-mass spin-zero and spin-$
external particles have been obtained by us for both J= l+& and
J=l—$. They behave like 1/r at r=0. The generalization to
unequal-mass arbitrary-spin external particles is being studied.
It is hoped that the 1/r behavior at r=0 will persist; we have
therefore considered an energy-dependent Yukawa potential in
our dlscusslon,
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provided q'/g~s/g ~ 0 as s —+ + po. What is relevant
for us is that 0(c(2, so that utilizing the monotonicity
of g(s), we have

where

and

S~„(S~„+,(Sg„+2

Ren„(sJ„)=J,
Ren +r(sg„,) =J,

(1.6)

ro

I
I
I

~oo

ken„(sg„+s) = 1+2.
We may note that under similar conditions for the
square well with depth g, c& 2, so that the resulting pat-
tern is different although the essential physical picture is
the same. In Sec. III, taking g=s2 as is suggested em-
pirically, the pattern shown in (1.6) is compared with
the positive- and negative-parity spectrum of non-
strange baryons.

In order to understand the empirical behavior of Imn,
in other words, I'&,&, we have necessarily to take account
of the multichannel nature of the problem. To display
the essential physical features involved, we develop a
simple multichannel formalism in Sec. IV. The effect of
the other channels on the trajectory generated by the
single channel is then presented using the dispersion
relations satis6ed by e.

II. TRAJECTORY FUNCTION FOR
LARGE ATTRACTION

In this section4 we propose to discuss the Regge tra-
jectories arising from the following differential equation:

d2$
+ q'+V(s, r) — —/=0, X=I+-,' (2.1)

dr2 r'

FIG. 2. Illustration of the condition which X /g has to fulfill in
order to produce the three classical turning points r2, r3, and r4.

We consider here q2 and X real and positive. To begin
with, let us suppose that

In this event the differential equation approaches the
"free" form since the effect of the potential becomes
negligible. Thus no resonances can be formed and in
fact the Regge trajectories recede into the left half X

plane as for the case when g is independent of s. Simi-
larly, we can see that when

p, s/g —+oo,

no Regge trajectories occur. This corresponds to the
fact that for V(s, r) of the form (2.4) for any finite s,
the Regge poles lie in a bounded domain in the right
half X plane.

The behavior discussed above is intimately related
with our ability to generate the three classical turning
points rs(r p(r4, Q'(r;) = 0, i = 2, 3, 4, with Q'(r) )0 for
r2(r(r3, so that a resonant state may be formed. The
function @(r) has a maximum and a minimum at rp and
rpp provided (see Fig. 1)

0& 2q'/g &
I (41)-.I,

where

and where

q2
lim —=0(1),

V(s, r) = g(s) e '"/r—

(2.2)

1 dQ 2q'
1

rdr g

It can be easily seen that when

q'/g —+ 0, rp= (rl+ I)/0+0, rpp ~ + oo, (2.7)
In writing V(s, r) as in (2.3), we simulate the short-range
character and the energy dependence of the equivalent
potential arising from a Regge-trajectory exchange. '
For the sake of curiosity, in the following we will take

0(roo) &~'/g&&(r ).
(2.4) I.et us now consider the situation when

V(s,r) = g(s)rp 'e "", ~ )-rl)——1.

this case is of interest to us, as will be evident later.
From Fig. 2 we can see that for r2, r3, and r4 to occur, we
must have

In our study we adopt the JWKB formalism. We
therefore de6ne the square of the "velocity" function

Q'(r) =q'+g ' "—~'/ '=(g/ ')LO(r) —~'/g3, ( 5)

where

Q(r) = r +'e "p"+q'r'/g. (2.6)
4' On completion of this work, Dr. R. Yves informed the author

of a work by G. Tiktopoulus LPhys. I etters 298, 185 (1969)&,
where essentially similar ideas have been dealt with. The author
is grateful to Dr. R. Yves for drawing his attention to this work.

that is, when
X'/g -I+ y(r, );

(rp —rp) -e 0.
Then for rp+«&r&rp —«, «) 0, Q'(r) ~+~ as
g~+pe aild

cosLQ(rp) (r—rp) +const j
is in6nitely oscillatory, thus corresponding to resonances
or Regge trajectories whose radial quantum number n is
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19/2+11+7+
2

TABLE I. I=), I=I+-„Odd i, odd J signature, positive paritY. the behavior of 4k(r) near its maximum r is relevant. We

J ~5+ thus approximate g(r) by

m
1ns

&ei
~tot

I;&/I"&.&

'pn

nz2

~e).
~tot

~ I/~tot

J

1.236
1.53
0.125
0.125
1
3+

1.69
2.86
0.028
0.28
0.1

1.95
3.83
0.084
0.210
0.4

4.86

242
5.86
0.034
0.31
0.11

11+

11+

2.85
8.12
0.012
0.4
0.03

15+

15+

3.23
10.43
0.002
0.44
0.005

which yields

Q'(r) = gag+—ga21/r (A'/—r') a2.

In (2.10) we have

1 d2& , 1+1 "
Qy=- e-(+')

2 dr'

(2.10)

tN
m2

j- ei
F,g

~.i/~t. t

(dip, g) d2$ ~+1 g+1

Qg =fp- -. k e
—&&+", (2.11)

dr' " -' k

tending to infinity. Since the leading trajectories are of
interest to us, we take

~'/g 4 (/o) (2.8)

so that the oscillations of it are now finite in number.
In order to obtain an expression for Ren„, n finite, we

utilize the eigenvalue equation arising in the JWKB
formalism. The eigenvalue equation is, for g —+~,

dr Q(r) =(n+22)2r, n=0, 1, 2, (x& . (2.9)

2 $2gt ~ 2(n+I),
2y(r, ) dr'

where, in writing a2, condition (2.8) has been used; the
results in (2.7) have been used in writing the limiting
forms as q'/g ~ 0. With the use of Q2(r) given by (2.10)
in (2.9) the problem reduces mathematically to the
familiar hydrogen-atom problem. The resulting expres-
sion is

n, +-,' / g q'/2
R«„=— —+2a2I —

I

(a2) '" ka2a2 j
It can be shown rigorously that the condition requiring
the dominance of the "outgoing-wave" part of the regu-
lar solution over the "incoming-wave" part in the region
between r2 and r4, in the limit g —+~, yields (2.9). Under
the same limit, this condition is equivalent to the Regge-
pole condition. This, of course, means that Imn„—+0
as g —+~. Hence we set X= Ren„ in (2.9). Nbw because
of the condition (2.8)

r2 ~ ro 0and —r2 ~ ro+0,

and since empirical evidence suggests that q'/g —+ 0, we
utilize the limiting forms in (2.11) and obtain

1/2

Rei„=— n+a
1+1

/ g q'/2 2/+]
+I I

(~+I) (2»)
2ekl ek

where
n=0, j., 2, 3 (~, —1(q(~,

and a is a constant which has been introduced but is not
essential.

For a given q, the pattern on the Chew-Frautschi
plot is clear. I.et s„(J) be the value of s for which

(2 )/ 2/+ I) q/2 g(s) 1/2

Ren„= —
I I n+a+(2/+1)
4&+Ii ek I 2ek

where J is physical spin. Then, on using the monotonic
increase of g with respect to s, we conclude from

I g(s.+~(~))3'"—Lg(s-(J'))3'"

Frc. 3. Chew-Frautschi plot for radial-quantum-number tra-
jectories. For simplicity, trajectory forms Rea„=V2n+a+s have
been chosen.
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that

„h,„,„„(J))-(J)
1/2'f J')J 41 J J+[/

J)) (J)
i/2~

f Jl)J an4i J' J)[2/('g+ )
) (J4)t ens-+~ J &'"

i/2i
~

f J')J but J — "
(J')then s.+i(J ='"

or lar e q, s~+i(J) approaches s (J)We can see that o g
ith finite n. squeeze'ecrom above an~

l s of these trajec-together. Simu
a}] but positive,

ltaneously the s opes

t d (J)» „(J),j
an
may remark here t a p

d trajectories resultingcellation between the exchange ra'
ular nature of the equivalent po-

. For our pur ose, we consi
decrease of the sing

'der q=o only
Eq. (2.3)$, in which case (see ig.

fn~

1 ei
stot

Z', I/I'tot

J
fnC

+el
I tot

Z', I/stot

J
fn
ffz'

~el
~tot

j." I/I'tot

estimates:

p 94
p.88

$+

2 ~ 13
p. 143
p.26
0.55

1.785
3.19
p. 136
0.405
p 34

5+
2

1.69
2.86
p.p76
p. 125
0.6

dr—=0(1/Qg),
r2

s (J+2)» (J)»-(J). (2.13)

and is
'

n for Imn is well known anThe general expression or mn
'

given by
exp —2

r4

«le(r) I «xp[ —(&g)(r —r-r —r3 —2e)0(1)j,

Imn„=
1 1 d4/ dP*

2 Re~„„~12' dr dr
dr

r2

with
r4=(Re n)/ 44

+~;—

Imn„=
2 Ren„+1

exp —2 «I Q(r) I
dr

r2

dn~—=[ .(J)j'"-— I'(s„(J)). (2.14a)

where
P=—P(n„,s,r) .

that Imn is small as a pfirst a proxima-
thin . Uti izingtion, we set n„=—Ren„'

from t eh jTWKB formalism, we have

e «& s' as suggested empirically.
a

' '
th bove resultsa ro riate to view e

f
pp p

t the elastic hal -wi

1 dis a rapi y ecrhe Regge po

h' h th centrifugal barr'
era iddecreaseof t e a-
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r tra ectories satisfyingra ia-q — ed 1- uantum-num e

(3.1s„(J+2))s„+g(J))s„(J),
ed of a particle with spinwhere s„ isJ '

the mass squared o a p

[s„(J)g' . = n]'~' I'(s (J))=—Imn„

T4

2(2 Ren +1) 1+expI
r3

ceedhngs of tlze Fourteencee ing th InternationalDonnachie, in Procee zng
-gy y ", "I ~ ~ lC. Lovelace, in ProceeChngs o n- l' a dlb 1967El entary u zc

orth-Holland Publishing C
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r2
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'
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TABLE III. I= ~, J=l—~, l even &2,
odd J signature, negative parity.

TAsLz V. I=(, J=l q—, l odd )3,
even J signature, positive parity.

m~

~e&

~ei/I'tot

J

1.52
2.295
0.058
0.115
0.5

2.19
4.8
0.105
0.30
0.35

2.65
7.0
0.027
0.36
0.075

3.03
92
0,0024
0.4
0.006

1.91
3.61
5+

eP
j.ei
~tot

I' &/I'tot

J
1'

~ei
~tot

I;I/I' t.t

1.7
2.89
0.075
0.3
0.25

1.98
3.92

~4.89
(decreasing q)

J and the radial quantum number n. For the degree of
credulity associated with each particle, see the quoted
references. ' We may state here that the leading trajec-
tories displayed in Tables I—III have more than one
well-established resonance. In the tabulation "dip q"
means that the elasticity decreases here in the CERN
set of phase shifts, but no resonance has been claimed.
The symbol refers to the prediction of a resonance.

To begin with, let us consider the nucleon and 6 set
of trajectories (Tables I and II). Accompanying the
leading nucleon and 6 trajectories, we observe the first
manifestations of deeper-lying trajectories having the
same quantum numbers. The masses of the first mani-
festations satisfy inequality (3.1) very well. With the
expected Regge-trajectory slope, = 1 GeV ', it is certain
that the higher recurrences also satisfy (3.1). Clearly,
then, it is reasonable to interpret these deeper-lying
trajectories as the higher-radial-quantum-number tra-
jectories associated with the leading nucleon and 6
trajectories.

We recall that we have considered the nucleon and 6
trajectories as reciprocally bootstrapping each other in
the vrE channel. As a consequence, higher-radial-quan-
tum-number trajectories were predicted. It is thus in-
teresting to note that N(1.460), the Roper resonance, is
an outcome of the reciprocal bootstrap of the nucleon
and 6 trajectories.

The above case also shows that a single channel (7rE)
is sufFicient to explain the nucleon and 6 set of trajec-
tories. Such a simple circumstance need not occur

always. Thus, for example, we could have two dy-
namically significant channels weakly coupled to each
other. Each channel would then yield its set of trajec-
tories satisfying (3.1). In this event, the empirical spec-
trum would not display the pattern (3.1) as readily as
it has in the case of the nucleon and 6 trajectories.

In Table III, the D» trajectories again satisfy (3.1),
thus indicating that here also only one channel is active.
We will now turn to some of the other resonances that
have been seen. One P3~(1.930), m'=3. 63 and one

F3,(1.910), nz'= 3.61 are observed; the only reasonable
choice is to attribute different trajectories to the two
particles (Tables IV and V). From our point of view we
have to assign different two-particle channels to ac-
count for their existence. The particle channel associ-
ated with the trajectory on which F»(1.910) lies is such
that the point having I-'3~ quantum numbers in the wE
channel is a nonsense point for it. Next consider
S»(1.64), m'= 2.69 and D»(1.95), m'= 3.8; the former
has been ranked "good" and the latter "poor."' If the
particles are assigned to the same trajectory, the re-
sultant slope is = 1.8 GeV ', which would require a G~g

with m'=4. 9. The CERN set of phase shifts' does not
show a dip in the elasticity for G» until 4.92. Further-
more, the first higher radial quantum number S» would
have m'=3. 2; no resonant behavior is observed here.
Hence it is preferable to retain an =1 GeV ' slope and
consider two separate trajectories. Thus the next recur-
rence, D», of the S»(1.64) trajectory is expected to
occur at s=4.69, and the next higher ra,dial quantum
number S~q at s=4.1 (Table VI). As regards the
D„(1.95) trajectory, if it survives, it will be due to a
single channel for which S3j is a nonsense point. The
higher-radial-quantum-number trajectories associated
with D»(1 95) trajectory. , from our point of view, will

have their S3~ points also as nonsense points. Finally,
we have D»(1.69), nz'=2. 79, which obviously implies

G», ns'=4. 79 on the leading trajectory, and a second
D33, m'=4. 2 (Table VII).

TABLE IV. I=$, J=l—~, l odd, even J signature, positive parity. TABLE VI. I=—'„J= l+-'„ l even, even J signature, negative parity.

1.93
3.63

$+

~5 0

5.63

rg
n2

1—
2

1.64
2.69
1—
2

4.1

5—
2

4.69
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TABLE VII.I= 2, J=l——,', l even, odd J signature, negative parity. TABLE IX. I=-,', J=l+-,', l even )2, even J
signature, negative parity.

11Z

11Z2

3—
2

1.69
2.79

7—
2

11Z

11Z2

5—
2

1.675
2.81

9—
2

4.81

11Z

11Z' 11Z

11Z2 4.22

Turning to the remaining isospin--, particles, we will

consider the following only: Szz(1.525), m'= 2.33;
Dzs(1.675), m'= 2.81; and Szz(1.715), m'= 2.94. All
these particles are ranked "established. "' We are again
faced with two possibilities. The first (Tables VIII and
IX) is to consider Szz(1.525), m'=2. 33 and Dz5(1.675),
m'= 2.82 as occurring on different trajectories, 5» being
a nonsense point for the D»(1.675) trajectory and its
associates. The next recurrence of the Szz(1.525) trajec-
tory, Dzs, is expected at s=4.33. Clearly, then, Szz(1.71),
m2=2. 92 is the first manifestation of the first radial-
quantum-number trajectory associated with the
Szz(1.525) trajectory. The second possibility (Table X)
is to consider Szz(1.525) and D»(1.675) to be lying on
the same trajectory. This choice requires a large varia-
tion of the slope of the trajectory. This variation has to
be of a local character since no resonance is observed in
the 6~9 amplitude until s=4.9. In previous construc-
tions, large departures from unit slope have been re-
jected. But in the present instance we retain this possi-
bility in order to point out a mechanism which could
cause such variations. This mechanism arises from the
effect of other channels and is discussed in the next sec-
tion. Of course, Szz(1.71) is still considered the first
radial excitation of Szz(1.525).

Before concluding this section, it may be pointed out
that the difference in m2 for two resonances having the
same quantum numbers is W2 as given by Eq. (2.12)
(st=0, and g/2ek=s' as suggested empirically). This
difference in m' is fairly well satisfied in Tables I—III,
and has been used in the predictions listed in the remain-

ing tables. We would, however, stress that inequality
(3.1) is the prediction for the pattern of resonances,
since, although the multichannel effects are small as
seen from Tables I—III, their effect would certainly
shift the masses from that expected from Eq. (2.12) for
the Yukawa potential.

An analogous comparison may be carried out for the
boson spectrum. However, such an exercise would be

little different from that carried out for the quark
model. '

IV. BEHAVIOR OF Ime

In this section we consider the multichannel nature
of the problem and suppose that a number E of two-
particle channels is relevant in a given energy region of
interest. We thus consider an E-channel differential
equation of the form

itz+ vg =0, v =q'+ V (2' —„')/r'—, -(4.1)
dr2

and l;= A, ;——,
' represents the ith-channel orbital angular

momentum which, when combined with the channel
spin, gives rise to the total angular momentum J of the
whole system.

In order to simplify the problem, we approximate the
differential equation (4.1) by another for which

~,t= —kz,'8,;0(r)0(rs —r) (region I)

+Q (U ) &kzzzp Use'0(r 'r&)0(r& —r) —(region II)

—kzzz, '8;,0(r —rs) 0(r4, —r)

+qc28,;0(r—rt;)

0(r)=1 zf r)0
=0 if r&0.

(region III)

(region IV),

(4.2)

TABLE X. Alternative to Tables VIII and IX; see Fig. 4. I=-'„
J=l+-'„ l even, even J signature, negative parity.

where ztt and V are zV)&tV znatrices, whereas q' and 0 '
are diagonal E)&S matrices. For the ith two-particle
channel, we have

q
= Ps —(mz,+m2, )'jLs —(mz, —m2, )')/4s,

TABLE VIII. I= 2, J=l+2, l even, even J
signature, negative parity. 11Z

11Z'

1—
2

1.525
2.33

5—
2

1.675
2.81

11Z

11z2

1—
2

1.525
2.33

5—
2

'j1Z

11Z2

1.715
2.94

tjz
11z2

1.715
2.94

' H. Harari, in ProceeChngs of the Fonrteenth Internatgonai Con
ference on High Energy Physics, Vienn-a, 1968 (CERN, Geneva,
1968), p. 195.
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The 5 matrix for (4.2) is given by'

(Ezv ) '&(Ezv ) '= —~zv,

+zv= (&zv &)(&zv+&)
where

QZV, .——e
—iq&, r4z, g . .

(4.3)

(4.4)

with

Ez z z iz
——exp L

—2k» z;(r4;—r&)]5,,

&zzz = (%zz+ 1)(&zzz —1)

+III ~III U +IIU~III ~

(4.7)

(4 g)

(4.9)

The matrix U~RII U contains information regarding
region II, where the effect of the potential matrix is
dominant. Supposing that ki; is very large for every i, we
have

sinkzz, (ra —rz)
zz

kzzj coskzz~(f3 —t'2)

Following the usual procedure, the resonance condi-
tion is

detEIV '=0)
which reduces to

det(&zzz Ezn ) =0,

as can be easily seen frozn (4.6). Let A and 2 be unitary
matrices which diagonalize Ezv and Sizz —Ezzz 2, re-
spectively. Further, let the resonant eigenchannel of
Szzz —Ezn ' be indexed bv 1, and resonant at Qs = w = m

with total angular momentum J. The expression for
partial half-widths is given by

fzJzEzzzi
'

I', zzz' ——
~

— yz (
Z, z ——A,zi'zz", nr=m (4.10)

&zzzz

where —yz is the residue of L2 (Szzz —Ezzz ') '&]zz and
F~ the total width of the resonance.

The discussion in Sec. III has shown that the expected
pattern of resonances on the basis of single-channel dy-
namics is well satisfied and that departures due to multi-
channel effects are not large. We thus assume that the
off-diagonal elements of the potential matrix, or v;, in
region II, are small. Or, in a more direct fashion, it is

8 We have treated the problem like an S-wave one, with the
the centrifugal force treated like a repulsive potential. This is,
of course, not correct if we were interested in studying the phase
shifts. However, the present expressions provide a simpler frame-
work for the discussion in this section. None of the physical ideas
and conclusions is altered if we were to adopt the more accurate
expressions.

Matrix 5 denotes the ratio of the coeKcient matrices of
the e+'& "/Qq and e '& "/Qq matrices. For the Ezv'
matrix, we have the expressions

+IV g ~IV/ ) +IV Rz V

gkzzz + (2gkzzz Ezzz ) (~zzz Ezzz )
X(2gkzzz 'Ezzz )', (4 6)

where

assumed that the off-diagonal elements of E'Izz are small.
This latter assumption will be utilized from now on.

Let the i=1 particle channel be principally respon-
sible for the resonances in the eigenchannel 1.The reso-
nances we consider are those which lie on the same tra-
jectory J=Ren= zz+m'; furthermore, m will be treated
as a continuous parameter. Now, 2;z represents the
projection of the ith-particle-channel vector onto the
resonant eigenvector in the interior region II, which is
responsible for the formation of the resonance (or the
Regge trajectory). Our assumption thus implies that

~
Z;z

~

', z = 1, will be dominant over
I g, z )

', iW 1. The
analysis in Sec. II suggests that

(kzzz) z Xx Ren
= cozlst. , gz/(kzzz)z~ 0

(kzz) z Qg m'

where v g=m', as empirically suggested, has been uti-
lized. From (4.10) we see that the partial width I'zz will
tend to zero as m —+~. Now if the total width I'~ does
not decrease as rapidly, or does not decrease at all, then
A;&, i = 1, will be very small. This of course shows that
the smallness of I';z/I'z, a highly inelastic resonance in
the ith particle channel, does not necessarily imply that
this particle channel is insignificant in the formation of
the resonance.

In the expression for I'~~, let us set Z~z= 1 and com-
pare with (2.14a); the comparison is obvious, and we
conclude that yz ——0(1). Under our assumption, we ex-
pect hz=0(1) even when Zzz(1. Further, since

(4.11)

and
~
Zzz~ is considered dominant, the variation of 2;z,

i~1, with m along the Regge trajectory will not be
drastic. From (4.10) we see that the main contribution
to the total half-width arises from particle channels
with low orbital angular momenta; that is, from those
channels with high channel spin. The threshold of such
channels will of course be in the neighborhood of m, so
that zf;/kzzz;=r4;=O(1) along with

expL —2%zz;(r4; —r3)].

Since we have assumed that channels with low channel
spin are primarily responsible for generating the Regge
trajectories, the channels with large channel spin do not
have a dynamically significant role. Thus, choosing the
simplest possiblity, we may attribute roughly equal
weight, j Z, z~ ', to them consistent with the dominance
of

~
Zzz

~

'. The behavior of the total half-width with m
thus will essentially depend upon the number of chan-
nels with low orbital angular rnomenta into which the
resonance (m, J= zz+ m') will decay. We turn our
attention to this aspect.

To begin with, we count the number of channels
which result on taking pairs of particles lying on two
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trajectories, one from each. Let the two trajectories be

Ji——(ji—mpi')+mi' and J2= (j2—mp2')+m2',

where mp~ and mp2 are the lowest particle masses on each
trajectory. Let J and m be the resonance of interest
lying on the trajectory

J= (j—mp')+m',

and let the orbital angular momenta of interest range
from zero to L. The channel spins of interest are thus

J+L, J+L 1, J+—L—2, , J L)0. —

Particles with masses m~ and m~ for which

Ji+ J2&J—I.

or
Ji J2)J+—L

J2 Ji)J+L—

is true are clearly not relevant. Similarly, those m& and
m2 for which

ITl Op

Alps

FrG. 4. (m&,m2) plane formed by mass points lying on the Regge
trajectory J&——a&+nzP and mass points on the Regge trajectory
Jn=a2+m2'. The channels into which a particle with mass m
and spin J=g+1e' is allowed to decay lie in the shaded region.

Condition (ii) requires

(iia) —'m f 1—[I—2 (m' —Ri')/m')'t ') )mlo

which, for finite L, reads
is true are again not of interest. Thus those (mi, m2) for
which at least one of their channel spins lies in the
range J L to J+L ar—e contained in the closed domain
bounded by the curves C&, C&, and C3, and with m&+ mp&

and m2)mp2 (Fig. 4). The curves Ci, C2, and Co are
defined by

(iib) (m2 —Rio)/2mio) m.

Condition (ii) for finite L thus clearly shows that if
mipQ0, the decay of the resonance (J,m) into two par-
ticle channels with 6nite orbital angular momenta, for
suKciently large m, is kinematically not possible. Of
course, if m~p=—0, then no such restriction follows.

Let us continue with the requirement L finite, and
we suppose that we have chosen some fixed L. Xow the
trajectory which comes closest to satisfying the condi-
tion m&p= 0 is the pion trajectory. Thus for fairly large
m satisfying (iib), the favored two-particle decays are
those in which one of the particles is a pion and the
orbital angular momenta are finite. The number of
available two-particle channels then clearly is the
nearest integer less than —,'(m' —R22) if AJ=2 rule or
m' —R&' if AJ=1 rule. Given I,, j&, j&, j, mp&, andmp,
condition (ia) yields a restriction on mo2, that is, very-
deep-lying trajectories are excluded. Consequently
there are only a finite number of trajectories with which
we can pair the pion trajectory. Hence for the trajectory
J=j—mp'+m', the number of channels with ICL
increases as m increases, reaches a constant when all
the trajectory pairs contribute, and remains constant
as long as condition (iib) is well satisfied. If mp is in-
creased, deeper-lying trajectories can pair with the pion
trajectory, resulting in an increase in the number of
decay channels.

Finally, we combine the discussion in the last para-
graph with that given in the paragraph containing Eq.
(4.11). The result then is that I'i,o „p of the leading
trajectory is expected to increase monotonically as m
varies along the trajectory, Qattening off beyond a cer-
tain point. For trajectories with higher radial quantum
number (deeper-lying), I'i,i „&p will have the same be-

Ci'. mi'+m2'= (J L ji p2—+m—oi'+—mo2') =Ri',
C2 ~ ml m2 (J+L—ji+ j2+mol mo2 ) R2

Ji) J2 (4.12)

Finally, we have to take account of the condition

mi+m2&m= (J—j+mo)'i',
C4. mi+m2= (J—j+mp) "'. (4.13)

For large J, the allowed domain is shown shaded in Fig.
4. Clearly we must require that the following conditions
are satisfied:

(i) m2 —Rip) 0

(ii) mic —moi) 0,

where m~g is the mi common to Cq and C4. Condition
(i) requires

(ia) L+ji+ j2 j+mo )mol+mo2

and for finite L and mp (ji, j2, and j are always finite),
mp~ and mp2 will be bounded, so that m' —R~' is bounded
when L is finite. This of course means that for finite L,

m' —R '
m —Ri ——————~ +0.

m+Ri QJ

Co. m2' mi'= —(J+L j2+j 2+mo2' m—oi') = Ro', —
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havior as for the leading one; however, we have F~,~ „~0)Fi,3 „p. From the discussion on (2.14) we have that
I 11,n/0 I 11,&=0 for the same mass region. Hence, reso-
nances with radial quantum number n will be more in-
elastic than those with n —1 and lying in the same mass
region. One may compare these results with the empiri-
cal behavior in Tables I and III.

It should be stressed that the foregoing comparison
with data is under condition (iib). With mpi ——pion mass
ancl L= 4, we see that for the leading 1V, 6, and {I=-'„
X~=(l——',), 3=2, 4, 6, ) trajectories the range of
allowed m is ample for the comparison to be meaningful.
However, for m —+~, two-particle decay channels with
finite orbital angular momenta are no longer kine-
matically possible for trajectories varying linearly with
5$ =S.

The circumstance stated in the last paragraph, m~~ —+ 0
as m —+~, is intimately related with m —R&~0 as
m —+~. Retaining the assumption thatI. is finite, we
consider other trajectory functions whose form is taken
to be valid for all trajectories. It can be easily seen that
m —Ri —+ 0 for trajectory functions with Re /nQs —+~
as s ~+ pp; m —Ri+& 0 and remains bounded for tra-
jectory functions with Re n/Q $=0(1) as s~+~;
and 3'—Ri ~ + ~ for trajectory functions with
Ren/Qs —+ 0, Ren —+ + ~ as s —+ + ~ . If n(s) does not
have an essential singularity at s= ~, then the second
and third cases are not of interest; as s —+ —~ in the
second case, n —& +i pp, and in the third case Ren —+ + ~
as s ~ —~. Thus we are left with the conclusion that
for trajectory functions for which Ren/Qs —++ ~
(physically interesting trajectories, n~ —~ as s —+

—~, are contained in this class), mic -+ 0, so that two-
particle decay channels with finite orbital angular
momenta are no longer kinematically possible for reso-
nances with sufficiently high mass.

One may be led to suspect that F&,&
—+ 0 as Qs= 3ri —+

+ pp; however, we still have the possibility that
L= L(m) ~+~ as i' —++ pp. Assuming that trajec-
tories vary linearly with m', one can estimate the num-
ber of available decay channels for various forms for
L(F3). The number will now depend also on the number
of deep-lying trajectories. Finally, the behavior of I'&,&

will require a more detailed knowledge of 2,& LEq.
(4.10)g as a function of m. Especially when r4~L/q
=rs—j. GeV, a more detailed knowledge of the poten-
tial would be necessary. At the present stage, therefore,
we cannot even draw firm qualitative conclusions re-
garding the behavior of Fi,i, or Imu, as m'=s ~+ pp.

Multichannel EBects on Rem

nances are taken into account. Thereby we also take
into account the multichannel effects on the resonance
positions. To carry out our discussion, we assume that
the observed trajectory function n(s) satisfies a sub-
tracted dispersion relation, and that I't,~-l+ ~ as well

as d (Ren)/ds -I+ ~ with s —++ ~ as is suggested em-

pirically. Taking this into account, it suKces to con-
sider a once-subtracted dispersion relation; hence,

Ren(s) = $Ren(sp) —up(sp) j+up(s)

and

A(s) =—P
" ds' y(s')

/S —S
(4.15)

and where

Imn(s') d Ren(s')
7 (s') = —

,
=—

, F ~ (s')
Qs' ds'

np($)=Op+ bps .

(4.16)

and choose so= s]. The effect of the shift is displayed by
the curves Ren(s), empirical, and Reu(s) —fh(s) —D(sp) j
given in Fig. 5. The maximum 6(s) —A(sp) is roughly
0.8, occurring for s=5, where y(s) is still increasing.
This corresponds to roughly a 10%%u~ shift in mass. For
large s, the shift A(s) —A(sp) =0.25, which corresponds
to a negligible shift in mass for large m. The variation
of A(s) is not rapid throughout.

In a fashion similar to the above, we may consider
the leading P33(1.236) trajectory with

Now by assumPtion, np($) —iip+bps l5p=1, is generated
by a single channel as suggested; thus the remaining
terms in the right-hand side of Eq. (4.14) represent
terms which include multichannel effects. The choice
of the subtraction point may be taken in a region where
multichannel effects are expected to be negilgible so that
Reu(sp) =up(sp), in which case h(s) —d (sp) represents the
shift. With the dynamical framework we have in mind,
we consider sp= (m +re~)'.

I et us first consider the leading trajectories in Tables
I and III; in particular, we concentrate on the Dip(1.52)
trajectory. In this case, d LRen(s')j/ds'=1, so that
y(s') =Fi,~(s'). Utilizing the empirical values for F3,t(s'),
we represent the energy dependence of y(s') in a simple
form by

p($ ) = d($ —si)p si($ ($3
= 0.4, S3(S

d= 0.08, si= 1.2= (iri~+nz~)', s3=6.2 (4.17)

I.et us denote the trajectory function generated by
a single channel, discussed in Sec. II, by np(s). Since
empirically np($) —llp+bps, we may assume that up($)
is an entire function with respect to s. We are now inter-
ested in the shift of the trajectory function when Imo. is
"switched on"; that is, the decay widths of the reso-

'y($') = di($' —si) )

= 0.12+dp(s' —mip. *'),
=0.45,

sy(s (ss~*
m~*'(s (s3
S )S3

di= 3, d3=0.04, si= (rri~+m~)')

$3 9 78) ~N* (4.18)
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and sp—=m~*'. Conclusions regarding the shift will be
analogous to those from (4.17).Let us denote the varia-
tion of y similar to those of (4.17) and (4.18) as "nor-
mal. " From the discussion on I~,t, , the "normal" be-
havior for y is expected in general. Thus in the case of
higher-radial-quantum-number trajectories also, the
shift h($) —h($p) is expected to be analogous to that. in
Fig. 5 and of the same magnitude. Thus, as is evident,
there would be little distortion of the pattern

'5-

$„(J+2))$„~i(J))$„(J),

7($)=vp($)+ v, ($), (4.19)

where n is the radial quantum number. Furthermore,
the difference between $„+i(J)and $„(J) would be about
V2, as noted towards the end of Sec. III. However, this
difference is more sensitive to the details and hence the
inequalities stated are more reliable.

The discussion regarding I"~,~ had been carried under
the assumption that particle channel i was dominantly
responsible for the formation of the trajectory in eigen-
channel 1, so that ~Zii~)&(Z, i~, i/1 Lsee (4.11)j.
Furthermore, particle channels with i/ i and low orbital
angular momentum had been considered on an equal
footing, so that ~Z, i~ = ~Z, i~ for iA1 and j/1. It is
possible, however, that one of these particle channels-
the ith one, say—becomes dynamically significant in
the formation of the trajectory for a local region of en-

ergy. The perturbative expression for the matrix U
[Eq. (4.2)j suggests that this would occur if the off-
diagonal element of the potential matrix V,q suddenly
became important, or if V;;= VJ~, or both, of course for
a local energy region only. In such an event,

~
Z, i~ will

be comparable to ~Sit~, causing a sharp increase of
I', i LEq. (4.10)j or Ft,~, which would cause a similar
variation in y [Eq. (4.16)j. As can be seen from the
dispersion relation satisfied by n($), a sharp increase of

y rejects in a sudden increase of Ren.
In order to discuss numerically the phenomena stated

in the last paragraph, we refer to Table X, where
Sii(1.525) and Di, (1.675) have been assigned to the
same trajectory, resulting in a rapid variation of Reo.
with s. It is evident from our previous discussion that
a "normal" behavior for y($) Lsee (4.17) or (4.18)j can-
not account for the rapid variation of Re+ found in this
case. In fact, y($) must have an almost step-function-
like increase in the vicinity of the Dj5 resonance. Let us
record the following two observations: First, it is seen
that for S»(1.525) the Xs.m. decay mode is negligible,
whereas for Dip(1.675) almost 55% of the decay occurs
through the Xxx mode'; secondly, we may observe that,
taking the width of Dip(1.68), Ft,i =0.145, into account,
the energy level of this resonance overlaps the pE
threshold, m, +mpt —1.694, with m,—0.755. This sug-
gests that the New contribution to y is negligible until
we reach the pX threshold, beyond which it very rapidly
increases in an almost step-function-like manner. Thus
we write

I ~2 5 6

s(GeV) ~ IO

Fio. S. Shiit caused by Imn = (gs)& on the unperturbed leading
D» trajectory ao to give the observed leading D» trajectory Reo,.
The continuous curve for cxo is only to guide the eye.

pp($) = dpi($ $01) $01($($3
=&o($p), $p ($ (4 20)

with dpi=0. 117, pp($s) =0.765 $pi= (m +sssip) =1.162,
and sp ——7.684. For d (Reo.)/d$=1 when $= m'(Sir)
=2.326, we have yp($) —Ft, p($) 0.136; it is reasonable
to take the trajectory slope about unity as is seen in
Fig. 6. The value of F~,p for Sii(1.525) is reasonable
given the present uncertainty regarding its experimental
value. ' The value of s3, the point beyond which the pp
levels off, would lie between the third and fourth particle
manifestations if the S»(1.525) trajectory had been
linear. The placing of s3 is reasonable when compared
with the D»(1.52) trajectory and the P»(1.236) tra-
jectory Lsee also (4.17) and (4.18)7. As regards y, ($),
we consider the simple form given below:

'y ($)=0
d1($ $1))

= —dpi($ —$p),

=0
7

s(si
sy(s($2
s2(s(s3
s3(s (4.21)

where di= 16.029, $i= (m, +res~)'=2. 869, m, =0.755,
and so= (srs, +rrsip+0. 01)'=2.904. The choice of sp is
arbitrary; however, once chosen, d& has been evaluated

where yp($) has a "normal" behavior and y, ($) repre-
sents the contribution from the pÃ channel. We also
note that for suKciently large s, because of the increas-
ing centrifugal-barrier effects, y, ($) will ultimately ap-
proach zero as s increases. Furthermore, whatever is the
variation in d (Ren)(d$ near (rip, +mrs~), it will approach
the normal slope, = i, for suKciently large s. Hence we
have the asymptotic behavior

7($) ~7o($) ~ =Foot, (~) as $~+~ ~

Again, taking simple functions to represent the s de-
pendence of yp($), we have
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22)

0
2 pNQ 5 6

s(GeV) ~2

0
9

Fio. 6. Distortion caused by the sudden opening of the plV
channel on the leading S» trajectory. The curve with Q shows
the distorted trajectory when Imn, = i/sly~ is given by Eq.
(4.21). The curve with H shows the distorted trajectory when
» is given by Eq. (4.22). For the curve Q, J=2.133 for s =2.869;
J=2.354 for s=2.886; J=2.163 for s=2.904. For the curve H,J=2.299 for s=2.869; J=2.532 for s=2,886; J=2.348 for
s=2.904. The pE threshold is given by s= (m~+sez)2=2. 869 for
m, =0.755. The maxima of the distortions lie between s=2.886
and s=2.904. The first spin- —', particle lies between ps=1.694
and Qs=1.704, whereas the second spin- —,'particle lies between
gs 2.12 and Qs 2.26. Energy units are in GeV.

y, (s) =0,
= di(s —si),
=v.(»),

$ (sy
Sy($(Sg
Sg($. (4.22)

The more realistic behavior of y, (s) would be somewhere
in between the two extremes (4.21) and (4.22).

The discussion of the shift. arising from (4.20) will be
carried out in two steps. As a first step, in (4.15),
identify si with spi of (4.20) and y(s) with yp(s) of (4.20)
and let sp be suitably chosen —say, sp= (1.525)' for
simplicity, so that Ren(sp) =: rrp(sp) = pr. The shift result-
ing from yp(s) may be supposed to give rise to the nor-
mal straight-line trajectory in analogy with the
D»(1.52) trajectory. In the next step, we identify si of
(4.15) with the si of (4.21) or (4.22), and y(s) in (4.15)
with y, (s) as given by (4;21) or (4.22). The np(s) of
(4.14) is now identified with the normal trajectory gen-
era, ted in the first step, and sp= (1.525)' with Ren(sp)

requiring that

v(») =vp(»)+ v, (») =vp(»)

Thus for»(s) given by (4.21), p(s) equals &p(s) below
the pN threshold; near (m, +m~)' the value of y(s)
increases rapidly, reachirig and remaining at its asymp-
totic value for s&sp. In (4.21), y, (s) starts decreasing
immediately beyond $2. The decrease, of course, need
not be as sudden. Hence, we also consider an extreme
case of (4.21) where y, (sp) is kept constant and sp al-
lowed to go to infinity, so that we have

=rrP(sp)= —,
' is retained for simplicity. The resulting

expression for A(s) —A(sp) now represents the shift due
to p, (s) as given by (4.21) or (4.22). The effect of this
shift is illustrated in Fig. 6. As can be seen, the distortion
from the straight-line trajectory occurs primarily in the
region of the pÃ threshold. As the 6gure shows, we are
faced with the distinct possibility that the trajectory
passes through J=

~ twice with a positive slope. Hence
there would be two D~~ manifestations on such a tra-
jectory. Empirically the assignments in Tables VII and
IX can be distinguished from the assignments in Table
X by the presence or absence of a G~9 resonance at
m'=4. 81. In the last statement we are, of course, as-
suming a unit slope for the Dip(1.68) trajectory of
Table IX as well as presupposing that Gy9 ls a sense
point for this trajectory.

The mechanism for the distortion from a monotoni-
cally increasing Regge trajectory discussed above is
quite general. In fact, a particle may be suspected of
lying on a trajectory with a shape as in Fig. 6 if its mass
is almost coincident with the threshold of a channel into
which it decays primarily. As is evident, the height of
the distortion depends critically upon how rapid is the
increase in y(s) (Eq. (4.16)$ as well as the magnitude of
the increase.

V. CONCLUSION

In the foregoing, some dynamical ideas based on the
t-excitation scheme have been presented to account for
indefinitely rising Regge trajectories. In order to over-
come the increasing repulsive centrifugal force, it has
been suggested that the effective strength of forces due
to exchanged Regge trajectories, attractive in this case,
increases with energy. The output Regge trajectories
would then be pulled up with energy. Viewing this in the
simplest case of a single two-particle channel, we come
up with the immediate conclusion that trajectories must
grow at least as fast as gs. Furthermore, we have the
prediction that associated with the leading output tra-
jectory there must occur an infinite set of deeper-lying
trajectories, the deeper-lying trajectories being the
radial excitations of the leading trajectory. The pattern
for the resonances is

where s„(J) represents the mass squared of a particle
with spin J and radial quantum number e. For linear
trajectories with unit slope, we haves +i(J)—s„(J)=&2,
in the single two-particle channel example. Empirically,
the above predictions are very well satisfied for the sets
where the leading trajectories are the well-established
6(1.236) trajectory, N(0.939) trajectory, and Dip(1.52)
trajectory. In the case of leading trajectories whose first
manifestations have been observed, the above scheme
predicts the pattern of resonances to be found.

In order to discuss the behavior of Imo. , or Ft,t, it is,
of course, essential to consider the multichannel nature
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of the problem. The simplest possiblity consistent with
the above dynamical suggestion is to consider the cou-
pling between the various channels to be weak. This as-
sumption at once indicates that I'&,& is essentially pro-
portional to the number of two-particle channels (we
have restricted our attention to such channels only)
with low orbital angular momenta. In the case of trajec-
tories linearly rising with s, it is found tha, t the number
at first increases and then reaches a constant, but finally
for su%ciently large s the required two-particle channels
are no longer kinematically possible. The first two stages
adequately account for the behavior of I'&,&. The discus-
sion suggested that the kinematically favored decays
are those in which at least one of the particles is a pion.
Beyond those s for which the required two-particle low-

orbital-angular-momenta channels are no longer avail-
able, no firm conclusions can be drawn, the reason being
that in this case the number of channels with angular
momenta l(s) fl(s) —+~ as s ~~ j would tend to in-

finity also and could thereby negate the damping due to
the centrifugal barrier. If this happens, I'

t,,t, may ap-
proach a finite limit or may tend to infinity. From the

empirical evidence at hand, Ft,t, appears to be approach-
ing a constant.

The shift of the trajectory function generated by
a single two-particle channel, due to coupling with
other channels, has also been discussed. In the course of
this discussion we have also considered the case when

the contribution from a given channel to Imn increases
in a step-function-like manner. In such an event, we are
faced with the interesting possibility of two particles,
identical except in mass, being assigned to the same tra-
jectory. Although such an eventuality is rather unlik. ely,
it is of interest. The phenomenon is analogous to the
Ball-Frazer mechanism for phase shifts.

If the over-all approach is appropriate, then with the
simplest association of one two-particle channel with
each trajectory we require nine channels, or less, to
account for the observed number of trajectory sets.
The next degree of complication is that we may require
a set of channels with low channel spin whose "potential
matrix" may be diagonalized by a matrix dependent on

s and l only for large values of these parameters. In this

case, too, an increase of the effective strength of forces
due to the trajectory exchanges would be necessary. It
seems that some such increase is required to counter the
repulsive centrifugal force in those cases where an ap-
proximation by finite number of two-particle channels
is valid. Consider the dynamical ideas contained in Ref.
1, where the attempt was to keep the orbital angular
momentum low and pull up the trajectory by increasing

the channel spin. The relevant channels are those
whose thresholds lie near the resonance mass. Under
such conditions, however, the discussion concerning Fig.
4 is applicable. Applied to this case, it states that be-
cause of the nonzero mass of the hadrons, channels with
finite orbital angular momentum and thresholds near
resonance mass are kinematically not possible for suffi-

ciently large s. This result is true provided the trajec-
tories universally increase faster than +s as s —+ + Qo.
But if the trajectories increased at most like gs as
s~ +~, channels meeting the basic requirements of
the ideas in Ref. 1 are always available. ' But in this
event we must require that n(s) ha, s an essential singu-
larity at s = ~; otherwise we are faced with undesirable
properties as s —+ —~, Rea ~s~" coskm, 0(k&-', . If,
however, we wish to retain the faster-than-gs growth
of trajectories as s —+ +~, then we have to abandon
either the restriction that channel thresholds be near the
resonance mass, or that the orbital angular momentum
be finite, or both. If the restriction on channel thresholds
is removed, then an infinite number of channels is
available; little is k.nown of such a situation. If, how-

ever, the restriction on orbital angular momentum only
is removed, then the repulsive force would tend to in-

anity. In such a situation, the study of models, e.g. ,

potential scattering, shows that we approach the
"free-particle" case, unless we counter the repulsion by
an appropriate increase of attraction. The latter, of
course, requires that the effective strength of the forces
due to trajectory exchanges increase with energy.

Finally, we wish to state that although an increase in
the effective strength of the exchanged Regge trajec-
tories can explain high-rising trajectories, it is conceiv-
able that beyond a certain high energy the effective
strength does not increase as rapidly. In this case, the
trajectories after having risen fairly high will start fall-

ing. The empirically observed behavior would thus be
accounted for here also. The question whether trajec-
tories rise indefinitely or not is then primarily a matter
of internal consistency in a given formalism.
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