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Quasi-Unitary Three-Particle Approximations
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The three-particle discontinuity equations are expressed in forms convenient for the study of unitarity
violations. As an application, the constraints on the two-particle transition operators imposed by requiring
consistency with three-particle unitarity are deduced. This provides a framework for some recent proposals
for generating approximate, finite-rank, two-particle transition operators which do not satisfy off-shell
unitarity. Also, the general features of some quasi-unitary impulse approximations are discussed in a unihed
fashion in order to clarify the conditions for their validity as well as for higher-order quasi-
unitary approximations.

1. INTRODUCTION

T has been known for a long time within the usual
~ - off-shell formulations of three-particle scattering
that two-particle (off-shell) unitarity implies three-
particle unitarity. However, in view of some recent pro-
posals' for approximating the two-particle dynamics by
transition operators which violate off-shell unitarity, it
is perhaps relevant to inquire as to what constraints are
imposed on the two-particle operators by demanding a
certain minimal consistency with three-particle uni-

tarity. Our first objective will be to determine these con-
straints and thus provide general criteria for determin-

ing such transition operators which automatically gen-

erate quasi-unitary three-particle theories.

Another sort of quasi-unitary approximation has been

proposed by Sloan' and Finkel and Rosenberg' which

involves an intrinsic mulitation of the three-particle
rather than the two-particle dynamics. This scheme may
prove to be of considerable practical importance for
performing those calculations for which the customary
numerical methods appear to be ill suited. ' Some
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For nucleon-deuteron scattering, for example, we have in mind
scattering at moderate energies (say, above 10 MeV) including
spin effects. The essential point is that the final, Heitler-type equa-
tions obtained in Refs. 2 and 3 can, conceivably, be solved without
a partial-wave decomposition; they are two-dimensional integral
equations but with (angular} variables with finite domains. Of
course, one still has the old and difficult problem of determining
the average two-body amplitudes (see Ref. 5). Nonetheless, the
now customary procedures of integrating exactly various one-
dimensional versions of the Faddeev equations in given states of
total angular momentum appear hopelessly unwieldly when con-
fronted with the physical problem just mentioned. Even at very
low energies these latter techniques have difficulty reproducing
the forward diffraction peaks (see Ref. 6 for a review of these cal-
culations). The origin of this circumstance, for the N-d case, seems
to be that the so-called exact integration procedures do not appear
to exploit in a very efficient manner the special physical simplici-
ties which follow as a consequence of the weak deuteron binding.
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general features of this technique will be discussed as an
application of the analysis of the three-particle discon-
tinuity equations given in the first Secs. 2 and 3 of this
paper. This will constitute, first of all, the embedding
of the somewhat different realizations of this scheme ob-
tained in Refs. 2 and 3 within a single unified formalism
in order to explicate the approximations which are
actually being made as well as the alterations in the
singularity structure which are thereby induced.
Secondly, this will clarify the conditions for higher-
order approximations which are also quasi-unitary.

2. THREE-PARTICLE DISCONTINUITY
RELATIONS

t=t'+t, (2.3)
5 K. L. Kowalski and D. Feldman, Phys. Rev. 130, 276 (1963);

H. Kottler and K. L. Kowalski, ibid. 138, B619 (1965);M. L'Huil-
lier, Nucl. Phys. A122, 667 (1968).

I. Duck, Advances irI Nuclear Physics, edited by M. Baranger
and E. Vogt (Plenum Press, Inc. , New York, 1968), Vol. I, p. 343.

7 E O. Alt, P. Grassberger, and W. Sandhas, Nucl. Phys. B2,
181 (1967).

See also Refs. 2 and 9.
L. Rosenberg, Phys. Rev. 168, 1756 (1968)."Our rephrasing of the work of Ref. 7 is sufficiently different to

require some clarification. A very brief review of this is given in
the Appendix.

"This terminology is due to L. Rosenberg, Ref. 9.
~' The unique practicality of the formalism arises, however, when

t' is chosen to be a finite-rank operator on the appropriate two-
particle spaces. We recall that t and t' are operators in the three-
particle Hilbert space.
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We will employ throughout this paper the elegant
formulation of the three-particle scattering problem
found by Alt et al. v ' in which the scattering operators
U(s) satisfy

U(s) = U(s)+U(s)a'(s) U(s)
= U(s)+ U(s)" (s) U(s), (2 ~)

where the effective potential" U(s) is defined as the
solution of

U(s) =~(s)+~(s) (s) U(s)
=f(s)+U(s)t&(s)P(s) . (2.2)

The two-particle transition operator t(s) has peen de-
composed into the arbitrary sum"
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and

where

e(s) =Gp(s) t'(s) Go(s),

()=Go()t()G ()
i-(s) =&Go(s)-',

Gp(s)=(s —Hp) '

XARU(&), Eq. (2.5) becomes

AU= [U(a)Gp(&)]r It[Go(W) U(W)]
+&&—[U(~) (~)]&|[(~)U(~)] (2 &)

Thus far we have not specified anything concerning
the two-particle transition operator t(s). Normally, t(s)
satisfies the reQection property

is the free-particle Green's function and s denotes the
(complex) parametric energy.

In writing the preceding equations we have employed
the usual matrix notation with respect to the channel
indices o. =0,1,2,3, where 0 refers to the three-free-par-
ticles channel and +=2, for example, refers to the
channel in which particle 2 is asymptotically free.
That is, U(s) represents the 4X4 matrix whose elements
are the operators Us (s), t(s) is a diagonal matrix with
elements t (s), to=—0, and 8 is the matrix with elements
1—8p .

Let us employ the notation

AU=—U(+) —U( —)

for the discontinuity of the quantity across the unitary
cut in the s plane, where

U (~)= [U (s)].=~+'. ,

t(s)t = t(s)*, (2.10)

which, in turn, along with Eqs. (2.1), implies that'4

U (s)' = U(s*) (2 11)

In addition, t(s) satisfies the two-particle off-shell uni-
tarity relation

6t = t (&)gt (W )+Dtp g = —2rri 5 (E Hp) (2—.12)

where At& represents the contribution to At arising solely
from the two-particle bound-state poles. Both these
properties (2.10) and (2.12) are essential in obtaining
the usual statement of physical three-particle unitarity
from the preceding discontinuity relations. We will
reserve the demonstration of this (well-known) result
until Sec. 3.

Similar discontinuity relations can be easily formed
using the same method, "for the operators

with E real and c)0. The technique of Freedman et al."
when applied to Eqs. (2.1) and (2.2) yields the follow-

ing discontinuity relations for the scattering operators
and the effective potential:

F(s)—=Go(s) U(s)G, ( )
=F(s)+F(s)t (s)F(s)
=F( )+F( )t'( )F( )

F(s) =—Gp(s) U(s)Gp(s)
=&Go(s)+8Gp(s) t (s)F(s)
=~Go(s)+F (,)t (,)Go(s)~,

(2.13)

AU = U(&)As'U(+)
+[I+U(~)"(~)]AU[1+"(~)U(~)], (2 4)

AU =U (a)Ar(U(+)
+[1+U(&)s(&)]&f[1+r&(W)U(W)]. (2.5)

Since (2.4) and (2.5) hold for any decomposition (2.3),
and since U is necessarily independent (in contrast to U)
of how t is split up, we find, in general, that

AU = U(+)AxU(+)
+[1+U(+)s(~)]At [1+s(~)U(~)], (2 6)

(2.14)

which are used along with the supposition of a finite-
rank form" for the components of t'(s) to derive quasi-
two-particle scattering integral equations. ' These ex-
pressions for AIi and hF are not of any direct interest
except in the special case in which the "vertex states"
appearing in the assumed P are independent of s. In the
general circumstance where this is not the case, it is
better simply to derive discontinuity relations directly
for the quasi-two-particle amplitudes from their defin-
ing integral equations as is done in Ref. 13. In general,
however, these amplitude discontinuity equations are
not very informative, because the connection between
the h sical and quasi-two-particle amplitudes is usu-

where

s(s) =Gp(s)t(s)Gp(s).

It is useful to note that

(3.1)
"Since we are using a matrix notation, the adjoint operation

includes a matrix transposition with respect to the channel indices.
For the individual components Us, (s) of these matrices, (2.11)
implies that Vp (s)t=U p(s*).

"D.Z. Freedman, C. Lovelace, and J. M. Xamyslowski, Nuovo
Cimento 43A, 258 (1966).

p y
U (a)As U (W) = [U (a)Gp (a)]At[Go(W) U (W)] ally rather remote. Fortunately, we will never have any

[U(~)s(~)]pi.[1+s(~)U(~)] need to consider such equations.

3. APPROXIMATE TWO-PARTICLE UNITARITY
Thus, (2.6) can be rewritten as

Instead of supposing that t(s) satisfies the two-par-
AU= [U(a)Go(&)]&t[Go(~)U(~)] ticle off-shell relation (2.12), let us assume that

+AU —[U(~) (~)]Ax (~)U(~)]. (2 8)
Atp,

Since an identity similar to (2.7) also obtains for U(&)
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where, roughly speaking, At, is the continuum contribu-
tion to AI, and AIt, has the same interpretation as (but
need not be identical to) the corresponding quantity in
Eq. (2.12).

Before we employ (3.1) in the three-particle discon-
tinuity equations some clarifying remarks are in order.
We are assuming that in place of a I(s) which is con-
nected to the usual manner to the interparticle poten-
tials, we are inserting into Eqs. (2.1) and (2.2) an
operator for which this connection no longer holds.
Obviously, this cannot be done in an arbitrary fashion
without completely losing the physical interpretation
of these equations. Therefore, it is necessary to confine
ourselves to a suitably restricted class of 3's."

In writing (3.1) we have implicitly supposed that I(s)
has essentially the same behavior with respect to the
parameter s as does a normal two-particle transition
operator. Specifically, we assume, first, the reQection
property (2.10), which along with Eqs. (2.1) implies
(2.11).The remaining properties are most conveniently
phrased in terms of the operator t (9), corresponding to
t (s) on the appropriate relative two-particle subspa, ce.
Namely, we suppose f (9) is discontinuous across the
real 9 line from 0 to +~ which implies that

a&,=0

for s real and below the three-particle threshold; finally,
we assume that t (i) has at most pole singularities when
z &0 (with the usual factorizable residues) which give
rise to the discontinuity At& in (3.1).

In practice, an approximation to some presumably
"exact" transition operator will not yield the "correct"
pole positions or residues. Corresponding to this, Atb in
(3.1) is not supposed to represent, necessarily, the same
discontinuity as that possessed by this "ideal" t. In
point of fact, the approximation constitutes the intro-
duction of a new model, namely, the specification of new
("approximate") channel states. The retention of the
factorizability of the residues at the poles is quite es-

sential if the three-particle discontinuity equations are
to have any resemblance to the physical unitarity rela-
tions.

Now inserting (3.1) into (2.8), we find that

AU= LU(~)Go(~) j~& I G (~)U(~)3
+I+~+Al-, (32)

where

r—=LU(~)G, (W)I(~) j(1+&)g
XLI(~)Go(~)U(~) ), (3.3)

7—=LU (+)G (~;))9I —I(~)g(+)3
XLGo(~) U(~)g. (3.4)

"No artilcial degree of generality is being sought here. We
assume, for example, that t has all the usual symmetry properties
expected of it, particularly invariance with respect to spatial
translations of the system as a whole and of the nth particle as
well as time-reversal invariance. The only changes of interest are
evidently those involving its behavior as a function of s.

If two-Particle off-shell unitarity tEq. (2.12)j we«
satisfied, p would vanish identically. YVe will next dem-
onstrate that (3.2) without p gives rise to the ordinary
unitarity conditions so that p is the entire measure of
the unitarity violation arising from a nonunitary I(s).
It is clear that y will vanish below the three-particle
threshold.

Next let us note that a typical element Fp of F can
be written as

I'e-=LZUei(+)Go(~)& (~)j
XgLPI, (W)G, (W) U,.(~)]

where
G,(~)PaI,j.G,(~)= —2,D. , (3.6)

D-—=-2 l~-(~.))~(~—E.)(y.(~.) ~,

f» all &, and ~4~(E )) denotes the n-channel state.
Then referring back to (3.2), we recover the usual form'
of the discontinuity relation for U:

AU= —2iU(a)DU (~). (3 7)

» (3.7) we have omitted, in addition to y, the Go i-de
pendent terms which appear in (3.2) and (3.5) with the
understanding that only matrix elements with respect
to e-independent vectors are to be considered. The
rather trivial issue here is that for the oR-shell exten-
sions actually employed in the work of Alt eI al. ' Lcf.
Eqs. (2.13) and (2.14)j this is not the case, and
Eq. (3.7), which was derived by these authors in a dif-
ferent manner, is quite incorrect within the context of
their paper. "Of course, these extra terms cannot con-
tribute when one is interested in the on-shell physical
statement of unitarity which follows from (3.7) with
the aid of (2.11) and the original physical significance
assigned to U. 7

Let us define the imaginary part ImL8j of an operator
as

Im/ej= (2i)—'Le —etj.
Since by (2.11) we have

Imt U(+)7=(») 'AU,

(3.7) can be rewritten as

—Im(U(+) 1=U(~)DU(~)', (3.8)

which explicitly demonstrates, upon recalling the def-
inition of D, that ImL (U+—)$ is a positive-semidefinite
operator in the case when three-particle unitarity ob-

6 To put this in another way, one cannot derive the proper dis-
continuity relations for F from (3.7).

= Ue (~)gU.-(~)—~eoGo-'(~) gU..(~)
—Ue (~)gG.-'(~)~..+4.~..G; (~)gG; (~).

(3.5)
Also for o./0,
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tains and we denote this formally as"

—ImLU(+)$&~0.

If we refer to the definitions (3.3) and (3.4), we see
that (3.11) is equivalent to the condition

(3.9) —Imt, +t(&)SDof(%)&0, (3.13)
If we decompose the matrix D into a part Dq containing
only the two-particle bound-state contributions and D,
which is related to AGp,

and in this connection we note from the explicit form
(3.5) that.

—(2i) ii')~0. (3.12)

17 This has strict meaning of course only where matrix elements
with respect to normalizable states are understood.

'SThat is, D&, for example, is equal to the diagonal matrix D
with the n =0 element set equal to zero.

we see from (3.7) that

—IImLU(+) j+U(~)Di U(~)t}=U(+)D.U(+)t

which implies that

—tImLU(+) j+U(a)D&U(a)tI &0. (3.10)

The on-shell version of the positivity condition
(3.10), confined to the n, P@0 submatrix& is the usual
form of the minimal constraint imposed by unitarity in
the case where there are two-particle bound states. '
In this context, namely, as applied to two-particle multi-
channel amplitudes, this condition is very well known
and will be exploited as such in Sec. 4.

It will be necessary to go beyond the preceding type
of constraint in order to include three-particle problems
for which there exist no bound states in the two-particle
subsystems. In such a case the Up for P, n&0 have sig-
nificance only as auxiliary, but, nonetheless, exceedingly
useful mathematical entities somewhat akin in their
role to the two-particle transition operators. This
example emphasizes our intent to regard (3.10) as a
(generally) off-shell condition on the Up for all values
of n and P and under any physical circumstances. In the
case without two-particle bound states, (3.10) reduces to
(3.9), which is certainly the minimal constraint one
could impose upon the Up ', if there are two-particle
bound states, (3.10) includes all the usual unitary con-
straints.

Let us explore the consequences of (3.10) in the case
mhere we have a unitarity violation as a result of a non-
off-shell unitary t(s). First of all, the essence of our as-
sumptions concerning the two-particle bound-state
poles is that (3.6) still obtains, with, of course, some ap-
propriately modified channel states. Thus ignoring
the Di term, (3.2) is

I LU(+)j= —LU(~)Go(~)Ã LGo(~) U(~)j
+ (2i)

—'(I'+y),

and so the unitarity constrant (3.10) reduces to

—(») '(I'+v)) o

—LImt, +i(~)D,&(~)$& 0, (3.14)

which is equivalent to satisfying (3.11) by having

—(») 'v&0 (3.15)

In partial-wave form (3.14) becomes, on the relative
two-particle subspace,

Immi(p, p &') & ——; u
~
f, (p,u;u ) ~,

where k'&~0, p~) 0, and where the equality would hold
if the amplitude mere off-shell unitary. "

The mode (3.15) of satisfying (3.11) can be justified
in another way by a (rough) synunetry argument. The
point is that if (3.15) holds, then in addition to (3.10)
we also have

—tI K(+)3+U(+)D.U(+)'I & o,
which is a constraint just as legitimate as (3.10), except
perhaps in the absence of two-particle bound states.

The preceding arguments are general and quite inde-
pendent of any subsequent manipulations which are
always needed to obtain practical integral equations
provided, of course, no new approximations are intro-
duced in the process. " In particular, our conclusions
are independent of the decomposition (2.3) that one
might eventually choose in exploiting the effective-
potential formalism.

One 6nal point should be made concerning the dis-
connected structure in the discontinuity equation for
Upp in the case when two-particle off-shell unitarity is
not satisfied. It follows from (3.2) that all the discon-
nected parts will all cancel out quite independently of
the validity of off-shell unitarity, and this equation will
reduce to a discontinuity equation for the connected
part of Upp.

4. QUASI-UNITARY IMPULSE APPROXIMATION

As an application of some of the work of Secs. 2 and 3,
me mill discuss the quasi-unitary approximations of
Sloan' and of Finkel and Rosenberg. ' Although the final

19 The equality in (3.16) of course, would, still not imply the
amplitude was off-shell unitary.

'0 Obviously, truncations in total angular momentum or in the
number of partial waves contributing to the two-particle ampli-
tudes are approximations which do not alter our conclusions.

where we have written

Imi, = (2i) 'At, , Do ———(2i)
—'g.

The positivity condition (3.13) is our general constraint
on the two-particle transition operators. However, the
only way we have found of satisfying this condition
mhich is consistent with the independence of the t for
different n is
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integral equations used by these authors for practical
calculations are nearly identical, the formalisms from
which they are derived are quite distinct. Our primary
objective is to clarify the differences between these two
approaches within the unified context of the formalism
of Alt et a/."In the course of this study we will establish
some apparently previously unnoticed features of the
Sloan procedure which renders it especially appealing,
both physically and mathematically, particularly with
regard to the question of higher-order corrections.

The fundamental difference between the two methods
resides in the choice of I'(s) in the decomposition (2.3).
Sloan chooses"

I '(s)=-', V„P LG (s) G(s)t—]P V, n/0 (4.1)

At'= Dtb ) (4.2)

namely, t'(s) contains all the discontinuities of the two-
particle bound-state poles. The nontrivial consequence
of the choice (4.1) is that t(s) then satisfies a legitimate
off-shell unitarity relation"

Ai=t(~) gi(~). (43)

The proof of (4.3) follows from the elementary fact that
since

we have
(z—e,) ly. (z))=v-l&-(&))

5(E—Hs)V lP (E))=0,

so that with the choice (4.1),

f'(~)gf'(+) =o

Since (4.1) also implies. that

Ir'(a) = WiDs,

where I' is the projection onto the n-channel subspace
and

G.(s) = (s—as —V.) '.
Thus

We need be concerned only with the on-shell discon-
tinuity equation for U which is

—ImLU(+) j= U(&)DsU(%)+$1aiU(+)Ds)
Xl —&mU(+) jl 1~sDbU(w) j. (4.5)

The unitary constraint (3.10) will be satisfied if U is
such that the last term in (4.5) is positive-semidefinite
and this is certainly the case for the exact U, as follows
from

—ImLU(+) 3= U(~)Go(~)&(~) (1+~)Do&(~)
XGp(w)f(w) U(w) —(2i) 'Dl .

The unique feature of the Sloan formalism should now
be apparent. It defines a clean division of the problem of
scattering from a bound target into the solution of a
scattering problem for a three-particle system, " for
which there exists no two-particle bound states, and the
solution of a relatively trivial Heitler-type equation
which properly accounts for the bound-state scattering
portion of the unitary cut.

In this context the actual form of the impulse ap-
proximation proposed in Ref. 2, namely,

U(s)=i-(s)+ &i(s)S, (4.6)

which is the inhomogeneous term of the once-iterated
equation for U and for which

—ImU(+) &~0
in (4.5), has a simple interpretation. Clearly, (4.6)
amounts to representing the 3-3 transition amplitude
of the subsidiary problem generated by t(s) by only its
disconnected parts. Consequently, the rescattering pole
is the principal feature which is omitted from the singu-
larity structure for both this auxiliary problem and the
actual three-particle scattering. The kinematical cir-
cumstances for which this produces a negligible effect
on the scattering from a bound target may be regarded
as one of the conditions for the validity of the impulse
approximation.

Finkel and Rosenberg choose, instead of (4.1),

the scattering integral equations (2.1) become

U= U—iUDbU
= U —i UDbU. (4 4)

t '(s) = V P G (s)P V, (4.7)

which also satisfies (4.2). Equation (4.7) corresponds to
the identification of t'(s) with the complete bound-state
pole contribution to t(s). Thus, for the choice (4.7),

The P, n 40 submatrix of Eqs. (4.4) is easily transformed
into a Heitler-type integral equation for the physical
on-shell amplitudes Qp(E) l Up (E) lp (E)).s4 The source
terms in these equations are evidently the matrix ele-
ments (yp(E) l

Up. (P) l y„(&)).
2 The Finkel-Rosenberg formalism is already of the Alt et ul.

type, although it is not phrased in terms of the same notation."We confine ourselves to three-particle systems for which there
exists at least one bound state in one of the two-particle subsys-
tems.

'3 This point apparently was not noticed in Ref. 2.
24 In the event that not all subsystems contain bound states,

the order of the relevant matrix equations reduces accordingly.

at= f(w)gf(w).

Thus, the problem represented by U(z) Lor F(s)] in this
case falls into the category studied at length in Sec. 3."

"This differs from a true physical problem only in the sense
that some of the usual analyticity properties with respect to s are
necessarily lost. This is a consequence of the fact that in t(s) one
has a bound-state contribution in the nonanalytic form G (s)
+G.(*).

'Actually, Finkel and Rosenberg use J (s) and F(s) in the
terminology of the present paper. With their choice L(4.6}g of
t'(s) it is evident from (2.13) that they are involved with off-shell
quasi-two-particle equations. With the Sloan's choice t (4.tlat, on
the other hand, the use of (2.13) and (2.14) is entirely equivalent
to the direct employment of U(s) and U(s).
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Namely, one has a two-particle transition operator t(s)
which is rot off-shell unitary. This complicates consider-
ably the discussion of questions of consistency with uni-
tarity as well as the question (at least in principle) of
higher-order corrections to an approximation like (4.6).
This is in marked contrast to the model of Ref. 2.

Pote added in proof. In connection with Ref. 4 it
should be mentioned that the method of V. Avishai,
W. Ebenhoh, and A. S. Rinat-Reiner LPhys. Letters
298, 638 (1969); Ann. Phys. (N.Y.) 55, 341 (1969)]
appears to be equally practical. Also, explicit calcula-
tions of the type outlined in Ref. 4 have now been com-
pleted $J. Krauss and K. L. Kowalski, Phys. Letters
(to be published)] and have indicated that the solution
of the modified Heitler equations using a partial-wave
decomposition is by far the most scient technique, at
least for relatively low energies (11—40 MeV). We would
like to thank Professor I. Sloan for pointing out a
serious ambiguity in the original version of this paper.
Namely, if in Eq. (2.12) one were to employ AGp rather
than g, a consistent interpretation of the e —+0 limit
would lead to a double counting of Atb (see Ref. 2). On
the other hand, t(&)8AGpt(%) =t(&) gt(W).
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APPENDIX

We being from the proof by Alt et al. ' that the opera-
tor

Up (s) =8p Gp '(s)+V —V —Up

+8p V +VPG(s) V, (Ai)

n,P=0,1,2,3, whose matrix elements with respect to the
appropriate channel states are equal to the physical
scattering amplitudes, satisfies the (matrix) integral
equations

U(s) =l (s)+ f (s)~(s) U(s)

=~()+U() ()f()
(A2a)

(A2b)

and

where Ho is the kinetic-energy operator. As is custom-
ary, '~ it is formally convenient to include in our matrix
notation quantities with indices referring to the three-
free-particles channel n=0, although the Up operators,
for instance, for these index values are really entirely
determined by the P,n&0 operators. With the decornpo-
sition (2.3), (A2a), for example, can be rewritten as

U()=f()L1+"()U()7+l() ()U().
Comparing this with Eq. (2.2), we immediately infer
Eqs. (2.1).

P7 C. Lovelsce, Phys. Rev. 135, 81225 (1964).

In Eq. (A1), V is the interaction between particles
P,y/n, Vp ——0,

V =Qbp~U„,


