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Noncausality and Other Defects of Interaction Lagrangians for
Particles with Spin One and Higher*
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We analyze critically what happens when various interaction terms are added to a Lagrangian describing
a free particle with spin ~)1.Good behavior results when the charged spin-one particle is coupled minimally
to an external electromagnetic field or via a magnetic dipole moment. However, with an arbitrary electric
quadrupole moment, the spin-one particle propagates noncausally (v)c) in an electrostatic field. Non-
causal behavior is also found for the neutral vector field with self-coupling X (W„W&) . Another kind of disease
appears when the spin-two particle is given a charge: A constraint is converted into an equation of motion,
so that there are six degrees of freedom instead of the desired Ave.

I. INTRODUCTION

& URING the last thirty years, it has become a
popular technique among theoretical physicists

to construct Lagrangians for free higher-spin particles, '
which yield both the equations of motion and the
constraints. The method of higher-spin Lagrangians
was originated by Fierz and Pauli to avoid the imme-
diate algebraic inconsistencies that arise, in the presence
of interactions, when the constraints are postulated
independently of the equations of motion.

However, the result of the analysis presented here,
which deals with several examples of interacting
higher-spin equations (s)~1), is that the Lagrangian
device by itself does not automatically provide satis-
factory wave equations. The bad features displayed by
these equations include noncausal propagation (v)c),
loss of constraints, or failure to propagate. ' Most of the
cases concern the four-vector Geld representing a spin-
one particle. 4 It exhibits good behavior in an external
electromagnetic Geld when coupled minimally and with
anomalous magnetic dipole moment. But with an
arbitrary anomalous electric quadrupole moment, it
propagates noncausally in an electrostatic Geld and is
nonpropagating (exponential instead of oscillatory
behavior) in a sufficiently strong magnetostatic field.
Noncausal behavior is again found when the spin-one
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particle is coupled to an external symmetric tensor Geld
and when the neutral vector Geld has the self-interaction
X(W„W")'. Because the noncausality of the minimally
coupled Rarita-Schwinger equation for spin ~3 has been
discussed earlier, ' we turn, for our last example, to the
minimally coupled spin-two equation. ' It presents the
new feature that, in the region of nonvanishing external
Geld, two of the constraints become equations of
motion. ~

To understand the origin of the difficulties, let us
briefiy review how wave fields may be described
mathematically. Wave propagation is usually associated
with hyperbolic systems of partial differential equa-
tions. Such equations allow an initial value problem
to be posed on a class of surfaces, called "spacelike"
with respect to the equations, and they possess solutions
with wave fronts that travel along rays at finite
velocities. The rays through any point form a ray cone
that is entirely determined by the coeKcients of the
highest derivatives. Thus, for hyperbolic systems, when
coupling occurs only in lower derivatives, the ray cone
is the same in the interacting and free case. The free
Klein-Gordon and Dirac equations are familiar ex-
amples of hyperbolic systems, and so, when they are
coupled through lower-order derivatives, the ray cone
remains the light cone.

On the other hand, for spin greater than one-half,
the free Lagrangian equations are not hyperbolic, but
constitute instead a degenerate system because they
imply constraints. However, it may be shown that they
are equivalent to a system of hyperbolic equations,
which describe the wave propagation, supplemented by
constraints that are conserved in time. But it is not
true that, if any low or nonderivative coupling term is
added to the free higher-spin Lagrangian, the resulting
Lagrangian equations remain equivalent to a hyperbolic

s G. Velo and D. Zwanziger, Phys. Rev. 186, 1337 (1969).
6 G. Wentzel, Ref. 4, p. 205.
~ Other cases of noncausal behavior, unrelated to the problem

of higher-spin particles, have been observed recently. See S.
Bludman and M. Ruderman, Phys. Rev. 170, 1176 (1968); M.
Ruderman, ibid. 172, 1286 (1968); Y. Aharonov, A. Komar, and
L. Susskind, ibid. 182, 1400 (1969).

8 R. Courant and D. Hilbert, Methods of Mathematical Physics
(Wiley-Interscience, Inc, New York, 1962), Vol. 2, Chap. VI.
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system with the light cone as ray cone, supplemented
by the same number of constraints. In fact, our ex-
amples show instead that the defective behavior
mentioned above does indeed occur.

In view of these results, the situation for higher-spin
particles has become acute. There is at present no
known example of a satisfactory equation with inter-
action for spin greater than 1. The case of spin one is
marginal; some interactions appear to lead to satis-
factory equations, but others are unacceptable.

where'
L= —-'G 'G~ "+-',m'W„'W~,

G„,=x„8'„—x„W„,
zr„=zc}„+eA„,

(2 1)

and A„(x) is a given external electromagnetic potential.
The Lagrangian equations,

zr (zr"W zrvvW") —m'W 0v (2 "-)

are not true equations of motion, because they appear
to be of second order but the second time derivative of
W' never occurs. LMore technically, the system (2.2)
has the feature that every surface in space-time is a
characteristic surface. "$ The zeroth component of thi's

equation is, in fact, a primary constraint, and a second-
ary constraint is obtained by taking the divergence of
Kq. (2.2),

ieF""zr W"+mzzr W=0, (2.3)

where we have used

[zr„,zr„)=ze(B„A„—B„A„)= ieF„„. (2.4)

Substitution of Eq. (2.3) into Eq. (2.2) yields

zrzW„+i em zzr„F~&zrgW„+ieF v"W„mzW„= 0, (2.5)—
which is a true equation of motion because one may
solve for the second time derivative of every component
of 8'„. To find the normals e„ to its characteristic
surfaces, ' we replace iB„by e„in the highest derivatives
and calculate the determinant D(n) of the resulting
coefficient matrix, which we call characteristic deter-
minant:

OI

D(n) =
~
n'g„„+iem—zn„F),„n"

~

D(n) = (n')4.

(2.6)

(2 7)

The equation of motion (2.5) will be hyperbolic if the
solutions n' to D(n) =0 are real for any n, which is

z Our conventions are iz=c=1, g&v= (1v —1, —1, —1}.
~' Reference 8, pp. 590 and $9$.

2. SIMPLE EXAMPLES WITH VECTOR PARTICLES
IÃ EXTERNAL FIELDS

As a first example, in which the Lagrangian method
is successful, we consider the charged vector particle
with minimal electromagnetic coupling. For this pur-
pose we take the Proca Lagrangian with minimal
coupling4

G„„=p„W„p„W„—, p„=i8„ (2.9)

and T""(x) is an arbitrary external symmetric tensor
field. As before, the zeroth component of the Lagrangian
equation

p„(pl"Wv p "Wl"—) mzWI'—XTI'"W—= 0 (2.10)

constitutes a primary constraint,

(—p'W'+p'p W) —m'W' —}T'"W =0, (2.11)

and the secondary constraint is obtained by taking the
divergence of Eq. (2.10),

m'p W+}p T W=O. (2.12)

A true equation of motion results when Eq. (2.12) is
substituted back into Eq. (2.10):

p'Wv+Xnz zpvp T W m'W" hT—v&W =—0. (2.13)

Up to now we have seen that every solution of the
Lagrangian equation (2.10) also satisfies the constraints
(2.11) and (2.12) and the new equation of motion
(2.13). Conversely, every solution of Kq. (2.13) which
satisfies the constraints (2.11) and (2.12) at a given
time, satisfies them at all times and satisfies the original
Lagrangian equation (2.10) as well. The proof of this
statement is omitted because it is very similar to the
discussion given in Appendixes A and 8 for other cases.
To determine the nature of the propagation, we com-
pute the characteristic determinant of Eq. (2.13):

D(n)= ~nzg~"+}m 'n~(n T)"~-. (2.14)

The normals e„ to the characteristic surfaces are deter-
mined by equating this to zero:

D(n) = (nz)z(nz+}m 'n. T.n) =0. (2.15)

(Note that if TI'" were replaced by the antisymmetric
tensor Ii&", then the characteristic surfaces would be
determined by (nz)4=0, so that a magnetic moment
coupling does not disturb the causal propagation, as
asserted above. j To see the kind of behavior that may
occur, suppose that T&" has only the component T~
different from zero. In this case, the last factor of Eq.

obviously true. The characteristic surfaces are the same
in the free and interacting cases, and the ray cone
remains the light cone.

One easily verifies that if'a magnetic moment inter-
action term iIJR'„Il"9V), is added to the Lagrangian
(2.1), propagation remains causal. On the other hand,
if the vector particle is coupled to an external symmetric
tensor field T'~ by the same interaction Lagrangian

XS' T" 8"y

noncausal propagation occurs. To see this, consider
the Lagrangian

L 4zG tGI v+ ', mzW„t—WI'+z}W tT,vW, (2 8)

where
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(n')'= (1+Am 'T") 'n'. (2.16)

(2.15) determines a characteristic surface with normals and the gradient of a scalar field 8:
e„satisfying

W» V» p»8 (3.6)

Therefore, if Xm 'T" lies between 0 and —1, the equa-
tion of motion is hyperbolic, but has spacelike char-
acteristic surfaces and is therefore noncausal. Using the
method of Ref. 5, Appendix 8, one easily verifies that
the noncausal ray is not eliminated by the constraints.

p V=O, (3.5)

3. NONCAUSAL PROPAGATION WITH
ELECTRIC QUADRUPOLE COUPLING

Just as the neutron and proton are sometimes de-
scribed phenomenologically by introducing a point
Pauli magnetic moment, it is natural to attempt to
describe a spin-one particle, such as the deuteron, by a
corresponding point electric quadrupole moment. Such
a description will now be shown to contradict causality.

Consider the Lagrangian

L= ,'G„„tG»"+,—'m—'W„tW»-

+2qLWi'Q'"p"W"+ (p"W")"Q""Wij (3 1)
where

G„.=p„w„p„W„, p—»=is»
(3.2)

QX»v= ~X+»v y

and F»„(x) is a given external electromagnetic field.
Here q is a real consta, nt, with dimensions (charge)
&& (length)', that measures the strength of the electric
quadrupole coupling. For simplicity, we omit electric
charge and magnetic dipole moment. Variation with
respect to B ~ yields

p„(p»W"—p "W») —m'W"
—q(Q "»),p"W"+p'Qg»"W") =0. (3.3)

As before, the zeroth component is a constraint. How-
ever, upon contracting this equation with p„, we find,
instead of a first-order constraint, the second-order
equation"

m'p W+qp"Q, „&p»W'=0. (3.4)

If we were to substitute this equation back into Eq.
(3.3), corresponding to what was done before, a third-
order equation would result. Consequently, a different
procedure must be employed.

We decompose the solution lV& into a transverse
vector held V&, with

Here V& and 8 are determined to within the gauge
transformation

V»~ V»+p»A, (3.7a)

(3.7b)

with A an arbitrary scalar solution of the wave equation

p'h. =0. (3 8)

Vpon substitution of Eq. (3.6) into Eqs. (3.3) and (3.4)
one obtains, using Eq. (3.5),
p'V" m'(V "+p—"8)

qLQ".i—p"V"+p.Qi""(V"+p"8)3=o, (3 9)

m'p'8+ qp Q" ip»v~ = 0 (3 10)

We take V& and 8 to be new dynamical variables for
which Eqs. (3.9) and (3.10) provide equations of
motion. Because Eqs. (3.9) and (3.10) are invariant
under the gauge transformation (3.7) and (3.8), the
number of independent variables is reduced to four. A
further reduction to three independent variables, as
required for a spin-one particle, is provided by the
constraint (3.5) and the zeroth component of Eq. (3.3)
written in terms of V& and 8:
p (p'V' p'V'. ) m'—(V'+ p'—8)

qLQ'»ip"V"—+p'Qi'(V'+p'8)3=o (3.»)
)The two constraints (3.5) and (3.11) are required to
eliminate one component, because the equations of
motion are of second order. ]

Thus far we have established that every solution
W» of the Lagrangian equations (3.3) determines a
solution V" and 8 of Eqs. (3.9) and (3.10) that is
unique modulo the gauge transformation (3.7), (3.8)
and that also satisfies the constraints (3.5) and (3.11).
Conversely, we show the following in Appendix A:

(a) Every solution of Eqs. (3.9) and (3.10) that
satisfies the constraints (3.5) and (3.11) at a given
time also satisfies them for all time.

(b) Every solution of Eqs. (3.9) and (3.10) that
satisfies the constraints (3.5) and (3.11) provides a,

unique solution W», given by. Eq. (3.6), of the
Lagrangian equa, tions (3.3).

To see whether propagation is causal we evaluate
the characteristic determinant of the system (3.9) and
(3.10):

8$ S
—qn»Qg»'n~

D (n) = —qn„Q, "n"
—qn»Q&, » n~

qn„Q&,»'n"—

qn„Q"„On»

0
0
0

qn„Q "»in»

0
e2

0
0

qn„Q "»pn»

0
0
S
0

qn, Q"„3n'
0
0
0
S~

"This equation contains the second time derivative of the spatial components W' only. It may be eliminated using Eq. (3.3),
giving rise to a true secondary constraint.
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O'Wv+Xm '8"(W'8 W+2W»W"B»W))
+m1W"+XW1W =0. (4.4)D(e)=(e')'L(e')'m'+q'(e. Q.e)v(n Q e) j=0 (3.12)

The normals e„ to the characteristic surfaces are given finds the equation of motion
by

with

(n Q n). = n—»Q„"'n„=n—»B„F"nv v

The normals m„ to its characteristic surfaces are deter-
(3.13) mined by

D(e) = In2g»»+am 'e»(W2nv+2n WW")
I

= (n')'{e'yXm 'Pn'W'+ 2(e W)'j}=0. (4.5)
We now analyze the last factor of Eq. (3.12) in the

simplest case of static electric field E(x)= Fo, (x),
Ii;;=0 when it becomes

The last factor of this equation determines char-
(eo' —n')'m'+q'((n Vn E)'—eo'(n VE)'7=0. (3.14) acteristic surfaces with normals n„satisfying

4. NONCAUSALITY OF SELF-COUPLED
NEUTRAL VECTOR FIELD

In this section, we give a simple example in which the
noncausality is not produced by an external potential
but occurs in the closed system of the self-coupled
neutral vector field. We will make use of the simplest
possible self-interaction, with Lagrangian

I 1G G» v+ 1m2W2+ 1y (W2) 2 (4.1)
where

8'„=8'„t, H/2= 8'„lV&, G„„=g„g „—(jl„p'„.

The zeroth component of the Lagrangian equation

8 (8»W"—8"W»)+m'Wv+MV'W"= 0 (4.2)

is a primary constraint, and its divergence yields the
secondary constraint

m'8 W+XW'8 . W+2X W»WB»W„O. (4.3=)

Upon substitution of this constraint into Eq. (4.2), one

One easily sees that, for any given n, all solutions mp of
this equation are real, which establishes that the system
(3.9), (3.10) is hyperbolic for any electrostatic field E.
In addition, one may verify that Eq. (3.14) possesses
solutions e„ that are timelike vectors. Hence we con-
clude that the Lagrangian equation (3.3) does imply
noncausal propagation. The maximum velocity of pro-
pagation, according to Eq. (3.14), is, to lowest order in
(q/m)V E, given by

v/c=eo/~nt =1+-', (q/m) [n V n)(E~. (3.15)

If one were to attempt a phenomenological description
of the deuteron by a vector field, one would find that,
in the electrostatic field of a typical crystal,

(~/e —1) 10 ".
On the other ha, nd, if, in Eq. (3.12), the external field

is taken to be magnetostatic, one obtains complex
solutions ep for sufficiently strong magnetic field. This
means that the system (3.9) and (3.10) is no longer
hyperbolic and so is not appropriate to describe wave
propagation.

(1+Am 'W' )e'= —2Am '(e.W)'. (4.6)

Note that in the present case the characteristic surfaces
are not a property of the equation alone, but they
depend on the particular solution 8'„. We see by in-
spection of Eq. (4.6) that if Xm

—'W') —1, which will

certainly hold for
~

W'~ sufFiciently small, then n„will
be spacelike for X&0 and timelike for X(0. Therefore,
with an initial value of W' sufFiciently small (consistent
with the constraints), the initial propagation will be
noncausal for X&0. It is worth remarking that with
S' sufficiently small, the energy remains positive, as
in the free case.

1r» iB»+ed=», and $~»,1r„j=ieF»„.Examination of Eq.
(5.2) shows that no second time derivative appears
when p (or») is zero. These components constitute four
primary constraint equations. Secondary constraints

"Our Lagrangian (5,1) is obtained from the Lagrangian of G.
Wentzel (Ref. 4, p. 205) by the substitution iB„—+ iB„+eA„.It
differs from the Lagrangian (14) of Ref. 2 by a magnetic dipole
term.

S. PATHOLOGY OF MINIMALLY COUPLED
SPIN-TWO EQUATION

At present we leave the vector particle and turn our
attention to higher spin. The minimally coupled
Rarita-Schwinger equation for spin —, has been discussed
elsewhere. ' Here we consider a minimally coupled spin-
two equation" which turns out to exhibit a much worse
pathology. We shall show that, as compared to the
free case, a constraint is lost when the external field is
different from zero. The spin-two Lagrangian

L= (1r&f»„)t1r"f»"—2 (1rif»„)t1rg» "+(1r»p», )ter"p

+ (1r„f)"1r),P»" (1r„g)tm Q—
m'L(~. ,)V" ~—Vj (5.1)

yields the equation

L»"=~'P»" ~&(~ P""+~"P"»)+ ', (~»~"+~"~)P-
+g»"(~.~qt " ~'P) m'(P»" g»"P—)=0, (—5.2)

where P»" is a syinmetric tensor,

(5.3)
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L»"+~»C"+~"C»=0,
where L»" is the left-hand side of Eq. (5.2) and

(5.5)

(5.6)

is the left-hand side of Eq. (5.4). In Appendix 8 it is
established that, if the new equation (5.5) holds and
the constraints LI"'=0 and C&=0 are satisfied at a given
time, the Lagrangian equations LI""=0 are satisfied at
all times. Let us examine the characteristic determinant
of Eq. (5.5). We do not write it out because it involves
a 10)&10matrix; however, the computation is not very
long and yields

D(n) = (e'/m') (e')'P(e. F)'+ (4e'/m')n'(I B)'j. (5.7)

We see that, in the region where the field is diferent
from zero, D(e) does not vanish identically and (as
long as the characteristic surfaces are avoided) Eq.
(5.5) provides, at least locally, a unique solution P»"

for arbitrary initial iP»" and f»". Furthermore, we know
that, whenever P»" and P»" satisfy I» =0 and C»=0
initially, then P»" is also a solution of the Lagrangian
equations. But this means that six initial components
of f»" and six of P»" may be specified arbitrarily and
still the Lagrangian equations are satisfied, whereas
only five independent components are allowed for a
spin-two particle. Therefore Eq. (5.2), which provides
the required additional constraints ip»»=0, p»»=0
where F„„vanishes, fails to do so when the field is
turned on, and so it cannot be a satisfactory description
of a charged spin-two particle. We regard the loss of
constraint observed here as a more serious disease than
the noncausal behavior of the preceding examples and
of the Rarita-Schwinger equation for spin ~~.

result from the divergence of Eq. (5.2):
C"—= (s „P»" v—r "P) i—em '$—F„i,~"P»"

+ (F„"~&,+~,F„")P»"+(', ~„F-»"+F»"~„)Pj=0 (.5.4)

The difference between the free and interacting cases
will now become apparent, for, when A„vanishes, the
further constraint /=0 follows upon comparing the
trace of Eq. (5.2) with the divergence of Eq. (5.4).
This reduces the number of independent components
to five, as required to describe a spin-two particle
(&»ip»"=0 and f»»=0). However, in the region where

F„„is different from zero, no further constraints beyond
Eq. (5.4) exist. To see this, we combine Eqs. (5.2) and
(5.4) and obtain a new equation of motion which may
be written

Sv j»+pvp. V 0

S=O.

(A1)

(A2)

We assume that these equations are satisfied at all times
and that the constraints

p V=O,

L0=0

(A3)

(A4)

are satisfied at a given initial time. From Eq. (A4) and
the zeroth component of Eq. (A1), we obtain

p'p V=O

at the initial time. Furthermore, because of the identity

pp"+S—= (p' —m')p V, (A6)

we conclude that p V vanishes at all times because it
satisfies the Klein-Gordon equation at all times and
vanishes, together with its first derivative, at the
initial time. Hence, from Eq. (A1) we deduce that

Lv=0 (A7)

holds at all times. Thus the constraints p V=O and
L =0 are preserved and the original Lagrangian
equations are satisfied at all times.

APPENDIX 3
We prove that the constraints LI'=0 and C&=0 are

preserved by Eq. (5.5), and that Eq. (5.2) is a con-
sequence of Eq. (5.5) and these constraints. We suppose
that L&' and C& vanish at t= 0. The p= 0 components
of Eq. (5.5) give

x'C"= 0

at 3= 0, and hence, by Eq. (5.5), one has, at 1=0,

L~"=0

(81)

(82)

for all p and v. From Eq. (5.6) and the vanishing of C",
one obtains

APPENDIX A

We will prove assertions (a) and (b) of the paragraph
following Eq. (3.11).Let us denote by L" the left-hand
side of Eq. (3.3), with W» replaced by V»+p»B, and
similarly let us denote the left-hand side of Eq. (3.9)
by S" and of Eq. (3.10) by S. In this language, Eqs.
(3.9) and (3.10) may be written
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at t=0. Contraction of Eq. (5.5) with ~» yields a
second-order equation for C&. Hence, because C& and
moC~ vanish at t=O, C& vanishes identically. From Kq.
(5.5) we conclude that I.»" vanishes identically.


