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definiteness of the individual contribution to the
unitarity condition for forward scattering. Whether
ghost eliminating is produced for t/0 in the COL model
is unclear, although in simplified versions of this model,
ghost eliminating is not achieved automatically.

Work is now under way on possible extensions of
our model to include (a) the simultaneous treatment of
the bootstrapping of several Regge poles, which is
straightforward, but somewhat more complicated than

the work that has been discussed here, and (b) the ex-
tension to t/0, which involves obtaining a satisfactory
mechanism for ghost eliminating and treating the
problem in the absence of O(4) symmetry.
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A Veneziano-type representation for mE amplitudes is written in which the parity partners of the nucleon
and the 3-3 resonance are absent. The difhculty in the earlier models of having 3, trajectories in S channel
(and vice versa) is avoided. The parameters in our model are determined from low-energy data; the predic-
tion for intermediate-energy resonances and high-energy forward charge-exchange scattering are within a
factor of 2 of the experimental values.

OR the rrE scattering amplitude, with the follow-

ing assumptions, we present a Veneziano-type
representation. '

I. TRAJECTORIES

(1) The contribution of the Pomeranchuk trajectory
is not included.

(2) All trajectories are linear functions of the energy
squared variable with a universal slope J3. This means
that X, Xp, X~, Tq, ~, ~p,' 67, ~q are pairwise
degenerate.

(3) Exchange-degenerate p and P' trajectories de-
noted by 0,.

(4) Exchange-degenerate X, X~; Ab, Ap trajectories.
Thus we can denote all four trajectories with I=~ as a
single trajectory e~. Similarly for I=~, we have o.~.

where P „(x,y) is a polynomial in x and y, and c.s.
signifies terms needed to satisfy crossing symmetry /see
Eqs. (11)—(14) below). The degree of P „(x,y) can
always be chosen so that it is a leading term as far as
the asymptotic behavior is concerned. Clearly, we need
some principle to limit the number of terms retained in
our formula; otherwise we will have an infinite number
of parameters. This difficulty of nonuniqueness is in-
herent in the usual Veneziano-type formalism. We adopt
the ad hoc principle that the "leading" term is the term
with m and e equal to the spin values of the lowest reso-
nances on trajectories cr, and nb, respectively (e.g, —',

lor cr&, ss for era, 1 for et), and we only keep the "leading"
term.

III. m, —b 0 LIMIT AND QUANTIZATION
OF MASSES

rr~(s) =-', +B(s—nba),
na (s) = ,'+B(s ntas), -—

cr(t) =1+B(t—nt, ').

II. A MINIMAL PRINCIPLE

A typical Veneziano term is of the form'

I'(nt —n. (x))I'(n —nb(y)) P,„(x,y) +c.s. ,
P (nb+st —n. (x)—o.b (y)) A' t'(s t u) —+ -'A"'(u t s) —-',A'" (u, t,s),

A' t'(s, t,u) -+ rsA't'(u)t, s)+ssA't'(u, t,s);
*Work supported in part by the Atomic Energy Commission,

under Contract No. AEC AT(11-1)34 P107A.
t Address after 1 September 1969: Department of Physics,

Indiana University, Bloomington, Ind. 47401.' G. Veneziano, Nuovo Cimento 57A, 190 (1968).
'P. E. Kaus (private communication); P. Carruthers and F.

Cooper, Cornell University Report (unpublished).

' R. T. Poe (private communication).
4M. Ademollo, G. Veneziano, and S. Weinberg, Phys. Rev.

Letters 22, 83 (1969).

We assume' the width of the resonances I'b 0 as
m —& 0; thus a Veneziano-type formula is most appli-
cable in the limit m ~ 0. In this limit, the results from
partial conservation of axial-vector current (PCAC)
become exact; thus we also expect4 the intercepts of the
trajectories to be separated by multiples of -', .

Now we demand that the amplitudes we write down

(2) satisfy crossing symmetry under s —+ u:
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the superscripts are isospin values. Similar relations
hold for the 8 amplitudes.

We also demand the correct asymptotic behavior:

A ~s~(", 8 —+s~('~ ' for t 6xed, s —&~

2 —+t '& '/' B~p&' '' for s fixed, t 4~ (3)

A —+ s~("' '~', 8 —+ s~(") '~' for I Axed, s —+~ .
The physical amplitudes fl(w, t) and f2(w, t) are re-

lated to A and 8 as follows:

f, (w) =L(Z+m)/s~w]LW+ (w —m~)a]
Q +s—1/2~ST-1/2 Q 43J+1/2~J—1/2 y

f, (w) =$(E m)/s~—w]t; A+(w—+mN)B]= f, (—w)—

Q +J+1/2+S+1/2 Q 43'—1/2~ J—1/2 ~

The partial-wave amplitudes are given by

r(2 —n~(s))1'(1 —u(t))
8~ —— V3+C.S. ~

r(-; — (s) —(t))

where the subscript S stands for the J=-,' state.
Similarly, for the I=~3 amplitudes,

r(-; —(s))r(1—(t))

I'(-', — (s) —(t) )
&( (ul+u, s+u3t+u4st)+c s , (. 7.)

I'(-,' —ng (s))I'(1—u (t))
Bg —— (u3+u3t) +c.s. .

I'(-,' —up (s) —u (t))

We notice here that the experimental fact that the
nucleon and the 3-3 resonance do not have parity part-
ners can be imposed on the representation very simply.
Using (4), all we have to demand is

~l=J+1/2
2

«Lf1~~+1/2(~)+f2~s~l/2(~)]. (4) V1+V2mN' =0,
u3+u4m/42 u3 (m/4—+m/4) =0.

The Veneziano representation satisfying the above
properties is

F(-', —//(s))r(1 —(t))
Ag= ('vl+v2s)+c. s. , (5)

I"(2 —n„(s)—n(t))

These will also give rise to positive residues for the lead-
ing X and 6 trajectories.

We can now write down the complete form including
the c.s. terms of the invariant amplitudes without the
E and the 6 parity partners:

r(-; — (s))r(1—(t)) r(-; — (u))r(1 —(t))
A~=3)y

r(-',— (s) —(t)) r(-', — ( )—(t))
F(-', — (u))I'(1 —(t))+;$b,+82u+-b3(u m/, 2)t+b—4(m4, +m)t] (11)

r(-, --.(u)--(t))
I'(-,' —nN (u) )I'(1—n (t))

Ag = 3zoy
—2

F(2 —n2/(u) —n(t))
F(-',— (s))F(1—(t))

+I bl jb2s+'53(s m4, ')t+—&4(m4, +m)t]
I'(—,

' —n4 (u) —n (t))

F(-', — (u))F(1—(t))+ ', pl+82u+53-(u —mg2)t+84(mg+m)t] (12)
I'(-',—n4 (u) —n(t))

I'(——n (s))r(1—u(t)) r(-', — (u))F(1—n(t)) I'(-' —u (u))r(1 —(t))
B~=m2- + 3W2 ,' (b3+84t)——

r(-' — ( )—(t)) r(-' — ( )—(t)) I'(-,'—u4 (u) —n(t))

I'(-', —n//(u))r(1 —n(t)) I'(-' —n (s)'r(1 —u(t)) r(-; —n (u))F(1 —n(t))
8/t, = —~702— + (83+84t) ——;(b,yb, t)

F (-,' —n2/(u) —n(t)) r(-,'—,( ) —(t)) r(-.— ( )—(t))

(13)

n2/(s) = —0.5+s,
ng(s) =s,

n(t) =0.5+t.
(15)

From Eq. (1) and discussions in Sec. III, we take
8=m~ ——I and m =0; thus,

We now use the experimental information on the low-

energy resonances in the s and t channels, and the Adler
condition, to determine the seven parameters m~, m2, b~,

82, 83, 84, and 85. Comparing the nucleon and 3-3 residues
with" their experimental values, we obtain

N2= 3~gr ) (16)
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—;w,+-;~(b,+b,ms) =q„'I(. (0)/m, (2o)

where K(0) is the form factor whose value we assumed
to be unity. Finally, in order that the widths of all the
resonances (e.g. , all resonances with /=J ——,') on the
leaCheg trajectory have a positive sign, we must have

'Ry= 0 ~

83——0.
(21)

(22)

The relations (16)—(22) determine the seven parameters.
We compare our predicted partial widths of some of

the intermediate-energy resonances with those given

by experiment. The values are given in Table I. We
notice that the predictions of the model are not quanti-
tatively accurate; our predictions are, however, within
a factor of 2 of the experimental values.

The S-wave scattering lengths depend critically on
the value of m . In our formula in the limit m =0, both
the I=

~ and the I= ~ 5-wave scattering lengths vanish.
We now compare our results with the high-energy

behavior of the 7rlV charge-exchange scattering. (Since
our model does not incorporate the Pomeranchuk tra-
jectory, this is the only meaningful reaction where com-
parisons can be made. ) First let us define the quantities
a(t) and b(t) as follows (we take B=mrr= 1):

$1I'A)

g ( ) (s,t) ~ a( ) (t) ~s
(')

sin7rn )
Ap&)

8(—&(s,t) ~ b( &(t) ~s
"&—'

sin7rn )
5 J. Ball and D. Y. Wong, Phys. Rev. 130, 2112 (1963); B. R.

Desai, ibid. 142, 1255 (1966).

84 ——12xBy3g,

where g„s (=4s-&&14.6) is the s-X coupling constant, and
y3~ is proportional to the width of the 3-3 resonance.

For the two p residues we obtain

t(),B+bs+b, m, '= 18~8—q„ (18)

bs —tt&s+ 84m, '= 18s.B(y+ 2m', ), (19)

where y1 and y~ are proportional to the vector and ten-
sor couplings, respectively, of the p meson to the SN
system. We use the values obtained by Ball and Wong. '
The Adler condition gives

TABLE I. The predicted and experimental values' of the par-
tial widths of some of the intermediate resonances (we choose
L) = 11Zf),r= 1).

Resonances
Partial widths

Predicted Experimental

X(1688) —,
'+

E(1680) —,
'

X(1518) -';-

a (1950) —,'+
a(2420) —+

0.051
0.19
0.045
0.11
0.061

0.080
0.069
0.061
0.089
0.036

N. Barash-Schmidt et al. , Rev. Mod. Phys. 41, 109 (1969).

where
A( )=-', (A))r —Aa),
&( )=s(&~—&a)
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We obtain the following:

a(-) (0)= —27 (pred. )
= —35 (expt),

b( &(0) =125 (pred. )
=79 (expt).

By "expt" we mean the values obtained by the phe-
nomenological fits of Rarita et a/. ' Here again we observe
that our predictions are not quantitatively accurate but
give values which are within a factor of 2 of the experi-
mental values. ~

Our results differ from those of earlier works on the
mS problem' in that we assume the expression (2) as
the starting point for writing the Veneziano representa-
tion. Unlike others, we have been successful in eliminat-
ing the nucleon and the 3-3 parity partners. Further-
more, in previous papers the E (6) channel contained
trajectories which were related to 6 (E) trajectories,
while we do not have any such difFiculty.


