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Measurements of low-temperature thermodynamic properties of gases yield information con-
cerning the pairwise scattering parameters of the atoms of the gas. For recent helium-gas
experiments, the He-He scattering potential has been determined with a high degree of ac-
curacy. This necessitates a reanalysis of low-energy He-He scattering theory with inclusion
of previously neglected effects of order m/M. The formulation requires a nonlinear trans-
formation of coordinates to ensure the correct form of the incident wave, and a novel defini-
tion of the adiabatic Hamiltonian to ensure the dissociation of the "molecular" states into
correct atomic states. In addition to the usual nonadiabatic terms, we find additional terms
of the same order not usually encountered. They are necessary to make the potentials van-
ish at infinity. It is shown that the procedure of determining a potential interaction from the
second virial coefficient (scattering data) and then predicting bound-state properties (if any)
is a correct one.

I. INTRODUCTION

Measurement of thermodynamic functions as a
function of temperature can yield extremely ac-
curate information concerning the low-energy
scattering parameters of the atoms of the gas.
For example, the second virial coefficient can be
related to the bound states and phase shift of the
pairwise scattering of the atoms. ' This analysis
is based on a treatment of the atoms as structure-
less particles interacting through a local-energy-
independent potential. Various potentials have
been used to calculate the second virial coefficient

in helium with the result that only potentials lying
in a very narrow range will reproduce the exper-
imental data. Typically, the uncertainty in the
potential (near the minimum) is quoted at about
10 '-10 4 eV'. This accuracy is well beyond the
usual situation encountered in atomic scattering
phenomena so that a reanalysis of the atom-atom
scattering event is necessary to take into account
small effects previously neglected.

We shall pursue the scattering aspect of the
problem here. It is clear that at the energies in
question (10-300'K or 0. 001-0.025 eV), the adia-
batic [Born-Oppenheimer(BO)] representation of
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II. SCATTERING PROBLEM

We deal explicitly with He-He scattering here,
but the generalization to general A-A. scattering
is straightforward. The object of the formulation
is to make an expansion of the total wave function
@, in adiabatic states Us(A', 5 ), of the form

y=Q U {X,g)F ($ } (2. l }

Here, X represents all the electronic coordinates,
and $ is a scattering coordinate. The statement
that U„are adiabatic states means that 5 enters
them only as a parameter and not as a dynamic
coordinate. We demand that the scattering func-
tions En have simple boundary conditions so that
the incident wave is described by

the wave function is a good one. It is also we1.1
known that this approximation introduces errors
of order (m/M) '~ ', where m is the electron mass and
M some relevant nuclear mass. These are usu-
ally negligible, but not in this case. The scatter-
ing problem must then be investigated in the adia-
batic representation with the inclusion of these
effects. A scattering potential will be derived
which is, of course, energy-dependent and non-
local. Another interesting question which arises
is the relevance of this potential to the bound
state He, . The local-energy-independent poten-
tials obtained phenomenologically from the virial
coefficient data have been used to obtain conclu-
sions concerning the existence of such a bound
state. ' The validity of such a procedure is cer-
tainly open to question when effects of order
(m/M)'~' are relevant.

In Sec. II, the scattering problem is formulated
keeping terms of relative order (m/M)'. New non-
adiabatic couplings are found which are of the
same order as the usual terms. An equivalent
potential for scattering is determined. It is found
to be energy-independent and local in the order
(m/M)' retained here. Finally, in Sec. III, it is
shown that the same potential is relevant to the
bound-state problem, so that the phenomenological
procedures used are found to be correct.

Hamiltonian. The Pauli principle, coupled with
(2. 2), also introduces a complication when high
accuracy is required. For example, the ground
adiabatic state in the limit $ - ~ can dissociate in-
to various configurations depending upon which
electron is associated with which nucleus. One
such configuration, which we refer to as the ref-
erence configuration is

(R,r,r, ), {R,r, r4)

where electrons r, and r, are bound to nucleus R„
etc. The relative coordinate between the c.m. of
the two atoms is, in this configuration,

( = [MR +m(r +r )]/M

—[MR +m(r +r )]/M
(2. &)

H —T V

I 1 1
T = — V — (V2 +V2 )2M 3, 2m r, r
~I 2 1 2 2

I.,—;I IF.—,I)'

(2. 4)

A more useful coordinate system is the c.m. co-
ordinate and relative coordinates centered about
a fixed position —'( .

p = '[MRl+m(r +r )]
(2. 5)

where MT = M+ 2m.
Obviously, the electrons do not enter symmetrically

and $ will change in other configurations. This
problem has been investigated previously by
Thorson' and others' and very little new will be
added to their formulations here.

The construction of an adiabatic Hamiltonian
whose eigenfunctions satisfy the Pauli principle
and dissociate into the correct free atoms is the
first problem we turn to here.

Consider the reference configuration (R,r,r, )
x (R,r, r4} and —at the beginning —only a single
atom. Its Hamiltonian is

r ($) g e, as
ipo

n n0 (2. 2)
x. =r. —p + —$ i=1 2i i 1

The Hamiltonian then becomes
where 0 is the initial state of the atoms. We also
require that the Pauli principle be satisfied for the
electrons. This last requires that all the electron
coordinates enter symmetrically.

Two complications beyond the usual theory are
contained in these requirements. First, (2. 2)
means that the adiabatic states Un must dissociate
(for $ -~) into true atomic states —that is, the
correct reduced mass must appear in the adiabatic

2

1 ~ 1+- v. v +e' -2Z ~x.
T 1 2 x» .

1
z

--,'(+ —(x +x -()~ '
M 1

(2. 6)
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with eigenfunctions

= e ' y (x —-', &,x ——,
'

$) .
n 1

(2. 7)

and some simple algebra shows that it reduces
to the last two terms in (2. 8) when operating on
the reference configuration. These results may
be combined to yield an adiabatic Harniltonian

1 1 1
(v, v, +v, v, )+e'

M x„x„
Z ~.. --.'~.—(. " -t)~i ' ~ 1 2

j

—2e' Z ~x. +-,'5 +—(x3+x +()~
'E =3, 4 (2 8)

The operator is not symmetric in the electrons.
We must generalize it so that it is, but yet re-
duces to the form (2. 8) when operating on two
mell-separated atoms in the reference config-
uration.

In order to do this, we define an auxiliary
function' f.=f(x, $ ) such that in the limit g -~

f. -+1, for x. - ~ $i i

1——1, for x. -~$
Z

(2. 8)

The function will be specified further below. The
kinetic-energy terms can now be generalized to
the symmetric Hermitian operator

V ~ V +V ~ V -— Q (I+f f. ) V. V. (1+f f. )
i&j=1 ij i j ij

which has the correct properties for two well-
separated atoms. The first term in the potential
energy is readily generalized by

1 1 1
+ - Zx x x-12 34 i&j =1 ij

The additional terms vanish in the limit of well-
separated atoms in the reference configuration.
The last terms of (2. 8) are somewhat more diffi-
cult to generalize. However, this can again be
done with the aid of the functions f~. One such
generalization is

4
-2+& (lx,. --'&+A,. l '+lx,. +-'&+~,. l

'),
1=1

The Hamiltonian describing two noninteracting
fixed atoms in the reference configuration, whose
centers of mass are at &5 and -&$, is then

x (1+f.f. )V. ~ V. (I +f.f )ij i
4 4

,~ Z -2"Z (~ . --'& A.
l

'
X" Z

'
2i&j=1 ij i=1

~ )x. .—:&.X, )- ).~/)& .2X(, (2. 11)

[ W ($) —H (X, $ )] U (X ( ) —0 (2. 12)

which depend parametrically upon ( which will
be identified as the scattering coordinate. Note
that by construction, in the limit $-~, the low-
est states U„separate into two atomic states
whose centers of niass are separated by ~ . All
electrons enter symmetrically. It is, in prin-
ciple, a simple task to get these eigenfunctions
and eigenvalues as a power series in (m/M)
if the usual BO wave functions are known.

Now we turn to the problem of defining the
scattering coordinate $. From the way it occurs
in (2. 11), it is most usefully defined a' the rel-
ative coordinate between the atomic centers of
mass. This would make it nonsymmetric in the
electrons as one can see from (2. 3). The func-
tions f& can be used again to restore th-". symmetry
of electrons in $, but yield (2. 3) when the bound
state dissociates into the reference configuration.
One such definition of a it' w coordinate system is

p =M(K+R )+mQ. r. /2M
1 2 i i (2. 13a)

h =M(R —R„) mQ. f.(:.—P)/M (2 13b)

x.=r. —p
2 g

(2. 13c)

which is an even function of $ provided only that
fg (5 ) = fz ( —t -), a condition which we shall impose.
We take this Hamiltonian as a generalization of
the usual adiabatic one and note that they become
identical in the limit m/M=0. The last term is
just e'/8» written in coordinates defined below
[see (2. 13) and (2. 18)]. It is included here for
convenience. We define a complete set of adia-
batic states by

The first of these is the usual total c.m. the last
is the electronic coordinates measured from this
c.m. , and the second is the scattering coordinate
in which the electrons enter symmetrically andThis is, of course, symmetric in all electrons,

4
where X, =M Z [-,'(I+f.f.)](x. —,'f. k) . (2. 10)—~ ~
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which becomes (2. 3) when multiplied by a function
in the reference configuration. Note again that
P is odd under interchange of the nuclei provided
only that f& is an odd function of $.6 Equation
(2. 13b) is an implicit relation for $ because $
enters in the fz. An exact explicit relation is
difficult to obtain but an explicit relation as a

power series in (m/M) is easily gotten, and this
is all we shall need.

The total Hamiltonian describing two He nuclei
and four electrons must now be expressed in
terms of the new coordinates. A straightforward
transformation of the gradients yields (in the c.m.
frame where V&=0)'

(M/M )Z. V. —(™/M&')Q. (V.f.x V&+f. .V&) + O{m/M)'
R 8 T

1 2

—V =(2M/M ) V~+(2m/M )Q. V f.x.~ V +O(m/M)2B T(Tzgzz
V =V +(m/M )(f.V +V f x '.V . —.gZ. V. )+2(m/M )2r. x.

z i

x[2f +.V f.x. 'V +2V.f.x. 'Q. V f.x. 'V -Q. (V.f x ~ V .+f. . V )]+O(m/M)~j pj j $ iii j (j j $ j jj)

(2. i4)

Before proceeding to the explicit construction of the total Hamiltonian in these variables, we pause to dis-
cuss the function f; =f(x, (). The property (2. 9) can be satisfied by'

f(x, & ) = [(x+-'5 )'- (x —-'5 )']/[(x+-'& )'+ (x —-'& )'] = (x k)/[»'+ (l ()']

Another type of function satisfying (2. 9) is exemplified by

(2. 15)

f(x, 5 ) = tanh[(x 5 )/b'] (2. i6)

where b is an arbitrary real parameter. The presence of f in the coordinate transformation essentially
represents a modification of the adiabatic states from the usual ones. The adiabatic (BO) representation
is known to be violated by terms of relative order m/M or m/M (Pagk), where P is the momentum asso-
ciated with the relative atomic motion. For the energy range of interest here these are no larger than
(m/M)'I'. The choice of (2. 15) for f would represent modifications of the adiabatic representation of
order unity which would drastically change the physics of the description. %e therefore discard this
and turn to forms such as (2. 16) where b2 can be chosen large to make the modification of the adiabatic
representation a small effect. If b' is chosen to be a number of order (M/m)'I' a,', where a, is the Bohr
radius, then gradients of f will be small [order (m/M)'I'] and the nonadiabatic terms thereby introduced
will be no larger than the ones which occur in the usual calculations. Note, however, that if b' is chosen
too large, equivalent loaf-range potentials are introduced This can. be seen by noting that the f~ appear
in (2. 13b) in order to give correct boundary conditions at infinite separations. The deviation from the
correct boundary condition will act as a potential forcing the wave function to the correct form, so that in
the large-$ region, where f differs from + 1, one will have an effective potential. Note that either form
of f results in the relation ((R) = —$ {—R).

We now think of using (2. 16) with

b' -a,'(M/m)'I '

so that to order m/M some of the gradient terms in (2. 14) become negligible. The Hamiltonian then be-
comes

H= T+V

2 + {m/2M 2)(4 g f 2)V 2+ {4M ) &(g V )2 (2m)T T ii )T i i ii
{2.17a)

(2. 17c)

—M 'Q. [f.V. ~ V +V f.(x. ~ V )~ V. +V f. ~ V +~V. f x .V ]+(m/.2M. 2)+ f.)+.V. ) ~ VT z z z g zz z $ i zi $ i z T i f j
1 4 4 (2. 17b)

-'+ Z ("") '-2Z (lx.--'&-&+El '+ lx. +-'& +A+bi ')]
4+2A~ . .z&j=]. z—



i88 LOW- ENERGY ATOM-ATOM SCATTERING

where E=(m/M)($ ——,'Q.f.x.')

Z=(m/2M)g. x.
(2. iS)

Note that H is symmetric in all the electrons and in the reflection $ -- (.
Now we return to (2. 11) and write

H=T+H (X, () (2. 19)

thereby defining T~ .

2(4 —Q.f.')V 2 — Q. V. '+ Q [V. ~ V. —g(1+f f. )V. ~ V. (1+f f. )]
T T t'&)

Q. [f.v. v&

4
-2e'g (Ix. --,'(

1=1

iv.f. (x. ~ v ).v. +v f ~ v. +. ,'v. 'f x. -v ]~. , Q.f.)Q. V. ) v

—"+Zl "-I . ——,'~+A.
l

'+I . +-,'g+~+Zl '-Ix. +-'~+~
I

')
z

(2. 20)

where the Z are given by (2. 10).
The implication of (2. 19) is that T~ is the perturbation of the adiabatic Hamiltonian due to the relative

motion of the atoms. The terms proportional to e' in (2. 20) have the appearance of a potential and have
an interesting interpretation. They arise because in Had the positions of the c.m. of the individual atoms
is fixed, not the positions of the nuclei. Thus, nuclear motion is included to some extent in Had so that
the interaction between the electrons and nuclei is not exactly accounted for in Had. These terms are
small, of order m/M times the usual potentials. The third and fourth terms in T~ contain no V' operations
and would appear to be better included in Had. Their inclusion would, however, destroy the property that
the U„dissociate into correct atomic wave functions. In addition, the scattering and coupling potentials
will contain terms such as

—(MT) ' J(dx)U (x, g)v'U, (x, ))

the usual BO violating term which does not vanish for infinite $ . The third and fourth term are necessary
to cancel it.

Now having written the total Hamiltonian in the form (2. 19), we may formulate the scattering problem
via the usual projection operator formalism. ' We define a projection operator onto the ground state:

P=U, &(U, , (2. 21)

and assume that no other channel is open and obtain an equation for the elastic scattering

P4'=F0(4)UO(X, ~) (2. 22)

The equivalent Hamiltonian enteri g the equation for P4 is

H=P(H+H[Q/(E- QHQ)]H) P (2. 23)

where Q=1 —P. The second term in {2.23) represents coupling to the closed channels. It will be treated
below.

The first term yields an equivalent Hamiltonian for F,(P) of the form

= 8'(~) —M '(V 2 —(m/2M )(U (4 —Q.f.')U ) v +{U0V 'Ug+RU Z V. U0) —~ Q
g&7

x(U Iv. ~ v. —~(1~ff. )v. ~ v. (1+ff. )IU)+~ &U[f. v. v +v f.(x. ~ v) v. +v f. ~
v~0 i j ' ij i j ij 0 i 0 i i $ iz i $ i zf' 4
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+ zv. 'f x.. V ]U ) —(m/2M )(U (4 —g.f.')V 'Ug —(&&&/2M )(Up.f.g. V. ~ V Ugj

Z. (U0lf. v. ,'v J—IU0.) ~ v] —2e'Z. (U0~ ~x. ——,'g —A+X(-'- ~x. --,'0

+ x. + q$ +A+ X) ' —~x. ~2)+A. '(U ).
Z Z

{2.24)

The first term is just the generalization of the usual adiabatic potential. The next two are the kinetic-en-
ergy operator with a position-dependent mass varying slightly from MT'/M at $ =0 to MT at $ = ~. The
Hamiltonian is nevertheless guaranteed to be Hermitian by the procedure through which it was obtained.
The next four terms are the usual nonadiabatic correction plus the additional terms, of the same order in-
troduced by a careful treatment of m/M effects. The two following terms are the same type but higher
order in m/M. The next (Vg) term is the usualvelocity-dependent BO violating term generalized to our
treatment here. Finally, the last term results from the offset between the center of mass of the atom and
the nucleus. The power of m/M in it is less than that in the leading term by at least 1.

The eigenvalue W, appearing in (2. 24) obtained from (2. 12) can be expanded in powers of M . If we re-
tain only terms up to M ' and substitute back into (2. 24), still keeping only terms of that order, the result
is

h = W&0&(()+(2M )-'(U
~

v '+2+.v. '+Q v. ~ v. +L [f V. ~ v +.v f. (x. ~ v ) v.
0 T 0 ( '

z z . . z j s
z&j

+V.f. V +-,'V. 'y. x. V ]U) —(M )-'(U ~g. (f. V. + ,'V f.}U ) V-~-(M )-'V ',
where W&'& ($) is the usual eigenvalue obtained in the BO approximation. The terms containing f& and those
independent of &~ are not contained in the usual calculations of adiabatic scattering. The matrix elements
coupling different channels, ( U, ~ T~ ~

U„) will, of course, containthe new terms of (2. 24) also. The new
terms will be more important in this context than in (2. 24) since the new terms are of order (m/M) ' com-
pared to W,

- 1 in (2. 24) whereas they will be the same order as the leading term in the coupling matrix
since no W($) appears there. We now turn to the Q part of the equivalent Hamiltonian (2. 23}. We need to
evaluate

(U iff[q/(Z qffq)]+AU-) (2. 26)

where Q projects off U, . Then only that part of H enters (in the numerator) which will change the state
U, . These terms of Tg are of order (M7) ' or smaller. Therefore, we may treat the denominator in
lowest order in this parameter, in which case it is diagonal in the states. Then (2. 26) may be written

neo
(2. 27)

where we have, to lowest order,

(2. 28)

Note that E = P'/MT+ W, (~) and that W„($) —Wo(~)»P'/MT for our case. Then G„ is essentially independent
of P, the incident energy, and so the potential is energy-independent. For the purposes of estimating
(2. 26), it is useful to think of W„($) as a constant and replace

W —5'=I3 '
n 0 n

so that 6 =(M/4&&) [exp(- &3
M' 'i) —$' i)/i( —g'i]

This shows that the potential is essentially local since the extent of the $' integral in the equationfor &, is
M "'. The nonlocal potential (2. 27) may then be replaced by a local one of the form
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But the matrix element is proportional to M ', so that the total potential is proportional to M '. If we

drop terms of this order, the effective Hamiltonian to this order is just (2. 25).
The Vg term in (2. 25) can be transformed away by a simple linear transformation which does not affect

the boundary conditions, so that (2. 25) can be thought of as a standard single-particle Schrsdinger Ham-
iltonian withan energy-independent local potential. This is presumably the potential determined by the ex-
periments on the second virial coefficient.

III. SOUND STATE

We now turn to the problem of the existence of
bound states of two He atoms, i.e. , of a stable
He, molecule. The question is whether the phe-
nomenological local-energy- independent potential
determined from the second virial coefficient data
can be used to make statements about this state.
The virial coefficient essentially depends upon
low-energy scattering phase shifts. The poten-
tial determined from this must then be extrapo-
lated to negative energy to get bound state in-
formation. Can this be done?

It would be madness to use the Hamiltonian
(2. 19) based on the transformation (2. 13) to try
to calculate bound states. The transformation
was designed to assure the correct scattering
boundary conditions which are irrelevant to

bound problems. However, for our purposes it
is useful to continue to use the form (2. 19) which
is cumbersome but nevertheless still correct
for bound states. We have seen that, to order
(m/M)', an essentially energy-independent local
potential can be defined for the one-channel scat-
tering problem. A similar one-channel problem
(2. 21)-(2.23) can be defined for the bound state.
The energy dependence again comes in through the
Q part of space and again, since the binding en-
ergy of He, will be very small (if it exists at all),
this energy dependence will be negligible. There-
fore, the same potential will occur in the bound-
state problem as occurred in the scattering prob-
lem, so that the phenomenologically determined
potential will be the correct one to use for inves-
tigating whether a bound state exists.
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