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The multichannel relativistic Schrodinger equation is solved for the —,+ partial-wave amplitude with an

energy-dependent potential obtained by computing the baryon exchange contribution to pseudoscalar-
meson —baryon scattering. Since a cutoff parameter is not needed in our calculations, we use the coupling
constant as an adjustable parameter. Thus we take gs/4v =38 in order to obtain the X*(1236)at the correct
experimental energy. The model yields the usual —,+ decuplet and predicts in addition the existence of a
27-dimensional SU(3) representation Lto which F33(1690), Pqq(1860), Zq(1900), and some higher Z*, "
and A* resonances could belong] as well as a second decuplet at much higher energies. Certain resonances
("exotic" ones with I=2, I'=0; I=-', I'= —1; and I=1, I'= —2) are very broad (=1000 MeV); others
(the usual ones including the exotic I= 1, Y= 2 EXresonance) have a width (400 MeV. The dependence of
the resonance spectrum on the breaking of SU (3) symmetry as well as on the coupling constant and on the
F/D ratio is discussed. A value of the F/D ratio of about 0.4 seems the best frt to experiments. The results
are compared with the 2+ predictions of other models such as fV/D calculations, quark model, strong-

coupling theory, and SU(3)" symmetry. In the two last-named models, a 27 appears also as a higher super-
multiplet, which is forbidden in the quark model. Additional octets and 10 representations Lpredicted s,iso

by SU(3)" and the quark model j are obtained as unphysical objects in our calculation.

I. INTRODUCTION

~CONSIDERABLE study has been devoted to the~ theoretical understanding of the baryon spectrum.
One of the main motivations for this is probably the
large amount of existing experimental data as compared
to the lack of understanding of strong-interaction
physics. Among the techniques employed in the study
of baryon spectroscopy particular attention has been
devoted to the quark model. ' In fact, its agreement with
experiment is in general quite impressive. Nevertheless,
usual arguments based on this model are nonrelativistic
and qualitative. Quantitative calculations based on a
relativistic quark model would certainly be of interest,
but in addition to presenting the usual still unanswered
questions (Where are the quarks?s Which form of
statistics should be used? What is the form of the
potential? Why should baryons be three-quark states?),
it would also require the solution to a relativistic three-
body problem. However, even if the above problem had
been solved, the quark model cannot account for exotic
states belonging to a 27 or higher SU(3) representation,
and which may be present experimentally.

In addition to the quark model and the usual pro-
cedure of assigning resonances to irreducible repre-
sentations of internal symmetry groups such as SU(3)
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Thirteenth International Conference on Hi gh-E~nergy Physics,
BerkeLey, Cabfornia, 1966 (University of California Press, Berke-
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and SU(3)",' 4 there are at least two additional main

techniques which are frequently used to study the
resonance spectrum.

The first consists in finding connections between

masses, widths, and parities of groups of resonances. ' ~

The second type of technique, to which this paper as

well as Ref. 8 belong, consists in performing dynamical
calculations of the resonance spectrum under the as-

sumption that its members are obtained as bound states
or resonances of a subset of them. ' "This is carried to
a logical extreme by the bootstrap philosophy in which

one assumes that all particles are composite systems
bound by forces obtained by the exchange of the
particles themselves. '

Of course, in dynamical calculations of scattering
amplitudes, the question arises as to which relativistic
equation is to be used. These calculations should ideally

employ the principles of relativistic invariance, uni-

tarity, analyticity or causality, and crossing symmetry.
It is customary to take into account the first three

principles exactly and to ignore the last one.
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By far the most common method used in calculating
scattering amplitudes is the X/D method. Among the
main disadvantages of this method are the Castillejo-
Dalitz-Dyson (CDD) ambiguities" as well as the pres-
ence of overlapping cuts in dealing with multichannel
problems, so that the X/D coupled system of integral
equations cannot in general be solved exactly. Thus,
most calculations involving this method use in one form
or another the determinantal approximation, which
essentially consists in solving the multichannel coupled
system of integral equations to lowest order.

Another method which could in principle be used is
the Bethe-Salpeter equation. One important practical
disadvantage of this equation is that it involves, even
after angular momentum decomposition, a two-dimen-
sional integral equation, which is difficult to solve
numerically. In addition it contains a relative energy
variable and overlapping singularities which affect the
compactness proof, for which one must perform a Wick
rotation, which cannot be rigorously justified. A pos-
sible further disadvantage of this equation is that two-
particle unitarity is satisfied only below the three-
particle production threshold.

In this paper we study the ~+ baryon spectrum by
solving the multichannel relativistic Schrodinger equa-
tion with a potential obtained by computing the baryon
exchange contribution to pseudoscalar meson-baryon
scattering. The model accounts for the usual ~3+ decuplet
(as in Ref. 8) and predicts the existence of a 27-dimen-
sional SU(3) representation t to which A(1690) could
belong), as well as an additional op+ decuplet at much
higher energies. The dependence of the resonance spec-
trum on the breaking of SU(3) symmetry as well as on
the pion-nucleon coupling constant and the P/D ratio
is discussed. The results of the calculation are compared
with experiment in Sec. V. Finally, in Sec. VI we
summarize our results and compare them with other
theories.

In order to make use of the relativistic Schrodinger
equation in dynamical calculations, we must make sure
that the principles of relativistic invariance, unitarity,
and analyticity or causality are satisfied. To satisfy the
first principle we use the relativistic expressions for the
particle energies in Ho. It can then be shown that
relativistic invariance is satisfied. ""Two-particle uni-
tarity also follows directly as shown in Sec. II 2. The
causality properties of the equation were discussed by
Coester. '~ He showed that such an equation obeys the
principle of macrocausality, which states that the be-
havior of a system of particles should not be affected by
the presence of other particles at a large distance from
the system. It is worthwhile to remark at this point that
from the physical point of view there is no a priori
reason for microcausality to hold since only macro-
causality can be experimentally proven. Thus some
interest has been recently devoted to the study of
macrocausal theories within different contexts such as,
for example, that by Lee and Wick, ' in which a macro-
causal field theory is proposed in order to avoid some of
the divergence problems which one frequently en-
counters in weak interactions.

Since the principles of relativistic invariance, uni-
tarity, and analyticity or causality are satisfied, it
follows that the relativistic Schrodinger equation is
certainly an acceptable technique to be used in dy-
namical calculations, and may perhaps be a better
method than other techniques based on the X/D
method, since it includes iterations of the potential.

2. Two Particle Unitarity

Starting from the 5 matrix

f mome
Sg; ——8s;—(2o-)'i8&') (Ps —P, )~ i Mg;, (1)

(4Gpl pc pd p/

and defining

II. RELATIVISTIC SCHRODINGER EQUATION

I. Discussion

((~o+&o)(po+do))"'4~~———
m $82d

(2)

Our calculational method consists in solving a multi-
channel relativistic Schrodinger equation. Starting from
the usual decomposition of the Hamiltonian H =Ho+ V,
we obtain the integral equation for the T matrix,
T= V+ VGT, where 'V is the input potential and
G= (Qs —Bp+io) ', with gs being the total energy of
the system and Ho the free Hamiltonian. This equation
can be assumed directly or obtained from the Bethe-
Salpeter equation if one imposes two-particle unitarity
by use of the Landau-Cutkosky rules and drops the
extra term containing the energy denominator (gs+Eo
+~,) ' which corresponds to a 6-particle intermediate
state (as discussed in Ref. 8).

I4 L. Castillejo, R. H. Dalitz, and F. J. Dyson, Phys. Rev. 101,
453 (1956).

we obtain for the differential cross section

do

dQ q;
(3)

T=+(21+1)dg„sTs, (4)

» B.Bakamjian and L. H. Thomas, Phys. Rev. 92, 1300 (1953).' R. Fong and J. Sucher, J. Math. Phys. 5, 456 (1963).
~7 F. Coester, Helv. Phys. Acta 38, 7 (1965).' T. D. Lee and G. C. Wick, Columbia University report No.

1969 (unpublished).

where q; and qf denote the magnitude of the momenta
in the c.m. frame in the initial and final states, re-
spectively. Expanding
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where A=) —Xq, p=),—)~q, and di„(e) denotes the
usual d function as given, for example, by Jacob and
Kick, '9 the two-particle unitarity condition can be
written in the form

lmT)L, gg; g,$y =Q"Tg,gg, g,gy g, jTg,iy,.g,gy
ej

where g,f denotes the momentum of either particle in
the two particle channel ef in the c.m. frame. Using
matrix notation, and defining

we obtain

QIJ
~

1/2+ J
~

.1/2

1 (1)t
=2iT" kT"&

(6)

where we have used the symmetry of the matrix T'~,
which follows from time-reversal invariance. Finally,
we define the real symmetric matrix E' by

1/T'~ = (1/E'~) —i .

The E'~ matrix is discussed, for example, by Dalitz and
Tuan. 2P

The relativistic Schrodinger equation for E'~ is then
00

&"(Vf,C') =V"(V ar') PV"—(Vr, V)

d(&a+~a) &"(aV'), (9)
Qs —Eg —N g

where 6 is the lowest threshold.

3. Numerical Analysis

To solve the coupled system of integral equations (9),
we make the transformation

(Z,+M,);=ax,/(1 —x;)+A;,

gs =ns, /(1 —s;)+5;, (10)

1
U'~(x, s) =E'~(x,s) 1— ' dh'

E'~(x', s)
p. 8 S

We can then rewrite Eq. (9) in the form

]

U'~(x, s) = V'~(x,s)— ds 1—8
V'~(x, x')

2' —g 1—s'

where a is a scale factor chosen so as to make the
integrand peak around the middle of the interval of
integration, and where 6„.is the threshold for the
corresponding channel i.

To take care of the principal-value singularity in
Eq. (9), we define

The above equation for U'~(x, s) is now solved by using
Gaussian quadrature mesh points to convert it into a
matrix equation which is solved by matrix inversion.
Inverting Eq. (11) we then obtain E'~(x,s).

and

where

g~-z= (2/~3) (1—f)g

gzxz= 2fg,
g=--=-= (1—2f)g

gi~ir~ = —(1/~3) (1+2f)g i

gzirN= (1—2f)g ~

airs = —(1/&3) (1—4f)g,

gZKg g )

g~.N= (1/~~) (1 —4f)g, —
g~.~= (2/~~) (1 f)g-, —
gz.z= (2/~3) (1—f)g,

g=-.=-= —(1/&) (1—2f)g,

(14)

The multichannel relativistic Schrodinger equation is
then solved with the above potential, which is equiva-
lent to imposing two-particle unitarity on the infinite
sum of ladder diagrams shown in Fig. 2 and dropping
the extra term corresponding to the six-particle inter-
mediate states. The bound states and resonance spec-

III. POTENTIAL USED IN CALCULATION

1. SU(3) Contribution to Potential

Our calculation deals with the application of Eq. (9)
to the problem of pseudoscalar meson-baryon scattering
in the P'~/2 partial-wave amplitude. We choose the
baryon exchange force as shown in Fig. 1 as our input
potential and perform the off-shell extrapolation as
discussed in Sec. III 2.

The following SU(3)-symmetric Lagrangian is used:

2;~g=iV2g. ~B pgt (1—2f)Bg,&P;"jB;~Pi,&g

=g ~m N~N+gp z(~ AX+H .c.) igz..zm—(X&(X)
+g- sN gTZ+gplr~(NAK+H c)..
+gzirN(Ns XE+H.c.)+ggrr. ("AE +H.c.)
+gzz=(=-~ X&'+H.c.)+gg„ANN)

+gj,„zgAA+gz„zgZ Z+g-„-q . . (13).

In the above expression, g N denotes the pion-nucleon
coupling constant (with the physical value g z'/47r
= 14.6), f denotes the F/D ratio (physical value =0.33),
8 and P,.' are the baryon and pseudoscalar meson
octets, respectively, and in addition we have defined

—V'~(x, s) U'~ (x',s) . (12)

' M. Jacob and G. C. Yak, Ann. Phys. (N. Y.) 7, 404 (1959).
~ R. Dalitz and $. F. Tuan, Ann. Phys. (N. Y.) 3, 307 (1960).

FIG. i. Baryon-exchange contribution to
the driving force.

B
b
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B M

8 8 +

8 M 8

8 M 8

8 8 8

8 M 8

FIG. 2. Infinite sum of ladder diagrams considered
in the calculation.

The contribution due to the baryon exchange force as
shown in Fig. 1 is then

A = —Lm, —-', (m p+mg)7
X{L(b+d)'——'(bo —ao—co+do)'+m '7} ' (20)

and

trum are then studied as well as their dependence on
the parameters f and g and the symmetry breaking.

In our calculation, SU(3) symmetry is assumed for
the coupling constants. However, the input masses are
in general assumed to be unequal within each SU(3)
representation. Either the physical masses are taken,
or in order to study the effect of symmetry breaking, the
masses are obtained from the expression

B=—{L(b+d)'—-'(bo —ap —co+do)'+m'7} ' (21)

Bt= L(—1)'+'/2lblldl7Q~(s) (23)

where the mass of the baryon being exchanged is
denoted by m, . Thus A & and 8& may be written as

Ay=I m, —p(mp+mq)7I (—1)~+t/2IbIIdI7Qg(z) (22)

and

with
M=Mo'{1+xLa'Y+b'(I(I+1) —-'Y')7} (15)

in the case of baryons, and

Ms =Mo'"{1+xb"LI(I+1)—-' Y'7 } (16)

Ib I'+
I
dI' ——,'(ao —bo —do+co)s+m. s

s= (24)
21blldl

Once the momentum dependence of the potential is
calculated, the total potential is obtained by multiplying
the above expression by the corresponding SU(3)
dependence.

in the case of mesons. The SU(3)-symmetry-breaking
effects are then discussed by studying the dependence of
the results on the parameter x so introduced. Note that
in the above x=0 corresponds to perfect symmetry,
while x= 1 corresponds to fully broken symmetry, since
the parameters Mo, Mo', a', b', and b" are to be de-
termined by the fit to the physical masses in the case of
g= 1.

3. SU(3) Dependence of Potential

Sy use of the BI'8 interaction Lagrangian given in
Eq. (13),we obtain as a result of the contraction for the
process in question the expression

2. Momentum Dependence of Potential
2g.pp{$(1 2f)Bps(I';t)—'+B (Pp") s7

XI (1—2f)B,'I, '+B,'I' 7
—sI:(1—2f)Bp'(»') '+»'(&")'7

L(1—2f)B 'I't'+B('P t7} (25)

We write in the usual way

Mr;= I(d) I
—A+-,'iy (a+c)B7N (b),

where u, t,", b, and d denote the energy-momentum of the
pseudoscalar mesons and of the baryons respectively. from which we obtain
Defining"

X=
I
—A ',B(ap+b p+—cp-+d p mp mg) 7,— —

Y=I A ~~B(ap+bp+cp+dp+m p+mq)7

and

((bp —m p) (do —ms))'~'
xI

k(bp+m p) (do+md))

(X&y 1 +' pXq
II'&(*),

(Ygl 2 t EY]

we obtain

1 -(bp+m p) (do+my)- tls

V)'a =—
47r (bp+ap) (dp+cp)

X(IbIIdI)»sI X~+Y

Lp(4f' —2f+1) I»(TI —2(4f' —2f+1) I
o'*)(o'

I

+-;(4fs+ 1Of—5) I e.)(o.I

—(8/3)(2f' —f—1) ID)(DI
+ (8/3) (4f' 5f+ 1) I D)(D—

I

——;(4f'+lof—5) Is)(s I7g.y.
In the above expression, IS), I

0',), I
0~,), ID), ID), and

I T) denote the normalized scalar, symmetrical octet,
and antisymmetrical octet, 10, 10, and 27, respectively.

The contribution to the different isotopic spin,
hypercharge states is easily computed in the case of
perfect symmetry once we have the crossing matrix
given above by using, for example, de Swart's table.

In the case of broken SU(3) symmetry the above
procedure can also be used, except in the case of A. and Z

(19) exchange, where it is more convenient to calculate the

"In our calculation we shall make the replacement cp+bp+cp
+do ~ 2+s, since only the on-shell potential is known. In this
way we avoid a cutoff and obtain an energy-dependent potential.

Possible other ways of performing the oB-shell extrapolation have
already been discussed in Ref. 8.
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crossing matrix directly by multiplying the relevant
SU(3) coupling constants by the isotopic spin crossing
matrix, calculated in the standard fashion.

We next list for each relevant hypercharge, isospin
state the SU(3) crossing coefTicients which we use in our
calculation as a matrix whose (i,j) element represents
the crossing coefFicient for scattering from channel i to
channel j, and where the symbol in parentheses next
to each crossing coefficient represents the particles being
exchanged. Because of symmetry we need only to list
half of the off-diagonal terms.

I=O, Y=Z' Zp

KN
—';—(1+4f+4f') -(A)

g2

+3(1 4f—+4f') (Z)

I=1, Y= Z; Z)

3(1+4f+4f') (A)
EN C+l (-1 4f+—4f') (~)-

~X —1 (E)

I=—' Y=1 N

nN

(1—4f) 9')

l(1—8f+16f') (A) —:(1+f—f') (A)
3(1—8f+16f') (=)

—2(1—3f+2f') (~) 3(1+f—2f') (A)—2(2f—4f') (Z)
2(1—3f+2f') (~) a'

—(1—4f) (=)-1 (=)

I=3 Y=12p

2 (&) —3(1+f—2f') (A)'
—2(f—2f') (~) a'

EZ 2 (=")

I=O Y=O' A*

KN

-'(1—f)' (A) —(v'6)(1—2f) (&)
-8f' (~)

gA

(3~3)(1—f)' (~)

(l~2)(1-2f—8f') (&)

3(1—f)' (A)

EH

(g6) (1—2f) (=)

—-', (1—2f—Sf') (A) g'
—3(1-2f) (~)—(-:~2)(1-2f-8f') (=-)

0

I=1 Y=0' Z*

—;(1—f) (~) 4(g-')(f —f') (~) h/3)(1+2f) P)
—:(1—f)' (A) 2(1—2f) 9)

+4f' (Z)

——:(1—f)' (A)
4(yl) (f f') (~—)—(v'3) (1—6f+8f') (=)—2(1—2f) (-)

(g-') (1—6f+8f') (&) —3(1—2f+8f') (A) a'
—(1—2f) (~)

—:(1—f)' (~) —:(1+2f)(=. )
0
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decuplet, together with a singlet which appears at
lower energies. The resonance energiesg' are given in

igs. 3 and 5 while the eigenphases and Argand dia-
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grams are given in Figs. 6—12.Note that all states which
are common to both the l0- a d th 27-d'n e — imensional
representation, namely ~ Z* a d ™*,, an, resonate in
diA'erent channels in each of these two cases.
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While the first 6 resonance d(1236) (which is a
member of a 10) is a purely elastic ~IeI resonance, the
second 6 resonance (which is a member of a 27) appears
at an energy of about 1852 MeV as a predominantly EZ
resonance. The width of this resonance is about 300
MeV. This is in qualtiative agreement with experiment
(see Sec. V). Figure 6(a) shows the eigenphases of the
6 state when both the mg and EZ channel are taken
into account and the phase shifts when only one of them
is considered. Notice that in the case of A(1236), the
decoupled 7t-E phase shift is very close to the corre-
sponding eigenphase when both channels are included,
i.e., EZ effects are unimportant in the study of the

A(1236) resonance. In the case of the second resonance
A(1690), the EZ eigenphase goes through 90' while the
7i-E eigenphase does not. If we uncouple the channels,
we note that the 7rg phase shift does not exhibit a
resonance behavior in addition to that at A(1236) (ex-
cept at much higher energies where the second decuplet
resonance occurs, which will be discussed in Sec. IV 3).
Note also that the decoupled EZ phase shift is very close
to the corresponding eigenphase in the resonance region.
This implies that the second 6 resonance is mainly a
EZ resonance. '7

The eigenphases and Argand diagrams corresponding
to the other isospin, hypercharge states are given in
Figs. 9—, 11.Note in passing that according to a theorem
derived by signer, eigenphases do not cross so that the
resonating channel may be recognized unambiguously
also for higher energies (see Figs. 6—11).

Figures 9—11 show that in addition to the second 6
there are two exotic 27 kaon resonances, namely, the
I= 1, 7'=+2 EPresonan'ce at an energy of about 1609
MeV, and the I=1, V= —2 K™resonance at about
2140 MeV. There are two exotic pion resonances,
namely, the one-channel I= 2, I'=0 71-Z resonance and
the two-channel I= 2, I'= —1 resonance, for which the
7t-™eigenphase goes through 90'. The resonances in the
cV, Z*, and * states (which are usually fitted into an
octet) resonate in the channels (e1A), (EjeI), and (KZ),
respectively. The A.~ is a special case which shall be
considered separately. The resonance energies for the
members of the 27 (as well as the two decuplets) are
given in Fig. 3 for I'/4er= 38 and f= 0.33, in Table II
for f=0.33 as well as for other F/D values, and in
Fig. 13 for g'/4er= 100 and f= 0.33. All the resonances
mentioned above fill a complete 27 supermultiplet. In
addition note that there is no resonance behavior in the
I=O, I'=+2 state, so that in our model a aa+ super-

TABLE II. The 27 supermultiplet. Resonance energies in MeV
for members of the 27 and singlet SU(3) representations are given
for P/D values f=0.33, 0.25, and 0.5 for a coupling constant
g'/47r =38. The widths are given in parentheses. In case of A.* the
results are given in the upper or lower line according as to whether
the singlet or 27 I=0, I"=0 state is the dominant one.

90'

.e

oe

, lma0'
Energy in MeV

FIG. 12. Experimental and calculated P33 phase shifts. The
solid lines (dot-dash lines) indicate the calculated eigenphase
shifts for g'/4~ =38 and f=0.33 (for g'/4~=38 and f=0.5). The
dotted lines indicate the decoupled wÃ phase shifts for g'/4x =38.
The dashed lines indicate the calculated phase shifts using the
Bethe-Salpeter equation with Pade approximants for 7rE scatter-
ing as given in Ref. 33. The experimental CERN phase shifts as
given in Ref. 28 are explicitly exhibited in the graph by the error
bars.

I' Symbol f=0.33

2 ZI 1609 (336)
1 E. 1755 (385)
1 S 1852 (337)
0 it* 1597 (150)

0 z*
0

gP

—2

1879 (317)
1990 (1440)
2036 (716)
2083 (1430)
2140 (955)

J'= 025.
1631 (382)
1776 (245)
1871 (457)
1493 (89)
1920 (720)
1960 (716)
2079 (1635)
2064 (716)
2108 (1430)
2150 (1146)

f=0.5
1502 (83)
1606 (250)
1756 (104)

1710 (290)
1729 (127)
1776 (955)
1881 (294)
1885 (880)
1987 (317)

2'Thus our model suggests that in order to understand the
baryon spectrum using the techniques applied in Refs. 6 and 7,
it is helpful to include SU(3) effects explicitly.
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multiplet belonging to a 10 representation does not
occur.

The widths of the members of the 27 are also given in
parentheses in Fig. 3 and also in Table II. Note that
those exotic resonances which have not yet been ob-
served experimentally, namely, the I=2, I'=0; I= ~,
Y= —1, and I=1, I = —2 states appear in our model
with extremely large widths. However, an exotic EE
resonance I=1, I'=2 (for which there may be some
experimental indication) appears in our model with a
width similar to that of A(1690).

Figure 3 shows that the Gell-Mann —Okubo mass
formula is also approximately valid for the members of
the 27. Note, however, that the A.* resonance appears at
a somewhat lower energy. LThis is probably due to
singlet, 27 mixing (see below). ) It can also be seen from
Table II and Figs. 3—11 that even though the lower
decuplet is very weakly dependent on the F/D ratio, the
width and resonance energy of the members of the 27
supermultiplet are much more strongly dependent on it.

In Fig. 5 we give the inverse g'/4~ dependence of the
resonance energies of the rnernbers of the 27 (as well as
the other supermultiplets). Note that these resonance
energies increase much more rapidly with decreasing
coupling constant than the members of the usual
decuplet (except for the h.*).A linear inverse gs/4m be-
havior appears only for g'/4z) 100, and in this region
the slope is the same as that of the decuplet.

It is also worthwhile to note that for g'/4s. = 14.6 the
27 appears at an energy of about 5000 MeV, while the
lower decuplet then appears at an energy of about 1800

MeV. From our point of view a sensible model must first
6t the lower decuplet energies at about the correct
experimental values. Thus we use the value g'/4vr = 38 in
our calculations, since only then E&~&*(1236)appears at
the correct experimental energy. Since we do not have
an arbitrary cutoG parameter in our calculations, we use
the coupling constant as the only variable parameter to
6t the experimental energies of the members of the
lower decuplet. Therefore, we believe that in our model
the results corresponding to g'/4~=38 are the physical
ones.

The only state which does not 6t very well into a mass
formula of the Gell-Mann —Okubo type is the ~+ A* state
I=O, I'=0, which could also appear as a singlet.
Figure 11 shows that (only in this case) the variation of
the F/D ratio changes the phase shifts qualitatively.
For the physical value f=0.33 there is only one A.*
resonance in the mZ channel at an energy of about 1600
MeV. This appears at lower energies for f=0 25, and.

then there is a second resonance in the qh. channel. This
one fits better to the other 27 states. Finally, for f=0.5,
the A.* appears again only as a single resonance, but is,
however, in the KE channel. The critical dependence on
the F/D ratio of the h.* in case of the baryon exchange
contribution is due to the strong f dependence of the
potential. "The A.* state has probably to be interpreted
in our model as a singlet-27 mixing, which is pre-
dominantly in th- singlet state for an 8/D ratio f=033.

3. Higher ~+ Resonances

Even though one should not expect the predictions of
this simple model to be valid also at very high energies,
it is nevertheless amusing to see what happens at such
energies. This we do in this section.

At much higher energies than the two lower super-
multiplets (namely, at about 3500 MeV) a second
decuplet of resonances" appears with much broader
widths (of about 2000 MeV). In particular, Fig. 6
shows that the 6 state resonates in the ~E channel at an
energy of about 3182 MeV. Even if we omit the EZ
channel, a very broad resonance still occurs in the xX
channel at an energy of about 3540 MeV Ldotted line in
Fig. 6(a)j. Figure 8 shows that in the case of the Z*
state the KE channel resonates at an energy of about
3532 MeV, whereas in the E channel the eigenphase
also goes through 90' at exactly the same energy, but
in the wrong direction. This ' antiresonance" is a mem-
ber of a 10 representation of such objects with the
additional states I=O, F'=+2 at an energy of 3070

28 P. A. Carruthers, Introduction to Unitary Symmetry (Wiley-
Interscience, Inc. , New York, 1966).

29 Note the difference with the result of strong-coupling theory,
which predicts a 35 supermultiplet at about the same energy as the
second decuplet appears in our model.
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MeV, 1V(3660), and I= ss, Y= —1 at an energy of about
3610 MeV."

For a coupling constant g'/4vr=38 which fits the
h(1236), there are no additional higher ss+ resonances.
It might be worthwhile to mention that for g'/4s. = 14.6
the 27 appears at a very high energy (at about 5000
MeV) and that there is no longer a higher 10 (Fig. 3).
On the other hand, Fig. 13 shows that for g'/4' = 100 a
second 27 supermultiplet appears close to the second 10.
It is remarkable that the Gell-Mann —Okubo mass
formula also holds approximately for higher super-
multiplets. Note that the spacing between consecutive
members seems to increase as the average energy of the
supermultiplet increases.

In the range 38(g'/4s (60 (where a fit of the funda-
mental decuplet makes sense), the first three super-
rnultiplets of dimensions 10, (1+27), and 10 are present

unambiguously and there appear no further resonances
at higher energies.

V. COMPARISON WITH EXPERIMENT

The masses, widths, and branching ratios of the usual
decuplet were already compared with experiment and
with other models in Ref. 8. At present there is not much
experimental information on the higher ~+ resonances.
Most phase-shift analyses" seem to indicate the pres-
ence of a Pss (I= ss, Y= 1) resonance which aPPears at
an energy of about 1690 MeV with a width of about 280
MeV, and is mainly a EZ resonance. In the quark
model, this resonance is attributed to a radial quantum
number excitation of A(1236) and thus should belong to
a decuplet. On the other hand, our model predicts a EZ
resonance with the supposed properties to be a member
of a 27 SU(3) representation and not of a 10. Phase-
shift analyses seem also to indicate the existence of an Ã
resonance Pis(1860) with a width of about 300 MeV.
This resonance could be fitted into the I=—,', Y=+1
state of our 27."In addition there are some resonances
in the Particle Properties Tables" (of still unknown

spin) in the energy region in which they would be ex-

pected to appear in order to fit into the 27. These are
Z*(1690) or Z*(1780) and *(1705). However, there
seems to be no indication for a A* resonance of suffi-

ciently low energy. '4 Assuming these resonances have all
spin 3+, they could of course fit together with the P»

'0 Further "antiresonances" appear in our model as complete
SU(3) multiplets, i.e., two octets at energies between 2000 and
3000 MeV and a decuplet at about 4500 MeV which is connected
with the real second decuplet. For perfect input symmetry the two
octets of antiresonances appear at the same energy and the real
second decuplet and the 10 antiresonances do also.

»A. Donnachie, R. G. Kirsopp, and L. Lovelace, CERN
Report No. YH838 (unpublished).

"Note that Table II shows that both the 6 and E resonances
can be made to appear at the correct experimental energies with
the correct widths if one chooses the F/D value to be about 0.4.

"Particle Data Group, Rev. Mod. Phys. 41, 109 {1969);
A. H. Rosenfeld, UCRL Report No. 18266, 1968 (unpublished).

"Note that a similar difhculty arises in the quark model in
which a A.* is needed in order to complete the octet, and that a
low-lying h.* is also predicted in SU(3)".

and P» resonances of the pion-nucleon system to an 8
and a 10.

However, these representations would at present be
incomplete and have a missing A*, ", and 0 . If we
believe in the conclusions of our model, we could predict
the above resonances to be members of a 27 and then
only the h.* would be experimentally missing. (The
exotic states will be discussed later. ) It is worthwhile to
note that in the quark model, whenever there is a 6
resonance one tries to complete it to a decuplet, and
whenever there is an E resonance one tries to complete
it to an octet. Thus, whenever there is a 6 and an Ã
resonance one needs two Z*'s and two ™rs.However, if
both the 6 and E resonances are members of a 27 (as it
is the case in our model), one needs only one Ze and one

* to complete the 5U(3) supermultiplet. As recently
pointed out by Harari, "there seems to be experimental
indication to the fact that most of the "*'s and many
Z*'s which the quark model predicts have as of yet not
been found in experiment. This seems to be in support of
our model. Of course, our model could probably be
ruled out if one finds a second 0 at suKciently low
energies, since then A(1690) and 0 could be taken as
members of the same 5U(3) decuplet. On the other
hand, if exotic resonances are in fact experimentally
found, then one cannot, in general, expect quark-model
results to hold also for higher resonances.

Whether exotic resonances exist or not is still an open
question. However there are some doubtful candidates
for exotic resonances in the ICP channel in the Particle
Properties Tables. "The I= 1, Y=+2 states Zi(1690)
or Zi(1900) (which is usually attributed to spin ss+)

could for example belong to a 27 as in our model Zi(1609)
(and have spin ss+). Other exotic states appear in our
model with such large widths that they probably cannot
be experimentally observed. The question of the ex-
istence of exotic resonances has been frequently dis-
cussed in the literature in connection with the concept
of duality. "Note that in our model, an I= 1, Y=12
EE resonance of spin 2+ automatically appears once one
performs the dynamical calculation.

So far we have mainly restricted our attention to the
resonance behavior of the phase shifts. Next we would
like to compare the E» phase shifts obtained in our
model with the experimental ones. This is done in
Fig. 12, where we also give the results of Ref. 37 in which
a Bethe-Salpeter equation for 71-E scattering was solved
by use of Pade approximants. The F33 phase shift of our

8~ H. Harari, Proceedings of the Fourteenth International Con-
ference on High-Energy Physics, Vienna, 1968' (CERN, Geneva,
1968), p. 195.

~~ C. Schmid, Phys. Rev. Letters 20, 969 (1968); R. Doien, D.
Horn, and C. Schmid, Phys. Rev. 166, 1779 (1968); C. Schmid,
CERN Report No. 968, 1969 (unpublished); S. Pinsky, Phys.
Rev. Letters 22, 677 (1969);J. L. Rosner, ~bid. 21, 1950 (1968);
H. Lipkin, Weizmann Institut report, 1969 (unpublished}; R. P.
Roy and M. Suzuki, CERN Report No. TH976, 1969
{unpublished}."J.A. Magnaco, M. Pusterla, and E. Remiddi, Saclay Report,
1969 (unpublished).
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FIG. 14. Chew-Low plot. Plot of (p'/curn ') cotg versus co~=co
+p'/2m as obtained from our model with g'/4s. =38 (solid line)
and g'/Sr=25 (dot-dashed line), and as obtained by use of the
Chew-Low formula:

(p'/co&n ') cotb= (1/4f'/3) (1 cu/r»—z) with f'=0 087

(dashed line), which corresponds to the experimental results given
by Barnes et at. , Phys. Rev. 117, 225 (1960).

calculation agrees fairly well with experiment near
threshold and in the neighborhood of the first resonance,
except, of course, at the right-hand side of the resonance
position in which the phase shift goes up somewhat
slower. '8 In Fig. 14 we compare the experimental Chew-
Low plot with that of our model for g'/4x=38. Note
that the slopes at the resonance position are identical
for both, and there is some deviation near threshold. In
Fig. 14 we also give the Chew-Low plot calculated from
our model for gs/47r=25. With this coupling constant
we 6t the scattering length at threshold. However, the
E* resonance then appears at about 13'70 MeV. Note
that in the field-theoretic calculation without cutoff of
the 2+ partial wave given in Ref. 39, similar results were
obtained.

VI. COMPARISON WITH OTHER THEORIES
AND DISCUSSION

Besides the quark model" and strong coupling"
(which have already been, discussed), there is another
model which predicts multiple SU(3) representations in
case of spin —',+. In that mode14 there is besides the usual

SU(3) symmetry a further SU(3) degree of freedom,
called SU(3)".Except for the usual decuplet, which is
assumed to be the lowest supermultiplet, that model
predicts for ~3+ a low lying singlet, another decuplet,
which is connected with a 10 supermultiplet (in the
manner as described in Fig. 12), a 27, and in addition
two octets (which are degenerate for perfect symmetry).
It is remarkable that our model predicts all these
supermultiplets for g'/4z =38 (see Fig. 3). However, in
our calculation the two octets and the 10 appear as
unphysical "antiresonances" (phase shift going down
when passing 90').

'SThis is a common disease of all dynamical calculations in
which only the baryon exchange force is taken into account and
also of many others in which more exchanges are also considered.

"L.B. Redei, Nucl. Phys. 1310, 419 (1969).

In /t'//D calculations"" second resonances were not
predicted. As far as the usual ~3+ decuplet is concerned,
the 1V/D results for the baryon decuplet are similar to
the predictions of our model. However, in those calcula-
tions the F/D ratio has been usually chosen so as to
ensure that the decuplet representation is the only one
that is resonant in the low-energy region. Thus, in
Ref. 11, F/D was chosen to be 0.35. As discussed in
Ref. 10 for values —2.84(F/D(0. 34, one would also
obtain a unitary singlet in addition to the decuplet
resonances. In addition (Ref. 10), it is also probable that
one would obtain a resonating 27 SU(3) representation
in an 1V/D calculation by choosing F/D) 0.56.

Even though the baryon exchange diagram is one of
the main contributions to the I'q~~ partial-wave ampH-
tude, it is of course not the only one. Thus if one takes
the baryon exchange process as the only contribution to
the driving force, as was done in Refs. 8, 1.0, 11, and in
this paper, one has three possibilities to perform the
calculation. The first is to do it without a cutoG and
with a physical coupling constant g'/4' = 14.6. One then
obtains the resonances at too-high energies and a not-
well-satisfied equal-spacing rule for the decuplet. The
second possibility is to introduce a cutoff, in which case
one 6xes the coupling constant at the physical value and
adjusts the cutoff to fix A(1236) at the correct experi-
mental energy. However, this has the disadvantage that
sometimes one obtains incomplete supermultiplets for
some values of the parameters. The third possibility,
which was chosen by the authors of Ref. 11 as well as in
this paper, is to perform the calculation without a
cutoff and to choose the coupling constant as an
adjustable parameter chosen so as to fit A(1236) at the
correct experimental energy.

Bethe-Salpeter calculations of the baryon spectrum
would certainly be of interest. ' However, the inclusion
of spin and SU(3) effects certainly places this problem
far beyond the capabilities of present computers.

In summary, the relativistic Schrodinger equation
was applied to multichannel pseudoscalar meson-baryon
scattering in the ~+ partial-wave amplitude. The input
potential was obtained by computing the baryon ex-
change contribution to the driving force. Since the
Schrodinger equation is an off-shell equation and the
potential obtained from a Feynman diagram is known
only on-shell, the question arose as to how to perform
the extrapolation off the mass shell. We chose to do it
in such a way that both initial and final particles are
treated symmetrically. In addition, we have made the
replacement ap+bp+cp+de~ 2+s (since, as we have
already discussed, only the on-shell potential is a priori
known). In this way we have avoided an arbitrary cutoff
parameter in our calculation. Instead we used the
coupling constant as an adjustable parameter which we
chose to be g'/4' = 38 in order to obtain A(1236) at the
correct experimental energy. The P'33 phase shifts have
been explicitly compared with experiment in Fig. 12.
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Note that they are in qualitative agreement with ex-
periment near threshold and in the neighborhood of the
first resonance, except, of course, at the right-hand side
of the resonance position, where the phase shift goes up
somewhat slower. In Fig. 14 we compared the experi-
mental Chew-I. ow plot with that of our model. Note
that since we started with a large coupling constant, the
scattering length predicted by the model differed from
experiment by about 30%%uo. However, we still obtained
the correct slope at the resonance position and, for
example, the calculated F33 phase shifts were in quali-
tative agreement with experiment near threshold and in
the neighborhood of the first resonance. Thus, we expect
that the phase shifts predicted by the model for some-
what higher energies are also in qualitative agreement
with experiment. The model accounted for the usual ~3+

decuplet and predicted the existence of a 27-dimensional

SU(3) supermultiplet Lto which the experimental 2+

resonances A(1690), 1V(1860), Z(1690), or Z(1780),
'(1705), and Zi(1690) or Zi(1900) might belong, if they

were to be confirmed to exist and to have spin —,'+]. In
addition, a second 2+ decuplet was present at much

higher energies and with very broad widths. The de-

pendence of the spectrum on the coupling constant was

investigated. We found that the lower —,'+ decuplet had

an approximately 1/g' dependence in the physical

region, while the resonance energies belonging to the 27
and to the higher 10 supermultiplets increased rapidly
with decreasing coupling constant.

The dependence of the spectrum on the F/D ratio as
well as on SU(3) symmetry breaking was also in-

vestigated. It was noticed that the usual decuplet had a
very weak F/D dependence, while this was not the case
for the resonances belonging to the 27. For an F/D ratio

f=0.5 these resonances were about 100 MeV lower than
for f=0.33, with widths of about a factor of 2 smaller. A
value of about f=0.4- best fitted the experimental
energies and widths of the members of the 27. In
addition, for this value of the F/D ratio the equal-
spacing rule for the decuplet was then better fulfilled,
and the energy difference between the two 6 resonances
became closer to the experimental value. The Gell-
Mann —Okubo mass formula for all the ~+ super-
multiplets was in general approximately satisfied when
the physical masses for the incoming, outgoing, and
exchanged particles were taken, and there was an in-
crease of the mass difference between the different
hypercharge members of a given SU(3) representation
as the average resonance energy of the supermultiplet
increased. In the limit of perfect SU(3) symmetry, the
resonances of a given supermultiplet tended to appear at
about the same energy.
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