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The SU(3) XSU (3) chiral Lagrangian with gauge 6elds is discussed, including a consideration of SU (3}-
symmetry breaking. In addition to details of the formulation, applications to 7f-N scattering lengths, K+-N
scattering lengths, and sernileptonic decays are treated. The S-wave 7f-N scattering lengths are found to
be independent of the vector-meson-dominance assumption. A possible "improvement" of the calculation
by adding the N* particle is also discussed. The K+-N S-wave scattering lengths can be calculated in good
agreement with experiment when all symmetry breaking (including M-@ mixing) is put into the mass terms
of the physical particles and it is assumed that the physical p particle decouples from the nucleons. Alterna-
tive SU (3)-breaking schemes are investigated and, for a modified mass-term mixing model, the renormaliza-
tions to the Cabibbo theory for all semileptonic decays can be correlated in terms of one (known) parameter.

I. I5'PRODUCTION
' 'N this paper we construct and discuss a chiral
~ ~ SU(3) XSU(3) Lagrangian of s+ baryons, 0
mesons, and 1+ gauge particles. The local symmetry is
broken initially by mass terms of the gauge particles,
the chiral symmetry is broken initially by mass terms
of the pseudoscalar mesons, and, finally, the SU(3)
symmetry is broken by mass terms of all the particles
involved.

Lagrangians of this type' yield results in low-order
perturbation that (when extrapolated to the appropriate
unphysical point) are the same as the highly acclaimed
current-algebra (CA) results. Since the Lagrangian re-
sults do not require extrapolation, this approach gives,
depending on one's point of view, either a physical
model for performing the CA extrapolation or a
satisfactory model by itself for low-energy phenomena.

Our first application is to the 5-wave pion-nucleon
scattering lengths. Although this has been widely
treated, ' we show that, contrary to general opinion, the
result has nothing to do with vector-meson dominance
or the KSRF relation. ' (These two are, however,
essentially equivalent to each other in this case.)
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Whereas the numerical values of the S-wave pion-
nucleon scattering lengths as predicted by CA are
reasonably close to experiment, the CA values of the
S-wave E+-nucleon scattering lengths are significantly
worse. Thus E+-nucleon scattering needs more careful
investigation. In a previous paper' it was shown that
quite good answers could be achieved in a Lagrangian
model containing —,

'+ baryons and pseudoscalar mesons.
These answers reduced to the less satisfactory CA ones
when the extrapolation to the CA situation was made.
This strengthened our belief in the value of the effective
Lagrangian approach to low-energy dynamics. Within
the framework of the Lagrangian model, the values of
the K+-nucleon scattering lengths were, however, de-
pendent on the type of SU(3) breaking assumed. We
were led, therefore, to the viewpoint that the predicted
values of the E+-nucleon scattering lengths could be
considered as a sort of testing ground for the type of
SU(3) breaking, in much the same way that the S-wave
pion-pion scattering lengths have been considered' a
testing ground for the breaking of chiral SU(2) XSU(2).
It was found that the only type of symmetry breaking
which gave good results was the one induced directly
by the mass splitting of the octet baryons. This type
does not belong to one of the simple chiral SU(3)
XSU(3) representation that are suggested by the quark
model. It is, however, the type of symmetry breaking
that permits the various coupling constants to retain
their SU(3)-symmetric values.

Here we consider the 5-wave E+-nucleon scattering
lengths in a theory with gauge fields. This introduces
the additional complications of SU(3) mass splitting
for the vector and axial-vector rnesons and also the ce-P
mixing problem. The simplest way to proceed is to

' J. Schechter, Y. Ueda, and G. Venturi, Phys. Rev. 177, 2311
(1969).We shall designate this reference as I ~ Somewhat different
treatments have been given in reports by A. Kurnar and R.
Ramachandran (unpublished), and by K. Kawarabayashi and
S. Kitakado (to be published).

4 S. Weinberg, Phys. Rev. 166, 1568 (1968).
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introduce, as before, SU(3) violations (including the
a&-p mixing) only in the vector and axial-vector mass
terms. If this is done, a situation similar to the pion-
nucleon case is found, namely, the 5-wave scattering
lengths are exactly the good ones obtained previously
and are independent of vector-meson dominance or the
KSRF relation. To obtain this result the additional
assumption that the (physical) it meson decouples from
the nucleons is needed. This assumption is, of course,
in accord with experiment. ' Alternatively, one may
equate the experimental value of the scattering lengths
to our expressions and use this to derive the fact that
the g decouples from the nucleons.

Other methods of introducing SU(3)-symmetry break-
ing do not seem to lead to very good numerical results
for the E+ scattering lengths. The tentative conclusion
is that all SU(3)-symmetry breaking in our Lagrangian
should be in the physical mass terms. Nevertheless, we
also investigate other methods of symmetry breaking
for the 1+ meson system. We cannot strongly rule these
out, since there may exist additional sources of sym-
metry breaking (like the existence of scalar mesons) or
additional resonance exchanges which we have not taken
into account. In fact, one scheme leads to renormaliza-
tion of both the baryon and meson vector and axial-
vector currents. These renormalizations can be ex-

pressed as modifications of the Cabibbo suppression
factors and may be tested by data from the semileptonic
weak decays. It is interesting that all the "renormalized"
Cabibbo angles can be correlated in terms of one
(calculable) quantity. This characterization may
actually be more general than our specific model, but
confirmation depends on improved data for the
strangeness-changing lep tonic decays.

Throughout this paper, the coupling parameters are
obtained by relating them to the weak axial-vector
currents through the assumption that these currents are
the "Noether" currents of our Lagrangian. Alter-
natively, the field-current identity could be used, but
this approach has been given elsewhere.

The setting up of the Lagrangian is discussed in

Sec. II. The application to x-X scattering is given in
Sec. III and a discussion of E+-S scattering in Sec. IV.
Section V deals with semileptonic decays and alternative
possibilities for SU(3) breaking in the 1+ meson systems.
Equivalence transformations that alter the form but
not the predictions of the Lagrangian are discussed in

Appendix A. Finally Appendix 8 contains, for com-
parison, the E~3 form factors which follow from our
Lagrangian together with the field-current identity.

II. FORMULATION OF LAGRANGIAN

The SU(3)&(SU(3) chiral Lagrangian of 2@ baryons
and pseudoscalar mesons was written down in I. In this
Lagrangian, the baryons were considered to belong to

5 H. Sugawara and F. von Hippel, Phys. Rev. 145, 1331 (1966).

the L(8,1),(1,8)] representation of the chrial group, so
that in a representation of the Dirac matrices where y5
is diagonal, the baryon spinor could be written as

iV=, X=—8 I

where 1.and E transform according to the left and right
chiral subgroups, respectively. For convenience, we
shall adopt a matrix notation so that each object in (1),
for example, is actually a 3 &(3 matrix. The pseudoscalar
mesons, following Nishijima, ' Gursey, ' and Cronin, '
were considered to transform nonlinearly under the
chiral group in such a way that the auxiliary matrix
function M(P) satisfying

M(y)Mt(j) =Mt(y)M(y) =1, (2)

transforms according to the (3,3*) representation. The
Hermitian conjugate matrix M"(Q) transforms accord-
ing to (3*,3). The expansion of M(P), as a power series
in P, is given by

M(P) = 1+2ifP 2f'g'+— , (3a)

Mi(g) = 1 2i fP 2f—'P'+ — (3b)

where f is an arbitrary constant that gets identifmd as
an (unrenormalized) pion-decay constant. The coeK-
cients of the first three terms given in (3) follow from
the unitarity restriction (2). Furthermore, all predic-
tions of the Lagrangian are the same for different
choices of M (see Appendix A).

The Lagrangian density was then written as a sum
of several terms:

&= &itin+ &i+&2+&v iui+ &~m ~ (4)

In (4), Zi, ; sta, nds for the baryon and pseudoscalar-
meson kinetic terms, Z~ stands for the chiral-invariant
term that generates the baryon mass and multilinear
meson-nucleon interactions, Z2 stands for the pseudo-
vector coupling term that adjusts the D and F values of
the axial-vector current, 2;,i stands for the meson
mass term that breaks the chiral symmetry, and, 6nally,
Zq stands for the baryon mass-splitting term. The
Lagrangian represented by (4) differs from those of
various other authors' in various ways, the most con-
sistent difference being the form of the Z~ term. Also,
it is generally more popular to make an equivalence
transformation on the baryon fields to a new situation
where Zk;„acquires a pseudovector-type Yuk. awa
interaction and 2& becomes just a baryon mass term.
This procedure is discussed in Appendix A. Now, (4) is
invariant under constant SU(3)&(SU(3) transforma-
tions. In this paper we modify (4) by adding vector and
axial-vector gauge fields according to the Yang-Mills'
prescription. This esthetic procedure guarantees the

6 C. N. Yang and F. Mills, Phys. Rev. 96, 191 (1954);
R. Utiyama, ibid. 101,1597 (1956);M. Gell-Mann and S. Glashow,
Ann. Phys. (N. Y.) 15, 437 (1961);J.J. Sakurai, ibid. 11, 1 (1960).
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invariance of 2 under /oca/ chiral SU(3) )&SU(3) trans-
formations. The local symmetry is, however, broken by
the vector and axial-vector mass terms. It is interesting
to note that all symmetry violations in our Lagrangian
are in the mass terms.

The required modification of (4) consists of adding
the free spin-1 meson Lagrangian and replacing every
derivative B„by a "gauge derivative" D„. The vector
octet V„and the axial-vector octet A„are more con-
veniently given a.s linear combinations of "left" and
"right" fields,

V„=l„+r„,
A„=l„—r„.

(5a)

(Sb)

Under the parity transformation, l~ —r. Under an
infinitesimal left-handed gauge transformation, the
various fields tra, nsform as:

/u ~4 (i/g)—~.« t /u E—i]
M +M+EiM-,

Mt —+Mt —MtE),
L +L+PEi,L]—,
R R, r„r„,

(6)

" ~r~ (i/g)~ E Lr —E]
M —+ M —ME„,

Mt —&Mt+E„Mt,

R +R+[E„R], —
I.—+ I., l„—+ l„,

where E„(x)= E„t(x). —
The gauge derivative replacement is given by

B„M—+ D„M = B„M ig/„M+igMr„, —
B„Mt +D„M"= B„M" —igr„Mt+i gMt/„—,
B„L~ D„L=B„L ig[/„,L], —
B„R~ D„R= B„R i gfr„,R]. —

(7)

It is easily verified that the substitutions above
guarantee the loca/ invariance of the chiral-symmetric
part of (4).

The Yang-Mills term X~M which is to be added
to (4) is

ZvM = —
2 Tr(F„„'F„„"+F„„'F„„'),

with
F"'=~./. ~.4 &gL4, /.], —
F»."=~~r. ~.r~ —igfr»r. ]. —

%e must also add the spin-1 meson mass term that

where E~ is an infinitesimal matrix function of space-
time satisfying

Ei (x) = —Eit(x),

and g is a constant which gets identified with the vector-
meson coupling constant. Similarly, under a, right-
handed gauge transformation we have

breaks the local invariance:

oCQM mo Ti (/r/Il+rrr~)
= —-', mo' Tr(U„U„+A„A„). (10)

We achieve the diagonalization~ by defining

A. =Au+(g/2mo'f. )~A+

with
y= (1/Z)y,

Z= (1+g'/4mopf') '"

(12a)

(12b)

(13a,)

f.= (1lZ) &&f (13b)

In (12), p and A„stand for the physica/ fields. Later
we shall see that f, corresponds to the physical pion-
decay constant. Then (11) becomes the diagonal form

—
2 (~@~A) k( o/Z)'—r(A.A.) (14)

It is evident that in (12a) we are free to let the three
dots stand for any suitable higher-than-linear term we
like. For simplicity, however, we shall retain the equa-
tion without any additions.

From (10) we identify mo with the vector-meson mass
mv, and then from (14) we find the following relation
between the vector and axial-vector meson masses:

m@2 =Z2~A2 (15)

Furthermore, we may manipulate (13a) into the useful

g'/4m(Pf '=1—Z' (16)

As is well known, ' r the choice Z'= —', converts (15) into
the Weinberg relation and (16) into the KSRF relation,
so that these two are correlated but not derived in the
Lagrangian formulation.

~Here we follow the notation of Y. Nambu, University of
Chicago Report No. EFI 68-j.i (unpublished).

The effects of SU(3) mass splitting and ~-P mixing on

these mesons will be discussed later.
Before extracting the effective interactions that

correspond to interesting physical processes, it is neces-

sary to effect a redefinition of the pseudoscalar field and
of the axial-vector field. The reason is that, by changing

8„to D„ in the meson kinetic term, we have introduced
a bilinear term of the form Tr(B„&fA„) Thi.s requires a
diagonalization of the bilinear terms in order that the
pseudoscalar and axial-vector fields be the physical
ones. The meson kinetic term has the expansion

Zg; ~= —(1/8 f') Tr(D„M"D„M)
= ——,

' Tr(B„yB„&)+(g/2f) Tr(8„&A„)
(g'/8f') —Tr(A„A„)+ .

where higher than bilinear terms have not been written.
The portion of the Lagrangian that is to be diagonalized
includes a piece from (10) and is

——,
' Tr(a„ya„y (g/f—)a„yA„

+(m(P+ g'/4f') A „A„]. (11)
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Now we are in a position to write down the interesting
terms in ottr Lagrangian. This involves making the
substitutions indicated by (12) as well as using (3)
and (8) wherever necessary. The kinetic spin-1 meson
term (9) expands into

taken to lowest order to be

2;.) ———,'p' Tr(g)+(p' px—') Tr(@S)+.
= —',p'(~'n-'+2'+~ )

ply—'(K. +K++K'K') + (22)

@~M & Tr(F VF V+F AF A)

+ ',ig T-r[F„„v(V„V„+A„A„)j
+,'ig Tr(F-„„"[V„,A„])
+oig(gl2f. mo')' «(F.."~.@~0)
+kig(g1'2f mo ) Tr(F„„~I V„,a„y]

+F„„v[2„,B„&])+(quadrilinear terms), (17)
where

F„„~=B„V„—B„V„, F„,~ =B„A„—B„A„.

The sum of X~M' and Z~;„~ is

ZxM'+Zg;„~ ————,'mv'Tr(V„V„) —-'mg'Tr(A A )

2 r(~l't7~A')+2 g (VII'~~~)

+(ig'I4f.Z') Tr(A.[4» V.j)+ (18)

In (18) the quadrilinear and all higher terms were not
written. We note that both (17) and (18) give contribu-
tions to the decay of a vector meson into two pseudo-
scalar mesons.

The baryon kinetic term becomes

Zj,; s = Tr(Lo„D„L—+Ra„D„R).
= —Tr(Ny„8„1V)

+,'i g Tr(Ny„[V„,N]+-Nyp g[A „,1Vj)

+i(1 Z') f' Tr(»—.»L~A N j) (19)

Equation (19) contains the whole vector-meson —baryon
interaction as well as parts of the axial-vector —baryon
and pseudoscalar-baryon interactions.

The chiral-invariant "baryon mass" term Z~ is the
same as in I:
Zi = —m Tr(LMRMt+RMtLM)

mTr(NN)+2im f, T—r(Ny5[y, N j)
+2mf„Tr(N[q-, N]+ 2NyNj)+ "—, (2O)

where m is the nucleon mass.
Z2, the term which adjusts the D and F values of the

axial-vector current, now becomes

2g ——2a. Tr(Lo„D„MAPL+Ro„D„MtMR)
+2P Tr(Lo „LD„MMt+Ra„RD„MtM).

=4if„Z' Tr(nNy„F58„yN+ pNy„y5NB„y)

2ig Tr(aNy„ygA„N—+8'„y5NJ„)
4f,'Z' Tr(nNy„[@,—8„&jN

+pN~, NL~, &.~])+" . (»)

The constants n and p will be fixed by the axial-vector
current.

All the terms written up to now are SU(3) )&SU(3)-
symmetric. The term that breaks chiral symmetry is

where p is the pion mass, p~ the kaon mass, and S the
matrix

0 0 0'
S= 0 0 0.0 0 1.

The question of which higher terms should be added to
(22) is interesting, but, since it does not affect our

applications, we will not consider it here.
Finally the baryon mass-splitting term is

Zg„= (m mg—) Tr(N1V N1VS)—
+(mv —m-. ) Tr(NSN)

= —(m —m)ZZ —(m —m)XA —(m-. —m)" . (23)

As pointed out in I, this term transforms according to
the (8,8) representation of SU(3)XSU(3). This seems

a bit unusual from the standpoint of the quark. model,
which suggests transformation properties like either

(3,3*)+(3*,3) or (8,1)+(1,8), but it gives much better
results for the S-wave E+-nucleon scattering lengths.
It may be reconcilable with the quark. model if we

assume that the mass splitting comes from a higher
iteration of the quark. -splitting term.

The total Lagrangian density is the sum of Eqs. (17)—
(23). Still to be added are the spin-1 meson SU(3)-
breaking terms; these will be discussed later. If all the
masses of the physical particles are taken as input, the
only unknown parameters are the quantities f„,n, and p.
These, however, will be determined below by com-

parison with the weak axial-vector currents. One

question that remains is what additions to our

Lagrangian must be made in order that it give a good
description of all strong interactions, not just very low-

energy phenomena. Here we can take two points of

view. The first is simply that the Lagrangian we have
written is just a mnemonic, useful for keeping track of
the various particles and symmetries of our theory.
According to this point of view, it is necessary to add

new terms corresponding to any new particles or
anomalous interactions that we care to describe. The
second point of view is that (even though a quark-type
substructure may actually be fundamental) the
Lagrangian we have written is effectively responsible

for a good portion of observed strong-interaction

physics. According to this point of view, the E* reso-

nance, for example, would come about as an iteration
of our basic I agrangian, as would the "magnetic"
coupling of vector mesons to baryons. Deciding between

these points of view is obviously a dicult task and, at
present, does not seem possible. Some more discussion,

however, will be given in connection with the pion-

nucleon scattering problem.
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From (1g), (19), and (21), we find

BZ iZ
Tr 6y =—Tr(r)urliE)

~(~A) f
+4uz' Tr(NPuybEiV)

+4PZ' Tr(NpuybXE)
(28)

y(1 —Z ) Tr(N~„&,[E,N])+ ",
Tr —— —6,V = —Tr lay„y5 E,iV

c) (c)u 0')

' See, e.g. , J. Wess and B. Zumino, Ref. 1.
b H. J. Schnitzer and S. Weinberg, Phys. Rev. 164, 1828 (1967);

see also J. Wess and B. Zumino, Ref. 1.

One additional term, which is considered ' useful for
explaining the A~ width, is an anamolous pseudoscalar
meson coupling to the spin-1 mesons:

—if' Tr(DuMD„MtFu„'+DuMtD„MFu„')
= —it {4f,.'Z' Tr(c7uyc)„yFu„v)+g' Tr(AuA„Fu„v)

2Z'—gf„Tr([r)u&,A„]Fu„v)+ ) . (24)

From the expressions for VpP and VAg coupling, we

can identify f in terms of the usual parameter 5.'
VgQ coupling, for instance, is given by

Zv~r ,'i——g[—Tr(V„ya„y)
+1/mv'(1 Z' —2m&—'f'f&'Z'/g) Tr(F,vc) &c),y)]

and P is given by

i = ,'g(1 —Z'—)8/4—f 'mv'Z4.

Now we compute the canonical axial-vector current
for our Lagrangian. This is given, according to Noether s
theorem, by the response of the Lagrangian to a comstai~]

axial transformation

lu ~ l„+lil„=1„[l„,F], —
"u~ ru+~"u ru+ [ru~E] ~

Ny~N =Xy~,[E,N],
M —+ M+[E,M]+,

where E is an infinitesimal constant matrix satisfying
Et= —E. Equa, tion (25) just corresponds to the differ-
ence of (6) and (7). The change in the pseudoscalar field
under an axial transformation is more complicated, but,
to low est order,

(i/f)E+—
The pseudovector current (P„ is then to be determined
from the formula

( c)Z c)Z
Tr(G'„E) = —i Tr~ —8&+— -5X

&c)(r)„y) c)(c)„lV)

r) 2 c)Z
st P —«

I
(27)

c)(c)„l„) c)(c)„r„)

Thus, to lowest order (switching for convenience to
tensor notation), the axial-vector current is given by

(p '=(f/Z)
i Z'(1—+4p) (N:y„ybN. ' ', &.'N—d-'V „VsN. ')
i—Z'( 1—+4n) (N. by yblV. '

—-'8 b¹'y yblV ")+ (29)

From (29) we identify f,=f/Z as the pion-decay
constant and

o =s(1—g~/Z') & =s( 1+(F —D)IZ')— (3o)

where g~= F+D—1.2 and D/F 1.7 [compare with

Eq. (17) of IJ. Now all the parameters of 2 are specified
in terms of well-known experimental" numbers.

There are many higher-order terms to be added to
(29) including the characteristic Yang-Mills contribu-
tions of the form [l„,F„„'] [r„,F—u„"]. Some of these
terms will be relevant for E&4 decays. The equations of
motion can also be written in the usual way but they
are long without being immediately illuminating.

Perhaps they will be useful in a consideration of the
consistency of the quantization procedure for this

Lag I'aIlglan.

III. PION-NUCLEON SCATTERING

The reasonable (within 20%) agreement with experi-

ment of the CA" or chiral Lagrangian predictions' for
the 5-wave scattering lengths is considered one of the
main triumphs of this approach. As such, the way in

which it comes about would seem be to worth careful

study. These results can be obtained in a Lagrangian
model of nucleons and pseudoscalar mesons. They can
also be obtained from a pure p-exchange model. At first

glance, therefore, we might expect that in a Lagrangian
with vector mesons as well as pseudoscalar mesons, we

would get answers twice as large as they should be.
What actually saves the situation when we add gauge
fields to the theory is that the quadrilinear terms of

Eq. (21) change in such a way as to cancel out the
p-exchange contribution and to leave the formulas for
the 5-wave scattering lengths unchanged. Wess and
Zumino' have already pointed out that the particular
choice Z'=st, corresponding [see (16)] to the KSRF
relation and vector-meson-dominance results in the
correct prediction for the scattering lengths. Here we

show that the formula for the scattering lengths is in

fact independent of Z', so that, for example, it is not
possible to derive the KSRF relation by equating the
experimental and predicted scattering lengths. This
does not mean, of course, that the choice Z'= 2 is not
a good one.

' W. Willis et a/. , Phys. Rev. Letters 13, 291 (1964);H. Courant.t al. , Phys. Rev. 136, B&791 (1964)."Y. Tomozawa, Nuovo Cimento 46, 803 (1967); A. P.
Balachandran, G. M. Gundzik. , and F. Nicodemi, ibid. 44A, 1257
(1966);K. Raman and E. C. G. Sudarshan, Phys. Letters 21, 450
(1966); S. Weinberg, Phys. Rev. Letters 17, 616 (1966).
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2mpf, ' g' p(m —p)
ag —— 2Z' —1+ gA )

4~(m+ ) 2m 2f 2 4m2 —@2

pf,'m—
//, ,=— 2Z' —1+ —+

4x(m+p, ) ,.,:, ,.;)
(34)

Noting (16), we see that the combination

2Z' —1+g'/2m 'f,'

appearing in each of Eqs. (34) can be replaced by 1.
Thus the Z' dependence has dropped out and we are
left with the old results in I, corresponding to the case
when there were no vector and axial-vector mesons in
the Lagrangian. fn the CA limit where p/m —+ 0,
Eqs. (34) become

ag ~ 2mp f„'/47r(m+p), g3 ~ —2'gq,

as expected. LNote that the factor p/(m+p) comes
from kinematics so that it does not suffer any change
on going to the limit. ]

After considering the threshold values (5-wave
scattering lengths) of the pion-nucleon amplitudes, the

"G. F. Chew, M. L. Goldberger, F. E, Low, and Y, Nambu,
Phys. Rev, 106, 1337 (1957),

We follow the Chew-Goldberger-Low-Nambu" nota-
tion for pion-nucleon scattering and write the amplitude
as

Tr= Ar—+iy 2(qg+q2)Br (31)

where the superscript I denotes the isotopic spin of the
particular channel. The amplitude is computed in
perturbation theory, including only diagrams without
closed loops ("tree" approximation). The interaction
Hamiltonian is taken to be the negative of the relevant
interaction terms of Z. The p-exchange contribution
comes from (17)—(19) and (24):

a,&~2=a,3~2=O,

B 1/2 (m 2 ])—1(g2+bg]) B 3/2 — xB 1/2 (32)

where s, t, and I are the usual Mandelstam variables,
and

b=4l f Z' ,'g(1 —Z-')/m—p'.

Actually, the term involving b does not contribute to
the S-wave scattering lengths. The contributions from
the nucleon-exchange type of diagrams and from the
quadrilinear-interaction conte ct-type diagrams are
computed using (19)—(21). They turn out to be

1/2 —g 3/2 —2mf 2g 2

B,'"=m'f, 'gg'$6/(m' s)+ /2(
—m' u)]-

2f ~(g~2+—1 —2Z2) (33)
8/2 —$4m2f 2g@2/(u m2) j+f 2(1+g 2 2Z2)

In our approximation, the S-wave scattering lengths are
found from the sum of (32) and (33) to be

natural question is what are the predictions for these
amplitudes away from threshold. A start on this
problem can be made by computing the I'-wave scat-
tering lengths that involve the first derivatives of the
amplitudes evaluated at the threshold point. It has been
found" that, in a chiral Lagrangian of nucleons and
pseudoscalar mesons, all the I'-wave scattering lengths,
except for the one in the "3,3" E* resonance channel,
are in reasonable agreement with experiment. Here the
situation is essentially unchanged.

The I'-wave phase shifts in this gauge-field model,
which has no anomalous terms, are still given by
Eqs. (21) of I, except that the very small term

SIP g
(1+Z')

12~ m+p, m, '

should be added to a~~ and a~3, while minus half that
should be added to a3~ and a3~. This would tend to make
one believe that good over-all results could be achieved
if the Lagrangian we have written is in some sense a
fundamental one. In that event, we expect that the
scattering lengths for the nonresonant channels would
be given quite well by the Born-approximation type of
procedure we have used, but that the calculation for
the resonant channel would require higher iterations of
the Lagrangian and would also predict the E* itself.
Since this is hard to carry out in a belivable way, we
will no longer pursue this line of approach.

An alternative procedure is, as mentioned in Sec. II,
to regard the Lagrangian as a convenient mnemonic for
keeping track of the particles and symmetries of the
theory. In this approach, we hand place, in a chiral-
invariant way, a ~+ decuplet into the Lagrangian. In
order to compute pion-nucleon scattering, the only
relevant. interaction is of the (N*N7r) type. This can be
easily written' in a locally chiral-invariant form by
using the matrix 7///I of (3). This gives rise to additional
terms, which are of no concern at present but which
would be interesting in the computation of E*produc-
tion. There is an over-all free parameter that can be
related to the E* decay width. For the effective inter-
action Hamiltonian density we thus find

Xr ——&L~.san, '& "& ya'+~""&a'&,mac~, 4e j+
where S„,q, is the decuplet field normalized so that
X++.*=(1/g6) X)»& and h is related to the decay width

for 1V++*~ p7r+ by

Jp)3
I' =— L(m+m*) ' —p'],

4~ m*2

giving h'/47r~0. 062p, '. Using this interaction, we

compute the N*-exchange contributions to the S-wave

"J.A. Cronin, Ref. i.
"For discussion of the chiral transformation properties of the

X* see, e.g. , J. Schechter and Y. Ueda, Phys. Rev, 177, 2300
(1969).
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scattering lengths to be

4 m h' p'
ai(E*)=- (m+m* —p,) —0.053p ',

3 fN+p s'm
(35)

2 1s hp
as(Ã*) = —— L2(m+m*)+p) —0.059p, '.

3 I+p s.m*'

First, we notice that these contributions are of order

p/m compared to the expressions in (34), so that they
do not appear in the CA limit where p~0. However,
adding these contributions to (34) gives predictions of
a~~0.08p ' and a3~—0.137p ', which no longer com-

pare reasonably well with the experimental values
ay=0. 171p ' and a3= —0.088p '. For the I'-wave scat-
tering lengths the expressions are long, so we just give
the numbers: ass(1V*)~0.100p, ', at(E~) ~0.017 p',
ait(1V*) 0.076p ' and a i(1V*)~0.017p '. These are
not especially bad and, not surprisingly, bring the 3,3
scattering-length prediction into good shape (see I, for
example). In order to solve the serious difiiculty of bad
predictions for u~ and a3, Mani et al. ' and Peccei" have
proposed that a non-chiral-invariant quadrilinear
(XE7r7r) term be added to the Lagrangian. Some
justification based on the requirement of good asymp-
totic behavior has been given for this term but, of
course, in the present context it would be nice to relate
such a term more directly to the chiral scheme. We may
note that an anomalous (magnetic type) coupling of
vector rnesons to nucleons does not contribute to the
S-wave scattering lengths, so that this would not help.

Thus we see that the alternative procedure is not
without problems. Possibly it is necessary to introduce
a fairly large set of additional particles in the second
approach to get good agreement again for the S-wave
scattering lengths.

IV. K+-NUCLEON SCATTEMNG

We shall regard the S-wave E+-nucleon scattering
lengths as a test for the proper way of introducing
SU(3)-symmetry breaking into the Lagrangian. The
E -nucleon reaction, on the other hand, is exothermic,
so that it is unreasonable to expect good agreement in a
treatment that does not take account of unitarity; it
will not be considered here.

The SU(3) breaking for the baryons was investigated
in I for a theory without gauge fields. In that case, the
optimum situation was where all the symmetry breaking
resided in the mass terms, so that the coupling constants
retained their SU(3)-symmetric values. In the present
theory, we must investigate, in addition, SU(3) break-
ing in the vector- and axial-vector-meson systems.
There are two aspects to this. The first concerns the
symmetry breaking among the octet members of the

'5 Our results are essentially the same numerically as those of
R. D. Peccei LPhys. Rev. 176, 1812 (1968)] even though a
slightly diferent interaction is used.

vector and axial-vector families. Depending on the
particular scheme chosen, this has different conse-

quences for the Cabibbo theory of weak semileptonic
decays, as well as for the S-wave scattering lengths. This
will be discussed in Sec. V. The second aspect concerns
the introduction of vector- and axial-vector-meson
unitary singlets and their mixing with the corresponding
octet isosinglets. The method chosen manifests itself
in different couplings of the physical f meson to the
nucleons. (Experimentally, it seems to decouple. )

When introducing the vector and axial-vector
singlets, we have a choice as to whether or not they
should be considered as gauge fields. If they are taken
as gauge fields, the natural procedure is to enlarge the
initial symmetry group from SU(3)XSU(3) to U(3)
)& U(3). The additional additive conservation laws may
be taken as "triplet number" (or, equivalently, baryon
number) and its axial analog. However, since U(3) is

not a simple group, the singlet couplings and the octet
couplings are not related to each other' in a gauge
theory. Thus we do not gain any additional information

by treating the singlets as gauge particles. The use of a
higher symmetry Le.g. , SU(4) &&SU(4), which ulti-

mately breaks down to Okubo's nonet symmetry'
would give us the usual nonet relations, but that is
beyond the context of the present work.

In this section we shall introduce the SU (3) breaking
for the spin-1 mesoos only in the relevant mass terms.
The axial-vector unitary singlet will not be considered
here because we do not need it for present applications.
The terms that are to be added to the previous
Lagrangian are

——p„.p„„——Ciq „(p„—Lms(E*) —mvs) Tr(V„V„S)
—Csq„o~„—Pm'(IC~) —m~'g Tr(A„A„S), (36)

where ip„„=B„p„B„p„,p„being—the (unmixed) unitary
singlet vector field. C~ and C2 are constants.

It is important to note that the physical axial-vector
field is used in (36). This has the consequence that the
same renormalization factor is good for the pion and
the kaon.

For the vector-meson system, we are presently using
the "mass-mixing" model. Physical co„and p„ fields are
defined in the usual way by

(37)

The above transformation will diagonalize the or-q

part of (36) when the constants are chosen as follows:

C,= —',m'(~) ——s'~v'+-s'I'(E"),

Cs ——(1/v2)m'(&u)+ sv2mv' sv2m'(E. *)—
and

m'( p) = 2m'(E*) ——,
'

[m vs+ m'(o~) j.
"See M. Gell-Mann and S. Glashow, Ref. 6.
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m p~g
as(&+p) = 4' f'-(Z' F)--

4s (m+prr) mp'

(fy YICtiEC gy FK)
+4mf, '

mr+ m —tix

4t xf—'(1 F)—
4s (m+tix)

(f rxprr gyrsc)'—
+4mf, —g, (39a)

mr+ m —err

m
as(X+I) = —»-f, '( 1+F D)--

4s (m+tirr)

(f.zest rc g.zx)'—
+2mf '— (39b)

mz+m —prr
where

g»ir = —(+6)mf„, f»x= (1/g6) f„(—3+D+3F),
g~zx 2m' & fnzK ff( 1 D+F),
gi, zing= v2m f„ —f~zir (1/v2) f„(—1———D+F) .

These coupling constants are numerically the same as
those in I. In deriving (39) we have set mr= m(~).

Again in this case the effects of vector-meson exchange
have been canceled out by part of the contact term,
leaving us with a result independent of Z. This is indi-
cated explicitly in (39a), where the use of (16) is shown.
The result is identical to that obtained in I, where only
baryons and pseudoscalar mesons were included in the
theory. Therefore, the discussion given in I still applies;
briefly, (39a) and (39b) are in good agreement with
experiment and, furthermore, in the CA limit, where
err/m~0 and mr ——m, theyreduce to the relatively
poor CA results.

To review, the assumptions involved in deriving (39)
are that (a) SU(3) breaking exists in the mass terms of
the physical particles, not in the coupling constants;
(b) the mass-mixing scheme should be used for co-P

mixing; and (c) the &p particle decouples from the
nucleons.

If these assumptions are relaxed, there are many
possibilities. Some of the most apparently reasonable

Before computing the E+-nucleon scattering, it is
necessary to specify the coupling of p„ to the baryons.
To ensure that, assuming (37) to hold, the physical p„
decouples from the neutron and proton, this is chosen as

,'&3—igTr(Ny„N) q„. (3g)

The scattering lengths are calculated in about the
same way as the pion-nucleon case. Besides the po and co

exchange diagrams, we must include the A and Z ex-
changes as well as the quadrilinear "contact" diagram.
For the S-wave scattering lengths we then 6nd

ones will be discussed in the next section. However, they
do not seem to give quite such good results for the
S-wave scattering lengths. NIevertheless, as mentioned
in the discussion of the pion-nucleon case, it may be
necessary to add additional particles to the Lagrangian
or. to make a more complicated symmetry-breaking
assumption so that these other cases cannot be clearly
ruled out. Furthermore, they have additional conse-
quences for the weak interaction that give us more
points to check.

If assumptions (a) and (b) are made, then (c) will,
of course, automatically follow, if our results (39) are
equated to the experimental scattering lengths and if
the over-all factor in (38) is considered arbitrary. This
proof of the decoupling of the g from the nucleons was
essentially given in I.

It is interesting to note that Eqs. (39) are the ones
that would be obtained in a theory where there were just
eight vector mesons, so that the &-q mixing problem
would not exist.

—
L '(& )—,'j T (A„A.S)

in (36) is replaced by

—Lm'(E'„) —m„'j Tr(A„A„S). (40)

Since the axial-vector fields appearing in (40) are the
mixed unphysical ones and (40) explicitly violates
SU(3), the separate diagonalizations of the ~-Ai and
E-E& systems give rise to different renormalizations
for strangeness-changing and strangeness-conserving
objects.

We note that if the SU(3)-symmetry breaking given

by the modified (36) is required to transform as

V. SEMILEPTONIC DECAYS AND ALTERNATIVE
SU(3) -BREAKING POSSIBILITIES

The SU(3) breaking for the spin-1 rnesons represented
by (36) does not lead to any renormalization of the weak
Cabibbo matrix elements for processes like neutron
decay, hyperon P decay, Ei2 decay, and K&3 decay. This
is not necessarily inconsistent with present data, since
our experimental knowledge of the strangeness-changing
semileptonic decays including the X&3 modes is far from
precise. Xevertheless, there is some indication that a
small amount of renormalization is required and it
would be interesting to accommodate this in our
Lagrangian. One simple way to do this is to modify (36)
slightly. Then the renormalizations for all semileptonic
decays in the Cabibbo theory can be expressed in terms
of one parameter. This parameter is explicitly given in
our theory but it may be that the correlations between
the different modes, allowing this parameter to be
arbitrary, are even more general.

%e consider the "modified mass-mixing" model to be
one where the term
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(8,1)+(1,8), we would have the relation

m'(E~) +my' ——m'(E*)+m'(A i),

(45) to be
(sin0~)n= (1/x') sin0. (48)

which is roughly satisfied.
Now, proceeding analogously to (12), we define

physical (tilde) fields that reduce the bilinear terms in
our new Lagrangian to diagonal form:

(2 i)„=(A. i)„+(g/2 fZm~') 8„7r, (41a)

(Eg)„=(K/)„+[g/2fZIrm'(K/)]a„K, (41b)

s.= (1/Z) fr,

E= (1/Zrr)E.

(42a)

(42b)

The renormalization constants Z and Z~ are given by

Z'= 1 g'/4f—'m„'= (mi /m~) ', (43a)

Z s=1—gs/4fm(E ). (43b)

The quantity Z is exactly the old one we had in the
SU(3) limit. [We still have mv ——m(p) and m~ ——m(A i).]
We could also define Z„ for the g field. It is apparent
that, if the axial-vector unitary singlet is neglected, we
would have a kind of Gell-Mann-Okubo relation:

It is amusing that the baryon renormalization turns out
to be the square of the meson renormalization. The
experimental situation is not at all clear for the meson
case (Eis is the stumbling block), but 1/x' 1.32 is not
too diRerent from the values found, from baryon experi-
ments alone, by Nieh and Nieto. "Note that, since the
quantities n and P appear in the same combination in
(%')„and in ((Ps')„, the d/f ratio of the axial-vector
baryon strangeness-changing currents by themselves is
the same as the d/f ratio of the strangeness-conserving
currents by themselves. The numerical determination
of n and P from (30) should thus be made using either
the As= 0 or

I
As

I

= 1 currents.
The vector currents are similarly" found to be

(*Us�')

„=i (N, 'y„Vs' Ns'y„lV—„').
+sos'c) P '+ (49a)

('Us') =i (N, 'y„Ns' Ns'y N ')—
—i[(1/x)fr cj„(K')t—x(K')t8„7r ]
+ (—i/v2) [(1/x)~'8 K——xK 8 ~']+ . . .

(49b)

Z m(Eg) mQ 1/2

Zir m~ mv'+ [m'(E~) m~']—
Numerically, x 0.87 if Ez is identified as Ez(1320),
and x 0.90 if E~ is taken to be E~(1240).

We shall assume here that the Cabibbo currents are
the ones computed from the Lagrangian according to
the Noether prescription [e.g. , (27)]. The Lagrangian
to be used is the one where the substitutions indicated
by (41) and (42) are made. Then we find that the
strangeness-conserving axial-vector current is still given
by (29). However, the strangeness-changing axial-vector
current now becomes

(~ ').= (1/f")~.~' 'Z '(1+4~)N—:~.~ N. '
—iZrr'( —1+4rr)N 'p y'Ns'+ (45)

where
= f/Z~ (46)

If the true Cabibbo factor is written as sin8, then the
eRective Cabibbo factor for X&2 decay, which we denote
as (sin8~), is seen from (45) to be

1—Z ' 1 —Z' 1—Z~'

The quantity which appears in the semileptonic
matrix elements is

It is seen that the baryon part of the strangeness-
changing vector current suffers no renormalization due
to SV(3) breaking, so that we may write

(sinov)~= sin9. (50)

Xivs~= (G/u2) J„l„+H.c. , (53a)

j„=(ps'+'Us')~ cos9+(tPst+'Us')„sin0, (53b)

Fquation (49b) shows that the meson part of the
strangeness-changing vector current is renormalized;
the corresponding E~3 matrix element is

(4poqo)'"& '(c) I(U ').IK (p))
= (1/242) [(1/x+ x) (p+q) „+(1/x —x) (p —

q)„]. (51)

Equation (51) evidently obeys the low-energy theorem

f++f =(1/&2)X1/x, where f+ are the coe%cients
«(p~c)'

For the eRective Cabibbo angle at zero momentum
transfer (which is not all that is needed in this case),
we have, from (51),

(sinav) ~= -', (1/x+ x) sin0. (52)

Fquations (47), (48), (50), and (52) amount to a definite
prescription for modification of the Cabibbo Hamil-
tonian, which in our notation reads

(sin0~)'u= (1/x) sin0. (47) where 6 10 'm ' and /„ is the leptonic current.

From our model, 1/x= f,/f„~= 1.15 or—1.11, which is
in the same direction as the numbers usually quoted. '7

The eRective Cabibbo factor for the baryon axial-
vector strangeness-changing current is also seen from

rr See, e.g. , B. W. Lee, Phys. Rev. Letters 20, 617 (1968).

"H. T. Nieh and N. M. Nieto, Phys. Rev. 172, 1694 {1964).For
diferent results, see N. Brene, M. Roos, and A. Sirlin, Nucl. Phys.
86, 255 (1968}.For (1/x) 1.15 and assuming (sin&~}~1=0.265,
we have (sino@)~ 0.23, (sin9~)~ 0.23, and {sina~)~~0.30.

' We have, for a vector transformation, 8N = PB,Ng and
Bp= [E,pj, with E= —8". The vector currents are then given
by (27), where 6'„ is replaced by 'U„on the left-hand side.
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Z= mv/m~. (55d)

From (55) we see that the vr and K symmetry-
breaking renormalizations are the same in this model.

"S. Coleman and H. J. Schnitzer, Phys. Rev. 134, B863 (1964);
N. Kroll, T. D. Lee, and B. Zumino, ibid. 157, 1376 (1967);R. J.
Oakes and J. J. Sakurai, Phys. Rev. Letters 19, 1266 (1967).

In the present treatment no account of the form-
factor dependence of the currents has been taken, so
that the expressions above are most useful for decays
where the hadronic momentum transfer is small. To get
momentum-dependent form factors, which we expect
to be a better approximation to the real world, the 6eld-
current identity assumption can be made. This is
indicated for X&3 decays in Appendix 8, where results
similar to well-known ones" are derived. Equation (51)
is seen to be the limit, where p„~q„, of a, more com-
plicated expression.

The above modified mass-mixing model does lead to
a change in the E'+-nucleon scattering lengths. In (39a)
the quantity 4mf„' should be replaced by 4m(f„x)',
in (39b) 2mf„' should be replaced by 2m(f„s)', and the
coupling constants should be

g.« = (V'6) mf-. ,

=(f. /&6)L —3+(1/*')(3F+D)],
gszrr =%2g„zrc = 2mf„—
f„err &2f„err ——f, L—1-—+— (1/x') (F—D)],

where it has been assumed that the values of Ii and D
have been obtained from (say) the strangeness conservi-ng

axial-vector matrix elements by themselves. Then (39)
yields rJs(K+p) 0.36tJ, ' a—nd as(K+n)~ 0.19t2 ', —
which are somewhat larger than they should be. This
result is evidently a drawback to the modified mass-
mixing model, but may not be serious if additional
particles are added to the theory. Using the alternative
forms for Z~ given in Appendix A does not improve
the situation.

One popular way" of introducing SU(3)-symmetry
breaking for the spin-1 mesons is the "current-mixing"
method. In this case, (36) is to be replaced by

;H —
m/ —(mK*)) 1]Tr—(F„, F,.'S)
—-'23m'/m(Kg))2 —1]Tr(F„p~F„„~S)

4 'pj4v psp 2 (Cp) ps ps CsV su+sp 1 (54)

where Co and C3 are constants to be determined. Here
L(8,1)+(1,8)]-type symmetry breaking implies the
relation

m(K*)/my ——m(K~)/mg,

which does not seem too bad (1.15~1.14 or 1.22).
Diagonalization of the x-A~ system and of the E-E~

system is achieved with the substitutions

(3 r) „=(A t)„+(g/2 fZm~v) 8„vr, (55a)

(K~)„=-[m(K~)/m~](K~) „+(g/2 fZm~') 8„K, (55b)

vr = (1/Z) vr, K= (1/Z) K, (55c)

Thus the Cabibbo scheme for semileptonic decays is
unaffected, as are the non-vector-meson contributions
to the IC+ .V -scattering-length formulas (39a) and
(39b).

To diagonalize the pp rtv s-ystem, we set

m(pv)
cosa p„—— sin0 co„,

mp

m( j) m(pv)
sln8 (ps+—cos8 pvy, )

Co
0'p =

Co

(56a)

(56b)

where p„and ~„are the physical particles. The angle

~8~ can be determined from

cos'8 sin'8 1 4 1

ms(to) ms(rp) 3 m'(K*) mvs)
(57)

while C3 is determined by

Cs ——-', Cpmv tan28 —
~

- —
~

——. (59)
3 (ms(K*) mv 2/ (Cp) '

Now let us replace the coupling of y to the nucleon
given in (38) by

idt Tr(Ny„1V) q „, (60)

where d& is an arbitrary constant. The requirement that
the physical singlet p„decouples from the nucleons
leads to the relation

d, = —(Cp/mv) (3g/2+6) cot8.

Then after some computation we find &s(K+p)
—0.5y ' and us(K+n) 0 3p ', —wh. ich are rather

bad. If we instead choose dr=0 (p„would, however, in

this case not decouple from the nucleons), the reasonable
results as(K+p)~ —0.29tvand as(&++)—0 09@ '
emerge. At the present stage, therefore, the current-
mixing scheme does not seem to be favored.

To sum up our discussion on SU(3) breaking, we note
that, if mass mixing for the co-p system is accepted, then
the E+S-scattering-length results come out well if the
ratio of the vr and Erenormalizatio'n constants [denoted
by x in Eq. (44)] is 1, while the fact that the effectivve

Cabibbo angles differ from each other tends to suggest
that x should be slightly larger than 1. (However, the
exact experimental status of the diBerences between
the effective Cabibbo angles is not clear. ) Our modified
mass-mixing model predicts x= 1.15 or 1.11,but perhaps
a slightly different modification would give a somewhat
lower value of x, which might lead to reasonable results
for the scattering lengths and possible agreement with
the data from semileptonic decays. In this connection

which implies ~8~ 26'. (We shall take 8= —26'.) jCp~

is found from

sin'0 cos'0 1
+

m'(p) ms(pv) (Cp)'
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we mention that SU(3)-symmetry breaking can be field
introduced in various combinations, both in the vector-
meson mass and kinetic terms. However, this procedure
suffers from being inelegant. In any case, there is a fair
amount of theoretical flexibility in addition to a certain
amount of experimental uncertainty, so that we will

not explore any of these other cases now. More informa-
tion can also be obtained from other meson-baryon
scattering processes. Further investigations will be
reported elsewhere.

B=—(Brr, R),
kB,)

L=M'I'B~ 'i' L=M"'BzM "'
R=M '~'8 M' ' A=M ' '8 M' '

M'»= 1+ify ',f'y—'+

M 'i'=1-ify—', f'y—'-+

(A1)

(A2)

(A3)
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APPENDIX A

The Lagrangian can be presented in many different
equivalent forms, since, according to the theorem of
Chisholm, " the 5-matrix elements are unchanged if
a point transformation on any fiel p of the type

4 =4'+
(where the dots stand for bilinear and higher terms in
p') is made. For example, the interaction terms in Zt
[Eq. (20)] can be transformed away if a new baryon

Making the substitutions indicated by (A2) gives

Zi —— mTr(L—MEMt+RMtLM) = mTr(—BB), (A4)

which is just the usual mass term. In this case the
baryon kinetic term picks up a derivative-type Yukawa
interaction:

—Tr(gy„B„S)
= —Tr(By„r)„B) if Tr(By„y,[r)„rb,B])

,'f'T —(Bv,[(V~.~),K)+OH')+ (As").

This is essentially the same as the usual pseudoscalar-
pseudovector equivalence theorem. The term g, (for
simplicity, before the Yang-Mills substitution B„~D„
is made) goes to

Z2= 2n Tr(Lo „r)„MMtL+Ro„B„MtMR).+2P Tr(La„Lr)„MMt+Ro „Rr)„MtM)
=4iu fTr(By„y68„QB)+4iPf Tr(By„yiB8„&)+O(rb')+ (A6)

Note that terms bilinear in the pion fields do not appear in (A6). Additional interaction terms, however, now come
from Zz [Eq. (23)]:

= (m —mq) Tr(BB+2ifByi[rbB]+4f'BLAB& —2f'B[rb', B]+.—BBS+ifByiB[&,$]+
2i fByigBS 2—f'BPBfP S] —+'f'BB[rb', $]~+-f'BBQS&+2f'BP'BS)

+ (mz —m-. ) Tr(BSB+ifByr[&,$]+B 2ifBy5$B&+—2fiB[&,$]+Br'
-'f2B[@&S] B PBySyB 2f—'BSBy')+O—(y')+ . (A7)

U the baryon mass-splitting term is considered to transform as (3,3*)+(3*,3), instead of (8,8), we should replace
(Zi+Zz ) by (Zi+Zz )', which is defined and rewritten

(Zi+ Za )' = mr Tr(LMEM—t+RMtLM)+ (mq —m-. ) Tr(LSRMt+RSLM)+ (mq —m) Tr(LMRS+RMtLS)
= —mr Tr(BB)+(mr m- )Tr(—BSB.+ifBy;[&,$]+B f'B/S/B ,'f'B[—rb', S]+B)—-

+(m~ —m) Tr(BBS ifBy,B/&,$)+ f'—BBrtS& 'f'BB—$g' S] )+O—Q -') . (A8)

If the baryon mass-splitting term goes as (8,1)+(1,8), we would have instead

(2i+ Za~)" = mr Tr(L MRMt+—RMtLM)+ o (mr m-. ) Tr(I SMARM—t+RSMtLM+LMSRMt+RMtSLM)
+,'(mq m)-Tr(L—MRMtS+RMtIMS+LMRSMt+RMtLSM)

= —ms Tr(BB)+(mg m-. ) Tr(BSB ,'—f'B[P',$]pB+f'B&$—&B—)

+ (mg —m) Tr(BBS 2 f'BB$P' S] +f'BB—/S&)+O(P') . (A9)

Note that (A9) gives no contribution to the Yukawa-
type interaction.

Finally, we note that the freedom to make point
transformations lets us easily demonstrate that the

"J.S. R. Chisholm, Nucl. Phys. 26, 469 (1961);S. Kamefuchi,
L. O'Raifeartaigh, and A. Salam, ibid 28, 529 (1961)..

5-matrix elements will be the same if a diferent form
is used for M. First consider the "standard" form

Mt(P) = exp(2ify)
= 1+2if4 —2f'y' —-',if'y'+ . . (A10)

Now consider another form M2(g) satisfying
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M2t(f)M~(P) = 1. This can then be written as

MgQ) = 1+2ifig 2—f'P'+CP'+ . , (A11)

where the coefficients of the linear and bilinear terms
were fixed by unitarity, but the coeKcient of the cubic
term and the independent coefficients of higher terms
are arbitrary. Let us try to find a point transformation
Q=Q(P) such that

M, (y) =M,(@g))=M,(y). (A12)

If the proper type of P(P) can be found, then it is clear,
by Chisholm's theorem, that we can use M2(P) instead
of Ml(@) and still get the same results. From (A10)
and (A12) we have

(4pozo)'"& '(V) I(& ').IK (p)&

=f+(K')(p+V),+f (K-')(p

E„=(p—q)„, (83)

and using (82), we 6nd for the K(8 form factors the
results

m'(K*) 11
f+(K') = —-+x/

&2K2+m'(K*) 2 x )
K'(1—Z') xmas )'i+8, (84)
2x m, ' m(Kg))

(p' —q') (1—Z') / xmas )'
I i+~

2%2m'' x km(Kg)~

p2 g2+- f+(K') (85)
m'(K*)

as ff +0. Exp—anding (A13) gives

(A14)'='+(~/2if+ :f')~'+-

y= (1/2if) inLMl(y)j
=(1/2if) in{LM'(p) —1j+1}, (A13) f (K')

~
x

where the symbol ln(A+1) means A —-'2'+lA'+
and converges for Tr(AAt)(1. In this case, we expect
convergence for suKciently small fig, since

»L(M2 —1)(M2—1)3= 56—Tr(My+My) j-0

which is a point transformation of the required form.

APPENDIX 8
According to the field-current identity assumption,

the strangeness-changing vector current that appears
in the Cabibbo Hamiltonian is to be written as

(&3').= I:2m'(K*)/glK. * (81)
The K&3 matrix element is then given by the product of
the E* propagator and the E*Ez vertex. The latter
receives contributions from (17), (18), and (24) where,
in the case of the modified mass-mixing model, we should
make the substitutions indicatedby (41) and(42) rather
than those of (12). Then the K'+K~ part of the
Lagrangian comes out to be

1(1—Z') —
xmas )2

&wc*'z. =pig — —~+~
x my' m(K~)J

)&(8 K*+—BE *+)i 8E 8—"+8 (E')~B„~
(1

W2

11 x
+K„*+~ ———Bg vr'+ —E 8„"'

x&2 v2

These results are the same as those of Lee, '~ except
that his (1+8) is replaced by

(m(K*) '-( xm~ +~.
E m, &m(E,)

Equations (84) and (85) coincide with (51) in the
Ilmlt Pp~gp.

For the ordinary mass-mixing model or for the
current-mixing model the renormalizations are the same
for the 7i- and the E fields. Thus the X~3 form factors in
these cases in the field-current identity model are given

by (84) and (85), where x is replaced by 1 and the
factor xmz/m(K&) is also replaced by 1. Explicitly, we

have the results

m'(K*) / (1—Z')
f+(K') =

I
1+K (1+@i. (86)

v2 K'+m, '(K*)4 2m''

p —p~
f (E')=-

%2 K+ m(IF)

1 m(K*) '
X 1— —(1-Z')(1+~) . (87)

2 mp'

These equations have been previously obtained" by
the hard-kaon current-algebra method.

The present experimental data on the X~3 form factors
are still somewhat ambiguous.

After parametrizing the I&3 matrix element in the usual z» Y. Uedg, , Phys. Rev, 114, 2082 (1968).


