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In a theory of Feynman-like diagrams compatible with duality, we compare the Regge cut given by the
simplest nonplanar diagrams (the unrenormalized two-Reggeon cut) with the Regge cut obtained from the
same diagrams in the double-scattering formalism in which the intermediate two-body state is put on one
or several of its mass shells. The cut spectral functions are shown to be simply related at the branch point,
but the different ways of incorporating the signature factors in the two methods give rise to zeros in the
leading cut amplitudes at diferent places. The predictions of a double-scattering Regge cut are thus likely
to be qualitatively similar but quantitatively different from those of the Feynman-like Regge cut.

1. INTRODUCTION
' 'N addition to poles in the angular momentum plane,
& - the unitarity equations for the high-energy two-
body scattering amplitudes strongly suggest' that cuts
are also present.

Moreover, there are now data on a large variety of
high-energy two-body scattering processes that show
that Regge poles by themselves are unable to explain
more than the crude features of forward and near-
forward high-energy two-body scattering. '

Phenomenological models for Regge cuts that intro-
duce few parameters in addition to the Regge-pole

parameters are thus becoming more important. Many
authors' have taken multiple scattering in a single
channel (e.g. , the initial- and final-state interactions of
the usual absorption model for charge-exchange scat-
tering) as a model for Regge cuts. Except for roughly
determined scale factors, ' no new parameters beyond
those used to describe the Regge poles are needed. Such
cuts have been shown'4 to have the correct features to
explain the discrepancies between the predictions of a
theory with Regge poles alone and the experi-
mental data.

There are two difhculties with such a relativistic
phenomenological theory in which the intermediate
two-body states in the multiple scattering are on their
mass shells.

First, it is not obvious how the off-mass-shell inter-
mediate-state contribution to the multiple scattering

* Supported in part by the U. S. Atomic Energy Commission,
'S. Mandelstam, Nuovo Cimento 30, 1127 (1963); 30, 1148

(1963); V. N. Gribov, I. Ya. Pomeranchuk, and K. T. Ter-
Martirosyan, Yadern. Fiz. 2, 361 (1965) /English transl. : Sov.
J. Nucl. Phys. 2, 258 (1966)J.' F. Henyey, G. L. Kane, J. Pumplin, and M. Ross, Phys. Rev.
Letters 21, 946 (1968); Phys. Rev. 182, 1579 (1969); F. Henyey,
K. Kajantie, and G. L. Kane, Phys. Rev. Letters 21, 1782 (1968);
R. J. Rivers, Nuovo Cimento 63A, 697 (1969).

' R. C. Arnold, Phys. Rev. 140, B1022 (1965); L. Van Hove,
Phys. Letters 24B, 183 (1967);E.J. Squires, ibid. 26B, 461 (1968);
26B, 736(E) (1968);J. Finkelstein and M. Jacob, Nuovo Cimento
56A, 681 (1968).' See, for example, N. White, Phys. Letters 27, 93 (1968); F.
Schrempp, Nucl. Phys. B6, 487 (1968); R. J. Rivers and L. M.
Saunders, Nuovo Cimento 58A, 385 (1968); C. Michael, Nucl.
Phys. BS, 431 (1968); R. C. Arnold and M. L. Blackmon, Phys.
Rev. 176, 2083 (1968).
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is supposed to be canceled. Moreover, it has been shown
for certain diagrams in relativistic field theory' that the
o6-mass-shell intermediate-state contribution asymp-
totically dominates the on-mass-shell contribution.

Second, because Inultiple scattering can be considered
as a unitarization of the Regge-pole amplitude in one
channel only, it is dificult to incorporate crossing
symmetry in a nonarbitrary manner. Because of the
connection between crossing and signature, this can
lead to incrorrect signature in the asymptotic cut
amplitudes. This requires the addition of counterterms
of dubious physical significance to restore the correct
signature factors.

Because of these difficulties, it is interesting to com-
pare the Regge cuts due to off-mass-shell and on-mass-
shell intermediate states in a relativistic theory that
explicitly contains Reggeization, crossing symmetry,
and a phenomenologically plausible particle mass spec-
trum (e.g. , indefinitely rising Regge trajectories).

Recently a theory of Feynman-like diagrams has been
proposed' ' in which the generalized Veneziano ampli-
tude' plays the role of a Born term. This theory ex-
plicitly incorporates duality (with the mass spectrum of
the Veneziano representation), crossing symmetry, and
Reggeization,

The Feyman-like diagrams can be classified as planar
or nonplanar. The planar Feynman-like diagrams
provide renormalization corrections' to the basic Born
term, giving a right-hand cut to the Regge trajectories.
The nonplanar diagrams in general give rise to Regge
cuts."

The simplest nonplanar diagram of Fig. 1(a) (giving
rise to a Regge cut due to the exchange of two Regge
poles) has been studied in detail in Ref. 7. This diagram
stands in the same relation to the subset of nonplanar
diagrams that give the renormalized Regge cut (due to
the exchange of two Regge poles) as the Veneziano Born

' M. E. Kbel and R. J. Moore, Phys. Rev. 1?7, 2470 (1969).' K. Kikkawa, B. Sakita, and M. A. Virasoro, Phys. Rev. 184,
1701 (1969);K. Bardakci, M. B.Halpern, and J. A. Shapiro, ibid.
185, 1910 (1969).

7 K. Kikkawa, Phys. Rev. 185, 2249 (1969).
K. Kikkawa, S. Klein, B. Sakita, and M. A. Virasoro, (to be

published).' G. Veneziano, Nuovo Cimento 58A, 190 (1968).
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FIG. 1. Essentially nonplanar diagrams.
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term stands to the renormalized Regge pole amplitude
due to the sum of all planar diagrams. It is likely that
the moving cut given by Fig. 1(a) has many features of
the renormalized two-Reggeon exchange cut.

In this paper we shall compare the Regge cut given by
Fig. 1 (treated as Feynman-like diagrams in scalar
particle scattering) with the Regge cut obtained from
Fig. 1 by putting the two-particle intermediate state on
the mass shell of the external scalar particles.

Although neither of the Regge poles exchanged in
Fig. 1 is the Pomeranchukon (which is probably an
infinite iteration of a nonplanar diagram), Fig. 1 has
phenomenological interest in that it has been sug-
gested" that double-charge-exchange scattering (e.g. ,
E p-+~+2 ) pr—oceeds by repeated single-charge-ex-
change scattering.

In Sec. 2 we shall evaluate the leading-cut contribu-
tion of Fig. 1 in considerable detail. In Sec. 3 we evaluate
the double-scattering cut from the zero-spin mass-shell
intermediate state in Fig. 1. We conclude with a brief
discussion of the double-scattering cuts due to higher-
spin intermediate states.

2. CUT FROM NONPLANAR DIAGRAMS

We take the generalized Veneziano amplitude for the
scattering of scalar particles to be

FIG. 2. Dual diagram associated with Fig. 1 (a). Most of the
dependent lines are omitted. It can have infinite extension.

diagram) can be obtained in terms of the x; by the
methods of Ref. 6 and 7 (reproduced in the Appendix).
We classify the dependent variables by the number of
lines xi that they cross in the following way:

(i) The line y; crosses x; once, and x; (iA j) not at all.
(ii) The line s;; crosses x, x, once, and g& (kNi, j) not

at all.
(iii) The line q; crosses g8 (t8&i) once, and x; not at all.

All other dependent variables (i.e. , lines which cross
all the x; at least once) are ignored, to be justified
a Posteriori.

The amplitude describing Fig. 1(a) is given by2"

I&4)(s,t) = d40 g dx;g x, ~t&&' "") '

.—& [(Pi+I—Pi+Pi —1—It:)2]—1X Lgi

& t, ( Pi—1+2Pi Pi+1+Pi+2 &) ]—lXLL gi

X (212228284241) +(gltg2tg8tg4) t (2.2)

Ir(s t) dg g
—tt(s)—1(1 g)

—a(t)—1f(g) (2 1)

where, for simplicity, n(s) =n(0)+s and f(x) =f(1—x)
to preserve s+-+t crossing. The amplitude V(s, t) has
poles in the s and t channels.

The amplitude describing Fig. 1(a) has been essen-
tially given in Ref. 7. We repeat the calculation here in
more detail.

In Fig. 2 we give the dual diagram of Fig. 1(a). The
independent variables x, (i= 1, 2, 3, 4) correspond to
the sides of the box in Fig. 1(a).The dependent variables
(corresponding to different triangulations of the dual

"R.J.Rivers, Nuovo Cimento 57A, 174 (1968);C. B.Chiu and
J. Finkelstein, ibid. 59A, 92 (1969);C. Michael, talk presented at
the Conference on Regge Cuts, Madison, Misc. (unpublished).

I& )(s,t) = —i2r2
g, dx,

(+ g;y, tt;)
ln g, g,y,q, '

X(212$28284241) "' 'R(gitg2tg8tg4)

XexpL —(fs+gt+htr42)], (2.3)

"In Ref. 7, two of the s's and the q s were omitted. Such an
omission affects the quantitative results only slightly.

where R is an almost arbitrary singularity-free spectral
function invariant under x~+-+ x3, x~ ~ x4, and xi —+ x;+~.
If the mass of the external particles is m, we have
s+ t+u= 4m 2, where s= (p2 p4)' and t= (pi ——p8) '. For
simplicity, we have taken the same parent trajectory n
eVeryWhere, With n(r)82) = 0.

Performing the d4k integration, we have
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where

f In+(x;y;q, ) = —in+(x;y, q,) In(s»s»si&s»)+ln(x&/yz) In(x4/y4)+»qs lnq4

—6 In(qgq4) ln(qiq, ) —ln(yiyi) ln(xixiyg'y4') —ln(qiqi) ln(xixix2'x, 'y, 'y, ')
—In(qgq4) In(xi'xs'yi'y4') —lnqi ln(x&y4) —lnq4 In(x4y&), (2.4)

g in'(x, y;q, ) = —In+(x;y;q;) ln(s»s»s&4s4&)+in(xi/yi) In(x, /yi)+Inq, lnq,

—6 In(q&q4) ln(qiqs) —In(y&y4) 1n(xix4yi'yi') —In(q&q4) 1n(xix4xi'xisy&'y4')

—»(qiqi)»(x, 'x4'yi'yi') —lnqi In(xiyi) —Inq, ln(x, yi), (2.5)

ti In+(x,y;q, ) =4 in+(x;y, q,) In(siis»s$4s4&)+In(xixi) In(xix4)+In(xixi) In(yiy4yi yz')

+ln(xix4) ln(yiygy2 y4 )+9 Inyiyi lnyzy&+ln(xixz) ln(qi qi qz q4')+In(xzx&) ln(qz q4 qi'q, )

+in(yzyi) ln(qi "qz "qzq4)+in(yzy4) ln(qz "q4"qiqz)+25 ln(qiqz) 1n(qpq4) . (2.6)

xi= pX, xi= p(I-X),
ln(xq/yq) =,"(—2p lnp) '

ln(x4/y4) =
&I (—2p lnp) '&i,

(2.7)

we calculate the leading behavior of I& &(s, t) ass-+ ~
to be

I& &(s,t) = ',im'- dpdkd/drt
p' lnp

ln'L —,',p'X(1 —Z))

XL—'psy(1 —I&))
—.~"&

—'R(0 -' 0 -')4'"'

X{4pp.(1—&))"'} "'«pL —ps(1 —t&I)) (2 g)

Mellin transform of I (s, t) is thus given as

II.&(l,t) =-',i R(i0r, —',,0,-', )2
—'I'( —l)

d(d&&[1 —(&I+i')'

As shown in Ref. 7, the leading asymptotic behavior
of I(s, t) as s —+ ~ is given by the region of integration
~,= ~, = 0, ~,= x4 ———,

'
~ We thus only have to include

those dependent variables that cross either x~ or x3 once.
This provides the a posteriori justification for our neglect
of variables other than y, s, and q in Eq. (2.2). Using
the parametrization of Ref. 7,

Performing the (, » integrations in Fq. (2.9), I&~&(l,t)
can be written as

P(—l)I' '(l, t) = —n'R(0, —'„0,-', )2 '

P.(1—X)) 't'&~'+'& —'
4j (1—&)

-&

4«(&)—i

v here

Ln. (t) —l)
+— —XP), (2.11)-l- j (l- j)

ji'p) =
l
»—,', &(I—X)){lnL»./16(1 —X))}

—i, (2 12)

and n.(t) is the two-Reggeon-cut branch point.(t) =2 (-:t)—1

Equation (2.11) shows the existence of a mo~i~g cut
at l= ii.(t) and a fixed pole at l ———1."It mav be that
an infinite iteration of the nonplanar diagram Fig. 1(a)
converts this simple pole at t —.——I into an essential
singularity.

In this paper, however, we are only concerned with
the moving cut at l=n, (t) Equation (2.1.1) gives rise
to a cut amplitude

c(&)

I,„,&' (s,t) = dj s'p i(j,t) (2.13)

dI&.
l

I&, (1—
1&,))—i&ili~«&4&+i&

where p,„i(j,t) is given by
p(X) p' —'"('j4) lnp

(2 9) p,„,(j,t) = —ir'R(0, —,0,—') 2 'I'( —j—1)4'
1 '{.C—:.~(1-»)"'}

where
e= e(1—$&I)/ l

I &&I I ~ e)0, s)0,—

and the upper bound of the p integration pp ) is given by

dhP. (1—X))
—'&'U+'& —'

)& {1+-',L,(t) —j) ln —,', X(1—X) l . (2.14)
p(I&,) = (1—X) ', 0& && i

-'(P (1.
"V. N. Gribov and I. Ya. Pomeranchuk, Phys. Letters 2, 232(2.10) (I962).
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to give

2.15„t(42, , L1+0(1/lns)]. (2.I "(st) p 442," .(~),~)C11ii

be integrated byl E . (2.13) can eAsymptotically, q.
parts

where

I"(k) = dxidx2 I k xiOx2, 0) (3.4)

,t 42, (t),t) is given by2.14) we see that p„t(42, ,
' '

b

p„t(42,(t), t) = —2rbIt.'(0,-'„0,—2' 2 tI" —n 4

From q.E . (2.2) we have

—n(ui) —1x —a(tt) —1(1—xlI"(k) = dxidxbxi

dt us no
'

r Fi . (b), the diagram ob
. W

' d'tl
from Eqs. (2.3) and (2.8 a am ives
amplitude

n, (t)

(2.17)

3.5)&» 'It'. (xi,O,x, ,O),
—a(tt) —i(i x —a aX&3

—k', s 3; u;=

.1 tho — t functions (2. , woui — oln u

It'.(xi,0,x0,0) = f(xi)f(xb,

I,„,&b)(s, t) = d 't: ' 's'p. „t(g,t)ge

(3.6)

I"(k) = V(ui fi) V(u2, )'2 (3.7)

edge containing
which it follows that

rbitrarily narrow we gfors~ ~~ aboveanar i rar
the real axis.

dThe total cut amp
'

litu e

I &'(s t)+—I„.„,(" stI,„t(s,&) = .„,
nc(t)

t 2.18)dy s~'ii+~ '")p-tU, ) (

is th

I, s, = ' d'k 0 20 k")—I. t""(s,t) =(i2r)2 d 2

mass s e
' '

n to I&'(s, r)mass-shell contribution oThe zero-spin mass-s e
us

we g

ac(t) lns 1 e cccactt))—
XP. t(tt. t',

(n, ' '
n in Eq. (2.16).

ble-scat. tering-cut
}1 p,„
We compare ththis Wl

ec. 3.spectra 1 function in S

IN MASS-SHELL
DOUBLE-SCATTERING

rin in which theo b c e ge Re ge cut due to o
interm i e

al-, article zero-spin mextern
directly from Eq.

Let us write Eq. (2. as

I"(s,b) = d'k I(k), (3.1)

si, d for s~ ~ abov e thesi nature, an or shas the correct sig
e

X~( L(P.—k)'])~(p "—k'

u t2 . (3.8x~( L(p-tt —k) '])V(ui, ),'i) V(u2, 2) .

(a)00 S ~)—
4ggs

E)')')V(,,t,) V( .. (3.t))8((—EX E

.m. momentum all dwhere q is t .m.hec

E=t ]2 t' 2+( 2 2314 i—2tt~ —2tt2.

all by re-""s t) asymptotical y yute I„~')"s, aWe can comp
in the V by their asymp o

(3.10)

placing t e

V(u;, tg) 1'(—(t,))s &"

for asymptotic s inhe integral (3.8 or s inp
of an integration over

f dturn trans ers ymomen u

where I(k) is written as Then, asymptotically,

I,„ti )"(s,t) =
nc(t)

dj stp, „t"(j,i,[(~g—A:)2]—rI = dx,I(k; xi,x2, xb, x4)x2 (3 11)

(3.2) where[(u ~)

—k ' = 0. In the v

'I00(k) (3 3)I(k) (uL(P2 —k) 2]42[(P4—k '
)"')~( +1—( )—42 t2))—

Xr —~(~,))1(—n(i,)). (3.12

n

in
'

ra, tion in Eq. (3.2)The region x2 0, x4

X
gives rise

fth 1icinity o= Dp
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Asymptotically, we have [as in Eq. (2.15)]

I,„b('& '($, t) ($ "&/ln$)&0.„4' (&r,(t),f)[1+0(1/in$)].
(3.13)

Thus

I,„400($,t) = —2i
ae(t)

dj[1 e
—i~&']$&'po 400(j f) (3.21)

X dfldfsrr&&(fl 4) tI(2f fl f2)

= —'~'j'(0) I'(—o(-'I)) . (3.14)

Comparing Eqs. (2.16) and (3.14) we see that,
although the cut spectral functions p,„400(j,f) and

p,„4(j,f) are not simply related for arbitrary j, they are
simply related (and have the same singularity structure)
at the endpoint j=&r, (t), the point that gives the leading
asymptotic behavior.

At j=(r,(t) we have [from Eqs. (2.16) and (3.14)]

«.-(.() f)=A(f)p-"(.() ) (

where h(f) is th.e slowly varying exponential (for small t)

A(f) = [2f(!)/j(0))'2-' (3.16)

The factor 2 ' arises because the moving cut in the non-
planar Feynman-like diagram, Fig. 1, comes from the
region of integration (0,-'„0,—',), whereas the cut in the
on-mass-shell double scattering comes from the region
(0,0,0,0).

If I,„4(b "($,f) is the Regge-cut amplitude due to
putting the intermediate state in Fig. 1(b) on its zero-
spin mass shell, we have [cf. Eq. (3.9)]

I,„b('&"($,t) =-
4&t+$

dtydt~—8((—E) '(') V($, tl) V($&(2) . (3.17)
( It) &/2

As s —+ ~ above the wedge containing the real axis,

V($,t;) —+ e '~ &'* $ & "&I'(—&r(f.))f(0) . (3.18)

Thus, for s —+ ~ above the wedge,

I ( b&00($ f) dj e ' '$'p, „4"(j,t). (3.19)

Note the minus sign in Kq. (3.19) compared to Eq.
(2.17).

The heuristic double-scattering Regge cut" " is
given in terms of I& ) and I") as'4

I 00($ I) = —22[I &a 00+I (b 00 (3.20)

"If A'~ and A~2 are the partial-wave amplitudes for the

If we take&2($) =&2(0)+$, we can evaluate p,„400(&r,(t),t)
directly from Eq. (3.12) as

p..."(n,(f),f) = —-', ~'f'(0)

(irr) 2

I (~& ($ t

mlitt

d'~ e(p"-~') ~( [(p.—~)']— )

Xg(p4' —k0) &&(&r[(p4—k)2] —n)

8 +"
dzidzs I(k,zl, X2,zs, X4)

BS2 8$4 xg=x4=0
(3.24)

scattering processes i —+ k, k ~ j, the double-scattering cut ampli-
tude is given by I,„&&b 24A

"A'" (see R——ef—. 10).
'4 The additional factor of —4 arises because I( ) and I(~) differ

from the A's in Ref. 13 by a factor 2i.
"This is to be compared with the two-particle unitarity cut

from Figs. 1(a) and 1(b) which gives the asymptotic amplitude

f«p~&"'($,4)~—(2$~0&'&/Ins) (1+0 ~«&'&)/csc7rn, (4)p, 4 (n (4),4) .
We see that the factor csex-a, (t) introduces poles in I„t, at
~,(t) = —2e (e integer), which makes comparison difficult.

rb See P. G. O. Freund [Phys. Rev. Letters 22, 565 (1969))for
one prescription for on-mass-shell intermediate-state counting.

'[1+e'-

Xtan(22r j)$'p,„400(j,t), (3.22)

showing that the combination of Figs. 1(a) and 1(b)
gives a double-scattering cut with the correct signature.

Although p.„,(j,t) and p,„400(j,f) are similar at j=&r,(t),
the effect of the extra term tan (2'2rj) in Eq. (3.22) is to
alter the positions of the zeros in the asymptotically
leading term in the double-scattering cut amplitude (in
comparison to the Feynman-like cut amplitude).

Thus asymptotically we have

I,„4"($,t) 2($~ &"/ln$)(1+e '~~' ' ()&

Xtan( 22r&r, (t))p«400(&r, (f),f)[1+0(1/1n$)]. (3.23)

Comparing Eq. (3.23) with Eq. (2.19) with the aid of
Eq. (3.15), we see that I,„4($,t) and I,„400($,t) have the
same singularity structure, but I,„(4$t) has zeros in the
leading term (which will be partially filled by non-
vanishing lower-order terms) at n, (f)= —2n (n integer),
whereas I, 400($, t) has zeros in its leading term at
&r, (t) = —2n —1 (n integer). "

We conclude this section by brieRy discussing higher-
spin mass-shell Regge-cut amplitudes, since higher-spin
(than that of the initial- and final-state particles) on-
mass-shell intermediate states are not excluded in the
multiple-scattering formalism. " Unfortunately, there
is no reliable way to determine which states should be
included without double counting, "and their inclusion
is usually simulated by introducing scale factors as
essentially arbitrary parameters. '

Let I,„'b~("&($,f) be the Regge-cut amplitude obtained
from Fig. 1(a) by putting the two-particle intermediate
state on the mass shell, &r[(ps —k)2]=2&2, &r[(p4 —)'4)']=n.
Then from Kqs. (3.1) and (3.2),
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To compute the right-hand side of Eq. (3.24), we
need knowledge of the spectral function R(xix2x2x4). In
general, I,„t&'i "(s,t) will be of the form (asymptotically
in s)

I (a)mn(& ~)

dt~dt2

2'1 2 0(( +)1/2)pm, n(~ / )~a(tti+a(tti —i

(—K)"'

where E n(ti, t2) is a polynomial of order m+n in ti and
t2. To order ln 's we see that

I (a)mn(~ () 2~31t2( &(2/I))pm, n(1( &()f2(O)
Pm, n(42t 42t)I 4&a/00(S, t). (3.26)

Suppose I, , & &t'"at(s, t) is the Regge-cut amplitude ob-
tained from Fig. 1 by on-mass-shell double-scattering in
which the intermediate states range over a set of values

{mn} {for which 42[(p2 —k)2j=n2, t2L(p4 —&)2j=n}.
Then if (for asymptotic s) we can use the asymptotic
form Eq. (3.26) for each intermediate state, we have

I,„t&~&/ta"'(s t) X(f)I,„t&'" (s,t), (3.27)

where the scale factor'

leads to asymptotic similarity between the Regge-cut
amplitudes obtained from Fig. 1(a) by methods (i)
and (ii).

The main difference between the two methods arises
in the way the s~l crossing diagram Fig. 1(b) is
included. Treated as a Feynman-like diagram, the com-
bination of Fig. 1(a) and Fig. 1(b) gives the signature
factor (1+e 'at') directly. However in the mass-shell
double-scattering formalism, the signature factor is
introduced as —i(1—e ' &')=(1+e ' t') tan( 2'2rj). The
two methods thus give rise to zeros in the asymptotic
cut amplitudes at different values of t.

This suggests that, although the on-mass-shell
double-scattering Regge cut could reproduce the quali-
tative features of the two-Reggeon cut (obtained from
the Feynman-like Fig. 1 by the methods of Ref. 7), the
detailed quantitative predictions of such a cut would be
incorrect.

In conclusion we note' that the amplitude I(s,t)
LEq. (2.2)j will not give complete factorizability of
lower daughters. Requiring complete factorizability
would give rise to an additional singularity because of
the great degeneracy of lower daughters. Nonetheless,
we expect the general conclusions of this paper to be
valid in a more complete theory.

y(~) P (I (a)mn/I (ai00)

(m, n)

is a polynomial in t of degree M+1V, where M = max n2,

E=max n.
It might be possible, for example, to choose {nt,n} so

that p, „& &"4 '(t2, (t), /') =p,„t(n.(t),t) $Eq. (2.16)g for
small t, since A(/) [Eq. (3.16)] is a rapidly converging

power series. However, the different method of con-
structing the signature factor in Feynman-like and
on-shell scattering methods will still give an extra
factor of tan (222ra, (t)) in the latter, displacing the
positions of the zeros.

4. CONCLUSION

We have computed the Regge-cut amplitudes ob-

tained from Fig. 1(a) using two methods: (i) by con-

sidering it as a Feynman-like diagram and (ii) by
putting the intermediate two-particle state on the zero-

spin mass shell of the external particles.
Both Regge cuts have the same branch point j= t2, (t),

and although the cut spectral functions p(j, t) are not
simply related for arbitrary j, they are simply related
(with the same singularities outside the s-channel

physical region) at the branch-point j=t2,(t), at which

point their ratio is a slowly varying exponential in t.
It is possible that the inclusion of higher-spin mass-shell

intermediate states in method (ii) could make the
similarity still greater for small t.

Since the asymptotic cut amplitudes are given by
p(42, (/), t), the similarity between the spectral functions

APPENDIX ' RELATIONSHIP BETWEEN
DEPENDENT VARIABLES IN

DUAL DIAGRAM

where f satisfies

y= f(x: ai,a2, a2, a4), (A1)

f(x: ai, a2, a2,a4) = f(x: a4, a2, a2, ai)
= f(x: a2tai&a4)a2) (A2)

Fxo. 3. Part of a dual diagram.

In this appendix we reproduce from Kikkawa et gl. '
the expression relating two variables connected by
duality (corresponding to intersecting lines in the dual

diagram). I.et x and y be the diagonals of a quadrilateral
in the dual diagram with sides ai, a2, a2, and a4 (Fig. 3).
Then
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and

y= f(x: a] tt2 as tt4) m x=- f(y: ttt, a4, tt3 tzs) . (A3)

The function f can be written implicitly as

1—xQ2Q3 1—xQgQ3Gl84

f(X: hatt, tt2, tts, tt4) = (A4)
1 —xQgQ38] 1—xQgQ384

where

and

1—Qg 1—QgQyx
a2=

1—Qqcy 1—Q2x

Q3 1—Q384x
83=

1—Q304 1—Q3X
(A5)
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Regge-Pole Model of Elastic Large-Angle Scattering at High Energies*
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The effect of the Regge-pole-like structure of an amplitude in the small-angle region on the behavior of
the high-energy elastic large-angle scattering is studied by linearizing the nonlinear integral equation for
the imaginary part of the amplitude derived from the unitarity relation. It is shown that the slope of the
elastic large-angle differential cross section for antiparticle-particle scattering should be always less steep
than that of large-angle particle-particle scattering, contrary to the situation in the small-angle region.
Using the general formula for the elastic large-angle scattering obtained in this paper, we analyze numerically
the existing experimental data on the pP and PP differential cross sections at large angles. With regard to
the logarithmic slopes of the differential cross sections, we found that this model can reproduce the gross
stiucture of the experimental data on both PP and PP processes. Our prediction that the slope of the pp
large-angle scattering cross section will be less steep than that of pp is also confirmed experimentally. The
dip and bump structures in experim. ental differential cross sections are compared with the theoretical pre-
diction of oscillations in the differential cross section.

I. INTRODUCTION

0TH experimental and theoretical studies of large-
angle elastic scattering at high energies have re-

cently attracted much attention.
Considerable amounts of experimental data on large-

angle elastic differential cross sections for various pro-
cesses are available. ' ' A common feature of large-angle
elastic scattering is the strong decrease of the differen-

tial cross section with increasing angle, although the

*Work supported in part by the University of Wisconsin Re-
search Committee, with funds granted by the Wisconsin Alumni
Research Foundation, in part by the U. S. Atomic Energy Com-
mission, under Contract No. At(11-1)-881, COO-197 and in part
by NSF Grant No. GJ-132 to the LSU Computer Research Center.

t Present address.
$ Present address: Institute for Nuclear Study, University of

Tokyo, Tanashi-shi, Tokyo, Japan.' Review article for experimental data on elastic large angle pp
scattering: T. V. Allaby et al. , in Proceedhngs of the Topical Con-
ference on High-Energy Collisions of Hadrons (CERN, Geneva,
1968); CERN Report No. 68-7, p. 580 (unpublished).

' Review article for some earlier experimental data on elastic
large angle pp scattering: M. L. Perl, in Proceedings of the Topical
Conference on High-Energy Collisions of Hadrons (CERN, Geneva,
1968); CERN Report No. 68-7, p. 252 (unpublished).

slope is less steep than that in the small-angle region
Orear' proposed the following empirical formula to de-
scribe the general behavior of the elastic differential
cross section at large angles:

d&/d& =A exp( bp sing), —

where A and tt are positive constants, and p and g are
the c.m. three-momentum and scattering angle,
respectively.

Recent precise experiments' have, however, revealed
that, although Orear's empirical formula (1) reproduces
the gross features of the experimental differential cross
sections, there exist substantial deviations from Eq. (1)
which Inay be interpreted as dip structures or oscilla-
tion s.

Since the proposal of Orear's empirical formula (1),
several theoretical models of large-angle elastic scat-
tering which lead to differential cross sections similar to
Eq. (1) have been studied. One of the most attractive

' J. Orear, Phys. Rev. Letters 12, 112 (1964).


