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In a theory of Feynman-like diagrams compatible with duality, we compare the Regge cut given by the
simplest nonplanar diagrams (the unrenormalized two-Reggeon cut) with the Regge cut obtained from the
same diagrams in the double-scattering formalism in which the intermediate two-body state is put on one
or several of its mass shells. The cut spectral functions are shown to be simply related at the branch point,
but the different ways of incorporating the signature factors in the two methods give rise to zeros in the
leading cut amplitudes at different places. The predictions of a double-scattering Regge cut are thus likely
to be qualitatively similar but quantitatively different from those of the Feynman-like Regge cut.

1. INTRODUCTION

N addition to poles in the angular momentum plane,

the unitarity equations for the high-energy two-

body scattering amplitudes strongly suggest! that cuts
are also present.

Moreover, there are now data on a large variety of
high-energy two-body scattering processes that show
that Regge poles by themselves are unable to explain
more than the crude features of forward and near-
forward high-energy two-body scattering.?

Phenomenological models for Regge cuts that intro-
duce few parameters in addition to the Regge-pole
parameters are thus becoming more important. Many
authors® have taken multiple scattering in a single
channel (e.g., the initial- and final-state interactions of
the usual absorption model for charge-exchange scat-
tering) as a model for Regge cuts. Except for roughly
determined scale factors,? no new parameters beyond
those used to describe the Regge poles are needed. Such
cuts have been shown?4 to have the correct features to
explain the discrepancies between the predictions of a
theory with Regge poles alone and the experi-
mental data.

There are two difficulties with such a relativistic
phenomenological theory in which the intermediate
two-body states in the multiple scattering are on their
mass shells.

First, it is not obvious how the off-mass-shell inter-
mediate-state contribution to the multiple scattering
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is supposed to be canceled. Moreover, it has been shown
for certain diagrams in relativistic field theory? that the
off-mass-shell intermediate-state contribution asymp-
totically dominates the on-mass-shell contribution.

Second, because multiple scattering can be considered
as a unitarization of the Regge-pole amplitude in one
channel only, it is difficult to incorporate crossing
symmetry in a nonarbitrary manner. Because of the
connection between crossing and signature, this can
lead to incrorrect signature in the asymptotic cut
amplitudes. This requires the addition of counterterms
of dubious physical significance to restore the correct
signature factors.

Because of these difficulties, it is interesting to com-
pare the Regge cuts due to off-mass-shell and on-mass-
shell intermediate states in a relativistic theory that
explicitly contains Reggeization, crossing symmetry,
and a phenomenologically plausible particle mass spec-
trum (e.g., indefinitely rising Regge trajectories).

Recently a theory of Feynman-like diagrams has been
proposed®~® in which the generalized Veneziano ampli-
tude® plays the role of a Born term. This theory ex-
plicitly incorporates duality (with the mass spectrum of
the Veneziano representation), crossing symmetry, and
Reggeization.

The Feyman-like diagrams can be classified as planar
or nonplanar. The planar Feynman-like diagrams
provide renormalization corrections® to the basic Born
term, giving a right-hand cut to the Regge trajectories.
The nonplanar diagrams in general give rise to Regge
cuts.”

The simplest nonplanar diagram of Fig. 1(a) (giving
rise to a Regge cut due to the exchange of two Regge
poles) has been studied in detail in Ref. 7. This diagram
stands in the same relation to the subset of nonplanar
diagrams that give the renormalized Regge cut (due to
the exchange of two Regge poles) as the Veneziano Born
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Fic. 1. Essentially nonplanar diagrams.

term stands to the renormalized Regge pole amplitude
due to the sum of all planar diagrams. It is likely that
the moving cut given by Fig. 1(a) has many features of
the renormalized two-Reggeon exchange cut.

In this paper we shall compare the Regge cut given by
Fig. 1 (treated as Feynman-like diagrams in scalar
particle scattering) with the Regge cut obtained from
Fig. 1 by putting the two-particle intermediate state on
the mass shell of the external scalar particles.

Although neither of the Regge poles exchanged in
Fig. 1 is the Pomeranchukon (which is probably an
infinite iteration of a nonplanar diagram), Fig. 1 has
phenomenological interest in that it has been sug-
gestedl® that double-charge-exchange scattering (e.g.,
K=p— 7tZ7) proceeds by repeated single-charge-ex-
change scattering.

In Sec. 2 we shall evaluate the leading-cut contribu-
tion of Fig. 11in considerable detail. In Sec. 3 we evaluate
the double-scattering cut from the zero-spin mass-shell
intermediate state in Fig. 1. We conclude with a brief
discussion of the double-scattering cuts due to higher-
spin intermediate states.

2. CUT FROM NONPLANAR DIAGRAMS

We take the generalized Veneziano amplitude for the
scattering of scalar particles to be

V(s,t)=/ dx x~¢O (1 —g)~2O1f(x), (2.1)

where, for simplicity, a(s)=a(0)+s and f(x)=f(1—x)
to preserve s<«> ¢ crossing. The amplitude V(s,f) has
poles in the s and ¢ channels.

The amplitude describing Fig. 1(a) has been essen-
tially given in Ref. 7. We repeat the calculation here in
more detail.

In Fig. 2 we give the dual diagram of Fig. 1(a). The
independent variables x; (i=1,2,3,4) correspond to
the sides of the box in Fig. 1(a). The dependent variables
(corresponding to different triangulations of the dual

10 R, J. Rivers, Nuovo Cimento 57A, 174 (1968); C. B. Chiu and
J. Finkelstein, sbid. 59A, 92 (1969); C. Michael, talk presented at
the Conference on Regge Cuts, Madison, Wisc. (unpublished).
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F16. 2. Dual diagram associated with Fig. 1(a). Most of the
dependent lines are omitted. It can have infinite extension.

diagram) can be obtained in terms of the x; by the
methods of Ref. 6 and 7 (reproduced in the Appendix).
We classify the dependent variables by the number of
lines «; that they cross in the following way:

() The line y; crosses x; once, and «; (5 7) not at all.
(ii) The line z; crosses x; x; once, and xx (k>£4, ) not
at all.
(iii) The line ¢; crosses x; (k5%17) once, and x; not at all.

All other dependent variables (i.e., lines which cross
all the «x; at least once) are ignored, to be justified
a posteriori.

The amplitude describing Fig. 1(a) is given by7!

I@)(s,1) =/d4k 1T da; T wiolr—krt—1
i i
XH yi—a[(pa:+1—pi+pi—1—k)2]—1
i

XH qi e [(—pi~1+2pi—pi+1+pite—k)2]—1
)

X (z12825%34741) WO TIR (w1, %0,%3,%4) ,  (2.2)
where R is an almost arbitrary singularity-free spectral
function invariant under x; <> x3, %2 <> x4, and x; — 2,41
If the mass of the external particles is m, we have
s+t+u=4m? where s= (p2—ps)? and = (p1—p3)% For
simplicity, we have taken the same parent trajectory o
everywhere, with a(m?)=0.
Performing the d* integration, we have

Hi dx;
105 p)=—ir* [~ ([ aiyigyeo
In? s xiyigi o
X (212223234241)‘“‘0)_1R(x1,x2,x3,x4)

Xexpl —(fs+gt+hm?)],

1 Tn Ref. 7, two of the 2’s and the ¢;’s were omitted. Such an
omission affects the quantitative results only slightly.

(2.3)
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S In]T(wiyigs) = —IHH(xiyiQi) In(z12228230241) +1n(22/y2) In(x4/v4)+1Ing; Ing,

—61n(g2q4) In(g1gs) —In(y1y3) In(2123y2%y4%) —In(gags) In(wrwswa®ra2y1tyst)

—In(geqs) In(w1%05%y23y4*) —Ings In(ways) —Ingy In(xsys), (2.4)

g InJI(wiyigi) = —In[1(iy:qs) In(z1220573441) +In(w1/y1) In(23/y3)+1Ings Ings

—6 In(g2q4) In(g19s) —In(y2y4) In(waray1®ys?) —In(gaqa) In(aarsscs®es?ystyst)

—In(g1¢s) In(a2?x42y1%y5®) —Ings In(x1ys) —Ings In(xsy1), (2.5)

h lnH(xiyi(Ii) =4 th(xiyi(]i) In(z12225734341) +1In(o0125) In(waxa) +-In (wis) In(y2yayitys?)

“Hin(wars) In(yrysye'ys®) +9 Inyrys InyeystIn(wirs) In(grigsige’qa®) +in(waes) In(gagaignys?)
“Fn(y1ys) In(g1'°¢3"g2q4) +1In(y2y4) In(g2%94°q195) +25 In(gags) In(gaq) . (2.6)

As shown in Ref. 7, the leading asymptotic behavior
of I(s,t) as s — « is given by the region of integration
x1=x3=0, x2=x,=3%. We thus only have to include
those dependent variables that cross either x; or x; once.
This provides the a posterior: justification for our neglect
of variables other than y, 2z, and ¢ in Eq. (2.2). Using
the parametrization of Ref. 7,

x1=p\, x3=p(1—=N),
In(@s/y2) = £(—2p Inp)*/2, (2.7)
In(xs/ys) =n(—2p Inp) /2,

we calculate the leading behavior of 7 (s,t) ass— =
to be
dpd\dEdn
I@(s,1) =%i1r2[ — p%Inp
In?[{gp*A(1—N)]
X[ o1 =N O RO3,0,5)4
X{4p[N1—=N)J/*}~2 exp[ —ps(1—&n) ].

The Mellin transform of 74(s,t) is thus given as

(2.8)

I (1,1) =4ir*R(0,3,0,5)27T(—))

X/ dédn[1—gn+1e]!
1
X/ A1 —\) JY/2leed/o+2]
0

p(N)
<[
0

PInrpln 1 —N) ]
e=e(l—&)/|1—81],

e>0, s>0,
and the upper bound of the p integration p(A) is given by

pN)=(1—=N"", 0SA<3
=X, 1<A<1.

pl2e(t/) Inp

(2.9)

where

(2.10)

Performing the £, 7 integrations in Eq. (2.9), 7@(1,1)
can be written as

. r(—l) i
TO(1) = —mR(0,3,0,3)2- / 200
0

41

) [\(1—\)JH2e0-1
[P,

—» Aac(t)—7

1 () —1
XI:—.-F[—Olv(—.—jX()\):], (2.11)
=7  (I=5)?
where

XN =[InfeA(1=N)HIn[N/16(1—N) 1, (2.12)

and a.(f) is the two-Reggeon-cut branch point
a () =2a(3t) —1.

Equation (2.11) shows the existence of a moving cut
at I=a,(?) and a fixed pole at /= —1.12 Tt may be that
an Infinite iteration of the nonplanar diagram Fig. 1(a)
converts this simple pole at /= —1 into an essential
singularity.

In this paper, however, we are only concerned with
the moving cut at /=a,(/). Equation (2.11) gives rise
to a cut amplitude

ac(t)
[cut(a)(syl)=/ d7 speat(4,1) (2.13)

where peut(7,8) is given by
peus(,) = —mR(0,3,0,8)2-T(— j — )a=ac
1
X/ AN =) 126+ D=1
0
X {1+3la() =71 Indeh(1=))} . (2.14)

a 12 ;7) N. Gribov and I. Ya. Pomeranchuk, Phys. Letters 2,232
962).
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Asymptotically, Eq. (2.13) can be integrated by
parts to give
sac(l)

Lot @ (5,)) ~——peut(ee(t),O[14+-0(1/Ins) ], (2.15)

ns

From Eq. (2.14) we see that peut(ac(2),t) is given by
pcut(aC(t)yt)z _W3R(O;%)07%)2_tr2(_a(it)) . (216)

Let us now consider Fig. 1(b), the diagram obtained
from Fig. 1(a) by s <> # crossing. We immediately see

from Egs. (2.3) and (2.8) that this diagram gives a cut
amplitude

ac(t)
Tout®(s,0) = / dj e ™sipeu(F,1) (2.17)

for s — « above an arbitrarily narrow wedge containing
the real axis.
The total cut amplitude

Icllt(s,t) =Icut(a)(57t>+Icut(b)(s;t)
ac(t)
- / dj si(1+e " pon(G)) (2.18)

has the correct signature, and for s— o« above the
wedge

Tout(s,)~ (5% /Ins) (14-g=imae )
chut(aﬂ(t)yt)[]+O(1/lns):|7
where poat(ac(),t) is given in Eq. (2.16).

We compare this with the double-scattering-cut
spectral function in Sec. 3.

(2.19)

3. ZERO-SPIN MASS-SHELL
DOUBLE-SCATTERING CUT

The Regge cut due to double scattering in which the
intermediate two-body state in Fig. 1(a) is put on the
external-particle zero-spin mass shell can be obtained
directly from Eq. (2.2).

Let us write Eq. (2.2) as

I@(s,1) = / ak I(k), (3.1)
where 7(k) is written as
I(k)= fH docid (F; 21,202, %03,%4) 25— [ (P2—B)?1—1
1 X l(pekB)—1 (3.2)

The region x2~0, x4~0 in the integration in Eq. (3.2)
gives rise to zero-spin poles in I(k) at of (p2—k)2]
= a[ (ps—k)?]=0. In the vicinity of these poles,

I(k)~A{al (p2—k)* el (ps—k)* [} 1(k), (3.3)
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where

I°°(k)=[¢ix1¢ix31(k;xl,O,xg,O). (3.4)

From Eq. (2.2) we have
I%(k) = /dxldx3x1—a(t1)—1(1 —gp) (w1

Xag @11 — )~ ¢ (@=1R (3, 0,%5,0), (3.5)
where

h=(p1—k)?, t=(ps—k)?, st+litu=4m*> (i=1,2).

In order that 7°(k) represent the product of two
Veneziano four-point functions (2.1), we must have

R<x1>0;x310) = f(xl)f(x?:) ) (36)
from which it follows that
IOO(k)___ V(Ml,fl) V(Mg,fz) . (37)

The zero-spin mass-shell contribution to 7((s,t)
is thus

Icut(a)OO(s’t) = (17{')2/d4k 0(?20—l€0>

X (o (p2—k)Z])0(ps*—k°)
Xo(al (pa—k)ZDV (u1,t1) V (usyts) .

We can express the integral (3.8) for asymptotic s in
terms of an integration over the initial and final
momentum transfers #; and £, as

(3.8)

2

4q+/s

dlydts

X/ 0((—K)Y2)V (ur,t1) V (a,l2) ,
(—K)

Icut(a)oo(s’t) —_—

(3.9)

where ¢ is the c.m. momentum and
K= t2+ t12+ 122 —Ztltz _Ztt]_ —2tt2 .

We can compute Iou@%(s,t) asymptotically by re-
placing the ¥ by their asymptotic forms

V(b)) ~T(—a(t:))s*@ f(0) ass— . (3.10)
Then, asymptotically,
ac(t)
Tou(@90(s,0) = dj speus(4,1), 3.11)

—0

where

Pcutoo(j7t> = —%T2f2(0)

x/(_d_‘

K)2

1ty

0((=K)"2)6(j+1—a(t) —al(lz)
XT(—a(t))T(—alts)). (3.12)
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Asymptotically, we have [as in Eq. (2.15)]

Tt @0(s,8) ~ (5%© /In5) pout (et (£),1)[14-O(1/Ins) ] .
(3.13)

If we take a(s) =a(0)+s, we can evaluate peut®® (e (2),2)
directly from Eq. (3.12) as

pcutoo(ac(t)’t) = —'%7"2][2(0)

X/dlldt27r5(l1—tz)5(%t—h-iz)
XT(—a(t))T(—alt2)
=—1m* f20)I*(—a(i?)).

Comparing Egs. (2.16) and (3.14) we see that,
although the cut spectral functions pct®(4,f) and
pout(7,t) are not simply related for arbitrary j, they are
simply related (and have the same singularity structure)
at the endpoint j=a,(?), the point that gives the leading
asymptotic behavior.

At j=a,(f) we have [from Egs. (2.16) and (3.14)]

Pcut(ac(t)vt) = A(t)pcutoo(ac(l)’i) ’ (3 15)

where A(t) is the slowly varying exponential (for small #)

AO=[2/()/f(0) ]2 (3.16)

The factor 27 arises because the moving cut in the non-
planar Feynman-like diagram, Fig. 1, comes from the
region of integration (0,%,0,3), whereas the cut in the
on-mass-shell double scattering comes from the region
(0,0,0,0).

I Iew®(s,t) is the Regge-cut amplitude due to
putting the intermediate state in Fig. 1(b) on its zero-
spin mass shell, we have [cf. Eq. (3.9)]

(3.14)

2

4q+/s

Lot 00(s,1) = —

KV sV (s, (347
X | S TV G

As s — « above the wedge containing the real axis,
V(s,t;) — eimadsattd T (—a(t)) f(0). (3.18)

Thus, for s — « above the wedge,
ac(t)
Lout(D00(s,1) = —/ dj e7™is9peus®(4,0) . (3.19)

Note the minus sign in Eq. (3.19) compared to Eq.
(2.17).

The heuristic double-scattering Regge cutl®B is
given in terms of 7 and 7(® as'*

Tout®(5,8) = ~2i[ Lot @O+ Leas @], (3.20)

1BIf A% and A¥ are the partial-wave amplitudes for the
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Thus
ac(t)
Taa®(5,0) = —2i f Gl i) (3.21)
ac(t)
=2 / dj[ 1477
- X tan(375)s%pe®(Gt) , (3.22)

showing that the combination of Figs. 1(a) and 1(b)
gives a double-scattering cut with the correct signature.

Although peut(7,8) and peat®(7,t) are similar at 7=a,(?),
the effect of the extra term tan (377) in Eq. (3.22) is to
alter the positions of the zeros in the asymptotically
leading term in the double-scattering cut amplitude (in
comparison to the Feynman-like cut amplitude).

Thus asymptotically we have

Tout®(5,8) ~2(s%® /Ins) (14-¢~imae(®)
Xtan (3ra.(£))peut®(e (1)) [14+0(1/Ins)].  (3.23)

Comparing Eq. (3.23) with Eq. (2.19) with the aid of
Eq. (3.15), we see that Tou(s,t) and 7c,%(s,f) have the
same singularity structure, but Ze(s,) has zeros in the
leading term (which will be partially filled by non-
vanishing lower-order terms) at a.(f)= —2% (n integer),
whereas I..:"°(s,f) has zeros in its leading term at
a,(t)= —2n—1 (n integer).1

We conclude this section by briefly discussing higher-
spin mass-shell Regge-cut amplitudes, since higher-spin
(than that of the initial- and final-state particles) on-
mass-shell intermediate states are not excluded in the
multiple-scattering formalism.?1® Unfortunately, there
is no reliable way to determine which states should be
included without double counting,!6 and their inclusion
is usually simulated by introducing scale factors as
essentially arbitrary parameters.’

Let Icu@™2(s,t) be the Regge-cut amplitude obtained
from Fig. 1(a) by putting the two-particle intermediate
state on the mass shell, o (po—k)2]=m, o (ps—k)2]=mn.
Then from Egs. (3.1) and (3.2),

(im)?
Toui @™ (s,0) = /d“k 0(p2"— k%) 6(a (pa—Fk)*]—m)
min!
XO(ps"—k*)5(al (ps—k)*]—n)
am—l—n
X / dx1dxs 1 (k,x1,%2,%3,%4) (3.24)
6x2’"6x4" z2=24=0

scattering processes z — &, & — 7, the double-scattering cut ampli-
tude is given by Ioui?*=324%47% (see Ref. 10).

14 The additional factor of —4 arises because () and I(® differ
from the A’s in Ref. 13 by a factor 2.

15 This is to be compared with the two-particle unitarity cut
from Figs. 1(a) and 1(b) which gives the asymptotic amplitude

Icut“nitoo(syt)'\"— (Zsﬂc(t)/lns) (1 +e—”ac“))/Cscwac(t)Pcutoo (c(®),t) .

We see that the factor cscre.(f) introduces poles in Iout at
aq(f) = —2n (n integer), which makes comparison difficult.

16 See P. G. O. Freund [Phys. Rev. Letters 22, 565 (1969)] for
one prescription for on-mass-shell intermediate-state counting.
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To compute the right-hand side of Eq. (3.24), we
need knowledge of the spectral function R(#1wsxsxs). In
general, I, @™*(s,1) will be of the form (asymptotically
in s)

Tout(@™n(s,1)

didls
= __,_%7‘.2 —0((__K)1/2)Pm,n(ll,l’2)sa(t1)+a(t2)-1
(—K)?

X A0 (—a(t))T(—ali)),

where P (13,l5) is a polynomial of order m~+# in #; and

t3. To order In—1s we see that

Lo @ (5)~ — 32T (—a(3)) P (111) (0
= Pm,n(%t)%t)]cut(a)ﬂﬂ(s’t) .

(3.25)

(3.26)

Suppose Tyt (Vtotal(s,f) is the Regge-cut amplitude ob-
tained from Fig. 1 by on-mass-shell double-scattering in
which the intermediate states range over a set of values
{mmn} {for which of(p2—k)*]=m, o[ (ps—k)*]=n}.
Then if (for asymptotic s) we can use the asymptotic
form Eq. (3.26) for each intermediate state, we have

Icut(a)tOtal(S,t)’\')\(i)Icut(a)OO(S,t) s (3.27)
where the scale factor®

)‘(t) = Z (Icut(a)mn/lcut(a)oo)
}

{m,n

is a polynomial in / of degree M+ N, where M =max m,
N=max n.

It might be possible, for example, to choose {m,n} so
that peut@to®l(ae(£),) = peut(ac(?),t) [Eq. (2.16)] for
small ¢, since A(f) [Eq. (3.16)] is a rapidly converging
power series. However, the different method of con-
structing the signature factor in Feynman-like and
on-shell scattering methods will still give an extra
factor of tan (3wa.(f)) in the latter, displacing the
positions of the zeros.

4. CONCLUSION

We have computed the Regge-cut amplitudes ob-
tained from Fig. 1(a) using two methods: (i) by con-
sidering it as a Feynman-like diagram and (ii) by
putting the intermediate two-particle state on the zero-
spin mass shell of the external particles.

Both Regge cuts have the same branch point j= a,(?),
and although the cut spectral functions p(j,f) are not
simply related for arbitrary j, they are simply related
(with the same singularities outside the s-channel
physical region) at the branch-point j=a,(t), at which
point their ratio is a slowly varying exponential in Z.
It is possible that the inclusion of higher-spin mass-shell
intermediate states in method (ii) could make the
similarity still greater for small Z.

Since the asymptotic cut amplitudes are given by
p(ce(t),1), the similarity between the spectral functions
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leads to asymptotic similarity between the Regge-cut
amplitudes obtained from Fig. 1(a) by methods (i)
and (ii).

The main difference between the two methods arises
in the way the s> u crossing diagram Fig. 1(b) is
included. Treated as a Feynman-like diagram, the com-
bination of Fig. 1(a) and Fig. 1(b) gives the signature
factor (14¢7*74) directly. However in the mass-shell
double-scattering formalism, the signature factor is
introduced as —i(1—e~*™)=(14¢-*) tan(3wj). The
two methods thus give rise to zeros in the asymptotic
cut amplitudes at different values of .

This suggests that, although the on-mass-shell
double-scattering Regge cut could reproduce the quali-
tative features of the two-Reggeon cut (obtained from
the Feynman-like Fig. 1 by the methods of Ref. 7), the
detailed quantitative predictions of such a cut would be
incorrect.

In conclusion we note® that the amplitude 7(s,t)
[Eq. (2.2)] will not give complete factorizability of
lower daughters. Requiring complete factorizability
would give rise to an additional singularity because of
the great degeneracy of lower daughters. Nonetheless,
we expect the general conclusions of this paper to be
valid in a more complete theory.

APPENDIX: RELATIONSHIP BETWEEN
DEPENDENT VARIABLES IN
DUAL DIAGRAM

In this appendix we reproduce from Kikkawa et al.
the expression relating two variables connected by
duality (corresponding to intersecting lines in the dual
diagram). Let x and y be the diagonals of a quadrilateral
in the dual diagram with sides a1, a@s, as, and a4 (Fig. 3).
Then

y= f(x 1,02, (13,04) ) (Al)

where f satisfies

F(: a1,02,05,04) = f(%: a4,03,02,01)
= f(x 02,01,04,03) (AZ)

F1c. 3. Part of a dual diagram.
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and where
y= f(x 017027(1'37(1'4) = x= f(y' 01;0470’370’2) . (AS) o= 1—ay 1—aaw
9= — .
The function f can be written implicitly as q 1—ar 1—ax
an
1 — X203 1 —X00l3A10 4 1 —Q3 1 —Q3q4X
f(x: 01302)03104) = ) (A45) Qg=—"""""—""—"" (AS)
—Xoo03a1 1 —X0l0304 1 —3dy 1 —o3X
PHYSICAL REVIEW VOLUME 188, NUMBER 5 25 DECEMBER 1969

Regge-Pole Model of Elastic Large-Angle Scattering at High Energies*

NaonIkK0O Masupa
Department of Physics, University of Wisconsin, Madison, Wisconsin 53706

and

Department of Physics, Louisiana State University, Baton Rouge, Louisiana 70803t

AND

SHojr M1
Physical Sciences Laboratory, University of

KAMOL
Wisconsin, Stoughton, Wisconsin 53589

(Received 17 October 1968)

The effect of the Regge-pole-like structure of an amplitude in the small-angle region on the behavior of
the high-energy elastic large-angle scattering is studied by linearizing the nonlinear integral equation for

the imaginary part of the amplitude derived from the

unitarity relation. It is shown that the slope of the

elastic large-angle differential cross section for antiparticle-particle scattering should be always less steep
than that of large-angle particle-particle scattering, contrary to the situation in the small-angle region.
Using the general formula for the elasticlarge-angle scattering obtained in this paper, we analyze numerically

the existing experimental data on the pp and pp differ

the logarithmic slopes of the differential cross sections,

structure of the experimental data on both pp and pp
large-angle scattering cross section will be less steep th

ential cross sections at large angles. With regard to
we found that this model can reproduce the gross
processes. Our prediction that the slope of the pp
an that of pp is also confirmed experimentally. The

dip and bump structures in experimental differential cross sections are compared with the theoretical pre-

diction of oscillations in the differential cross section.

I. INTRODUCTION

BOTH experimental and theoretical studies of large-
angle elastic scattering at high energies have re-
cently attracted much attention.

Considerable amounts of experimental data on large-
angle elastic differential cross sections for various pro-
cesses are available.> A common feature of large-angle
elastic scattering is the strong decrease of the differen-
tial cross section with increasing angle, although the
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mission, under Contract No. At(11-1)-881, COO-197 and in part
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1968) ; CERN Report No. 68-7, p. 580 (unpublished).

2 Review article for some earlier experimental data on elastic
large angle pp scattering: M. L. Perl, in Proceedings of the Topical
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1968) ; CERN Report No. 68-7, p. 252 (unpublished).

slope is less steep than that in the small-angle region
Orear® proposed the following empirical formula to de-
scribe the general behavior of the elastic differential
cross section at large angles:

do/dQ=A exp(—bp sinf), (1)
where 4 and b are positive constants, and p and 6 are
the cm. three-momentum and scattering angle,
respectively.

Recent precise experiments! have, however, revealed
that, although Orear’s empirical formula (1) reproduces
the gross features of the experimental differential cross
sections, there exist substantial deviations from Eq. (1)
which may be interpreted as dip structures or oscilla-
tions.

Since the proposal of Orear’s empirical formula (1),
several theoretical models of large-angle elastic scat-
tering which lead to differential cross sections similar to
Eq. (1) have been studied. One of the most attractive

2 J. Orear, Phys. Rev. Letters 12, 112 (1964).



