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A high-energy, small-angle diffraction model in the eikonal approximation is adapted to current-nucleon
scattering. Within the framework of certain assumptions, both the longitudinal and transverse electro-
production cross sections fall off as I/~ qs~ for high-energy v and large momentum transfer

~
q'~, with the

ratio co=
~ q ~/v fixed in the asymptotic region. Furthermore, expressions are given for the functional de-

pendence on co of the electroproduction structure functions 5'~ and W2(v, q').

photon (coupled to a lepton pair). At large momentum
q, and small angle 0„ the transverse dimensions of the
scattering region may be measured in terms of an
impact parameter b = (J+st)/q„where J=the s-channel
angular momentum. Then for a dominant, s-channel
helicity-nonQip amplitude' J hh' in the normalized
current-proton scattering, the usual partial-wave sum

INTRODUCTION

'X this paper we adapt a high-energy, small-angle
~ - diffraction model in the eikonal approximation to
asymptotic current-nucleon (hadron) scattering. Cer-
tain assumptions are made, the principal ones being
(i) a scaling property in terms of the variable' co = —q'/v
for v, I q'I large and (ii) a particular phenomenological
parametrization for the eikonal. The former property
is motivated for the dimensionless eikonal function if
the current-nucleon elastic scattering is con6ned to
small impact parameters, while the latter is suggested
by high-energy, strong-interaction its. It is then found
that both the longitudinal and transverse electroproduc-
tion cross sections decrease like 1/I q'I at fixed te and a
physical picture (mathematically expressed) is sug-
gested for this circumstance. Expressions are given for
the functional dependence on co of the structure func-
tions Wt, 9(v,q') for inelastic electron-proton scattering.
I/t/» are defined by'

&is'= P (2J+1)dsss(cosg, )fs(J; s,q')
J'=h

becomes

= (2q.') bdb Js(bg —t)fs(b; s,q'). (2)

Here, the lower limit bs(h) =—(6+ is)/q, has not been set
equal to zero since the q' variation of fs has not yet been
specified (and the virtual mass

I
q'I can be very large).

Note that for large v, I
q'I and c0 fixed within the kine-

matical region4 of the inelastic ep experiment, ' q,s ~ v/
(2—to+M'/v) is always large so that the angle defined
by cosg, —1=t/2q, s«1 is indeed small. Since the in-
ternal, high-energy dynamics of the current-hadron
process cannot possibly depend upon the particular
value (e) for the electromagnetic coupling, the currents
are normalized L'J„(g), not eJ„(x)] for the representa-
tion (2) above.
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where J„ is the electromagnetic current for hadrons,
v =p q is the energy variable, and q'& 0 (spacelike) is the
virtual-photon momentum transfer with P and q the
nucleon and photon four-momenta, respectively.

EIKONAL MODEL REPRESENTATION FOR
CURRENT-NUCLEON SCATTERING

In the c.m. system of the s channel, we consider the
elastic scattering of a spin-averaged proton and virtual

~ Work performed under the auspices of the U. S. Atomic
Energy Commission.

~ J. D. Bjorken, Phys, Rev. 179, 1547 (1969). Also R. P.
Feynman (unpublished). By "scaling property" is meant a
dimensional argument for the variable dependence of the relevant
amplitudes when v, ~

q'~)) masses in the problem.
2 S. D. Drell and J. D. Walecka, Ann. Phys. (N. Y.) 28, 18

(1964);J. D. Bjorken, in Proceedings of the International School
of Physics Enrico Fermi, Varenna, 1967 (unpublished), p. 55.
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' The helicity-amplitude normalization is defined by

{S—1) —( ~(P + P 'F
(2m) '(pp'qp'ppqp) '"

To relate the W1, 2 to the transverse (h=+1) and "longitudinal"
(h=0) projections of (1), one has

ImFii, '= eg&*(q)tv„ei,"(q)M~/2,
where q= (qp 0 Opq ) y Ep (qssOsOsqp)//(q')'", and e„+= (0;+1,i,O)/V2 with q eI, ——O, e~*.c+———1, op*. ep ——+1. From the
optical theorem, e' ImFI, h'(v, q,O) = &3fq»bo p„3lqlab= (v —3Pq )'"

4 In the inelastic ep SLAC-MIT experiment (Ref. 5) for incident
electron energy E, v can vary for fixed

~
qs( =4E(E v/M) sinsxs8'—

between -', (q'( (the nucleon) and ME(1 )q')/4Es), where )q2~—
can take values between 0 (Compton scattering) and 2ME/
(1+M/2E). So co= ~qs~/v can vary between 0 and 2 (nucleon).
The "asymptotic region" as defined here is a large (qsJ region
with the larger values of the missing mass 2 (s Ms) =v —s ~

q'
~
. It-

does not include the region where distinct-resonance or secondary-
trajectory contributions are significant (at least the former may be
damped).

5 For some preliminary results of the SLAC-MIT inelastic
experiments, see W. Panofsky, in ProceeCings of the Fourteenth
International Conference on IIigh Energy Physics, Vienna, 1968
(CERN, Geneva, 1968), p. 23.

2 j.12
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Ke now imagine a bilinear unitarity condition for the
norznalised current amplitude (s large, spa, celike q'):

functions Wg 2'.

-', zrMWi(rzq') =IniFp+'(z zq'zp),

P
IrnF =— dQ FF*+("inelastic" contribution).

4'

e'""—1)s=
2ip )

In the high-energy, small-angle limit we may then write
an impact-parameter representation in the eikonal
approximation:

Fog'(v, q', t) = (2q, ')
p(h)

(e""—1
bdb Jp(b+ t)~

——
4 2ip

(h=p, +1). (2')

This quasi-two-body unitarity relation is an ansatz for
simplifying the multiparticle unitarity relation for a
subset of intermediate states which consists of a proton
and the continuum of particles having the quantum
numbers of the current. The phase function p(z, q') can
be taken' as p=pp(q, /2zrgs), where pp is a constant to
be determined. Coupling this unitarity with our pre-
vious impact-parameter amplitude representation (2)
there resultsr the condition Imfo ——p ~ fp ~

'+ ("inelastic"
contribution). A (complex) eikonal function X(b; s,q')
can now be defined from the relation

Xim(F++'(v, qp, p)+Fop'(v, qs, p)j. (4)

A SCATTERING PICTURE AND A
PARAMETRIZATION

In Eq. (2'), X(b; q', q,) is given an explicit dependence
upon q', but not upon any energy variable. We assume
an energy-independent, ' purely absorptive eikonal (and,
in "trajectory" parlance, a Oat Pomeranchon in the
region around f =0). Guided by strong-interaction
parametrizations" for the form of X, we specialize to
the usual Gaussian expression in the impact-parameter
variable, but with a q' depend-ent interaction radius R(q'):

(b q2) — c e
—Ps/PBo(os)

Ke now assume a scaling property' for the dimension-
less dynamical amplitude (e'"—1) in terms of the vari-
able co (or, alternatively, q'/q s) as z and tq'~ become
large in the asymptotic region. Then, since b = (J+—,')/q,
(and Db = 1/q„ the distance between one angular
momentum value J and the next one, J+1)we have the
behavior

2t'(q') —& ),/( —q'), —q' —+ very large

()i)0 and dimensionless). (6)

In arriving at (2'), it has been assumed that we need
consider only the s-channel "helicity-nonQip" ampli-
tudes F++ and Fpp at high energy and small I,.' In
general for virtual-photon (q'A 0), spin-averaged-target
elastic scattering, there are four independent ampli-
tudes: fop~, V2fp+~, f++~+f+ ~ with parity P = (—1)~
and f+~s f+ ~ with —P= —(—1)s and where fs a~

=(JJ„.h'~S —1~ JJ„h).An eikonal basis can be con-
veniently defined if zzncozzpled definit J,P eigen-
amplitudes result; e.g., fp+s, f+ s=p at high energy as
for our representation.

Finally, we give the relations' between our helicity
amplitudes Fap'(z, q', t=0) and the usual structure

More generally, if X =X(b,q,s,q') and the important im-

pact parameters are given by b ~ /z b, then X—=X(q'/q, s).
Writing Eq. (5) implies Eq. (6). Note that a scattering
region b ~ d,b, can, in fact, be argued in a formal way.
The causality condition for the current commutator
t„„ in (1) implies contributions when (xo xr.) (pcs+per)—
&~ xy', where xL, =x j and xg=x b in the nucleon rest
frame, say (xr™=p'xr,",p '=I.orentz contraction
factor). When 1/zo becomes large in the Fourier trans-
form (assuming no violent variation in q, i.e., when

Mxr, 'b= z/M'), it follows that

6 For normalization, at low iP one may use the unitarity relation
to order e' for y(g')p —+y(g')p and note the inclusion of the
"elastic" intermediate state Vpp (Vp is a vector meson with cur-
rent quantum numbers) which gives p= (2yr)z(k, /2zrgs), where
k, =q, with q' replaced by M'v and (0~1'„[V )=(Mv/27v)e„
For purposes of the co variation of (2'), (off /p) =2~(M&iab)/po
—+2zrv/po as v, g'~ become large (for fixed ze).' For optical models in hadron scattering, see R. Blanken-
becler and M. Goldberger, Phys. Rev. 126, 766 (1962); R. C.
Arnold, ibid. 153, 1523 (1967).

It may be motivated by strong-amplitude, phenomenological
fits with dominant s-channel helicity diagonalization in the
eikonal model. For example, in pp scattering refer to C. B. Chiu
and J. Finkelstein, Nuovo Cimento 49A, 92 (1969); and A.
Qapella et al. , ibid. 63A, 141 (1969).

and so b-O(1/q, ). As we shall see, the behavior (6)
allows both

zrr. ,r ~ R'(q') X (functions of q'/q, s)

' This is an assumption which may be exact when the missing
mass s —+~, in the spirit of the diffraction nature of the model.
Since we are at highest energies and assuming there is damping
in q2, Regge trajectories and their associated cuts are excluded
from discussion.

'0 For a comprehensive review with references see, C. Hong-Mo,
in Proceedings of tlze Folrteenth International Conference on High-
Erzergy P/zyszcs, Viewrza, 19tfh' (CERN, Geneva, 1968), p. 391,
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to drop off mildly like the inverse power 1/q' for fixed
co, thereby allowing considerable inelastic production'
at high ~q'~.

In the same kinematic region we make the simplest

assumption and take the dimensionless quantity c~ to
be a constant, although, for example, it could be a poly-
nomial in b /R'(q') LA polynomial would not disturb
the qualitative behavior for Ol„p already cited; in fact,
it gives rise to the presence in these quantities of ad-
ditional (convergent) polynomials in (o which, in the
l8,rge=—xAzsszng==mRss lUMt s ~~ a-,nd 6p ~ 0- csscntlRHQ
reduces to the cs =const case."j

Since, restated, our scaling assumption says that the
scattering takes place at small impact parameters
o ~ LS=1/q„a possible intuitive picture for the behavior
(5} and (6) can be given. Not only is the current pro-
jectile slamming into a "pancakelike" hadron target as
v —&~, but also (in contradistinction to a purely strong,
absorptive process) it is probing deeper and deeper into
the target structure as q'~ —~ so that the effective
radius of interaction presented to the projectile de-
creases with increasing ~q'~. At some fixed impact
parameter b, according to (6), the nth absorptive
iteration (iX)" decreases for increasing

~
q'~ and tt and

the scattering amplitude, Le'«" —1j, vanishes as the
target presents a diminishing radius off which to scatter.

As an example, we Inay write Xy, as a product form in
the impact-parameter variable b' or a convolution in
the variable t "
iXs(b q') = cs exp( —b'/—2RII') exp( —b'/2R~'(q')}, (7)

so that
1/R'(q') =1/RIts+ 1/Rv'(q') . (8)

Here, Rrr is the hadronic target radius (dimensionally,
RIr 1/M). Rv is a photon radius which, assuming
there are no masses to determine its scale, behaves as
Rvs(q') —+ X/ —qs, qs —+—oo. Equation (8) then illus-
trates the behavior R'(q') -+ X/ —q', just as stated by
Eq. (6). In this example, the condition upon q is given
by

~
q'~))X/RiIs. If X=Xv=—~v'Rvs Lsee discussion in

the next section, preceding Eq. (17)j, the necessary
condition for the size of

~
q'~ in the model is roughly

estimated to be ~q'~))23lv', where the vector-meson
squared radius Ey'~MII' and My is a vector-meson
mass.

Polynomials in R'/b (singular near b= 0) give rise to growing
powers of g4p/gp, but still with the over-all Re~1/gp factor for fixed
or in O'L, p.

n That is, (7) can be written as a Fourier transform,
J'dsk e*"', of the convolution J'd'O' PRrrP exp (——',k"Rrr') g
&&(R„'expt' ——', (k' —k)PR„Pj), where b= (b„bo), k= (k,k„), and
k'= —t. On the other hand, one may also consider x to be de-
termined linearly in terms of a "Born" amplitude, exp(~tan)
+exp(ztR ) R (q) =R~ +R (q) so that the Pomeranchon is
expressed as another kind of exchange (a convolution in b), like
an ordinary Regge trajectory (Ref. 7). However, this consideration
(a) describes asymptotic scattering over a large region of the
impact parameter up to b O(i/M), (b) is probably restricted to
small values of !qP! (like a strong scattering), and (c) in its most
consistent form would give rise to rather large production since
&L, T ~ ~H ~

Using representation (2') at t=0 together with (5),
we get

1 00—Fu, '(v, q') =-
(2prtv) 2pp ppp(s)

db't 1—e'""j

m (—cs)"/ps t' —ttbe'(h))
=R'(q') Z—

tt(N!) 5 2R'

Here,

(h+-', )' 1
=R-'(q'}f cs — p~

——
2q.s R'

ppf(a) =—

For missing mass shoo (co —& 0),

os(v, q') =16prsn) f(cg„)/iq'i .
Both cross sections o.i, and or fall off as (q') ' for fixed
(o, and their ratio is given by (constant cs case)

~ lq'I)
ct exp'

oz, (v,q') — k 8) q
' )—

(f csexpi ——
(

. (12a)
8)( qs)

For example, if we could neglect multiple iterations in
this ratio,

~, c, / 1(q'))=expJ ——
trl, cs ( X qp )

(12b)

This behavior differs from that in which (i) asymptotic
7 products are related to (model-dependent) canonical
commutators" so that q'o. r, —& 0 (quarks) and q'o T

—+ 0
(spinless bosons, vector inesons) and (ii) a vector-
dominance model" as extrapolated to —q' large (large

"Some elementary properties of opf(a) are as follows: (i) It
possesses the series expansion —P~~"! (—a) "/n(n!)] which is
especially useful when a is small, i.e., p0f(a) =a—4a2+ ~ ~ ~; (ii)
when ai &as &0, f(ai) & f(ap) &0.

'4 Handbook of Matkematicat Fttnctions, edited by M. Abramo-
witz and I. Stegun (Dover Publications, Inc., New York) Chap.
5, p. 227. In this reference pof(a) is denoted by Kin(a) =BI(a)
+lna+y (Euler's constant).

' C. G. (.allan and D. J. Gross, Phys. Rev. Letters 22, 156
(1969).

i' J'. J, Sskurai, Phys. Rev. Letters 22, 981 (1969).

is an elementary integral" which has been numerically
tabulated. ' Thus in our asymptotic region,

(v q2) —16w2~R2(q2) f(c e bps(t4)—/2RP}

16''~X — f'(h+-', )' qs q-
f cs exp—l-

)q'~ 4 2) q,')

q /qp =—(o(2—(o) .
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missing mass) so that o.T/az, decreases as 3II,'/q'. How-
ever, recently" the breakdown has been studied of the
relation between. the asymptotic behavior of T products
in perturbation theory and the canonical commutators.

From the equations for 8 ~ and kV2,

(—
vq

MWt(v q') =I Ief ci exp
4q'i gx qP)

equation for f(ci) involving the Compton cross section
p c(v) =p.r(v,0):

f(ci) = p c(~ )/16m'ctR'(0) .

To estimate t,"~, we make use of the unitarity basis which
underlies our method:

&„elastic(v q2)/&„total (v qp)

=o (yt, q'p +'Upp—)/o (yt q'p ~ hadrons)—Wt(v, q') =4K f ci exp
M SX q,'

2i
bdb Im I, (15)

2t'

+f cp expI —— I, (13)
SX q,p)

we see that for highest missing masses, co~0, the
behavior vWp ~const and Wi~v/q' results as would
follow from (flat) Pomeranchon asymptotics and the
scale property.

At this point, let us again emphasize that our appli-
cation of the representation (2') should be more valid
for the higher values of the missing mass —,'(s —3P) =v
—

p I
q'I. However, it will be experimentally interesting

to consider the utility of these types of formulas (say in
plots versus 1/pp&1) over a broad, but always asymp-
totic, region' with Iq'I»23IIv'. Also note that if one
wants to speak of a well-dined projectile "trajectory, "
then the condition that the actual momentum q, is
much greater than the wave-packet momentum spread
Dp is given by q,»Dp or q,t» I

q'I/X and X»tp(2 —tp)—from the uncertainty principle,

~p 1/~@=1/R= (I q'I/x)' '

It is clear that the considerations above may be
applicable as mell to asymptotic, neutrino-induced
inelastic scattering off hadrons.

MODEL CONSTANTS AND APPROXIMATIONS

In an attempt to obtain the constants in the above
equations, we propose the following method only as an
illustration of the situation. Since the diffractive repre-
sentation also applies to small q', it is supposed (i) that
the essential q' variation of x(b, q') for q' ~&0 is confined
to variation of the interaction radius R'(q') and (ii) that
explicit q' threshold factors are only inserted where
kinematically demanded. For example, R-'(0) is taken
to be comparable to some vector meson, proton radius
(call it Rv') and, consistent with current conservation,
Fpp'~0(q') as q'~0 implies iXp —&O(q'). We then
assume the forms iXt —— cie ""~'«—'i a,nd t'xp = —(cp/X)
XR (q') Iq'I e "~'"'i"i for the entire spacelike range
q'~&0. We immediately get from (9), for example, an

"R. Jackiw and G. Preparata, Phys. Rev. Letters 22, 975
(1969); S. Adler and Wu-Ki Tung, ibid. 22, 978 (1969); K.
Johnson and F. Low, Progr. Theoret. Phys. (Kyoto) Suppl. Nos.
37-38, 74 I',1966).

where 'U' represents the spectrum of all produced states
which have current quantum numbers. Near q'=0, if we
take the state p to represent the set 'U, then'

9
—', exp pp (2 —tp)

SP

If in addition, cp= c~, then one can roughly estimate the
electroproduction, large

I
q'I -integrated, cross section

ratio for very large incident electron energies:
o (eP ~ e"UPP)/tr(eP ~ e'+hadrons) = p.

Note also that X can be isolated'P experimentally for
highest4 missing masses by the relation

Wi(v, q') o r(v, q')

W, (.,0) «(v) I q I
Rp(0)

(16)

If in addition we were now to join the q &0 (space-
like) solution at q'=0 with a purely strong, vector-
dominance solution (also in the eikonal approximation)
presumed valid for 0&q'&Mv' (timelike), and to
assume (approximate) spin independence for on-mass-
shall vector-meson, proton scattering at very high

» R. Morrison (private communication); experimental cross-
section values quoted at E~ 18 GeV.

» S. Ting, Proceedings of the Fourteenth International Conference
on High-Energy Physics, Vienna, 1968 (CERN, Geneva, 1968),
p. 58; W. G. Jones et al. , ibid. Paper 679.

"Provided that f(cIe ("»)I"~«") f(c1) for highest missing
masses (re~ small), i.e., provided that X is not anomalously
small, X&&~I/ ——Sf''EIr~. The second term in the expansion (16) is
independent of P:

9 (1 e
—

cy)

8g,'2V(0) p0f'(ci)

1 f(2ci) = (vP ~PP)/ .=14/»1,
2 f(ci)—

and so ci 4/9. Further, using" R'(0) =Rv' ——8 5
(GeV/c) ' in (14), we can obtain from f(c,)~0.03
a value for the constant pp which appears in
p=pp(q, /2trgs); i.e., pp 14. From (15), the asymptotic
relation then follows:

—9
o p"-"'(v,q')/o r(v, q') =-', ci exp —tp(2 —tp) +

SX
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energy, we would get" the relation

cp= (X/)&y)ppf(ct), Xy=—My Ry
(=5 for My' ——tv') . (l7)

If ) (0()jy), then psf(cp) cp—as well so that, the ratio
(12) reduces to the especially simple form

—Wp
V

hil

0.4—

0.3—

0.1 —
ct

I

ll(u=~

Pplpts: io' SLAG data (w&2, lp I&1) for R=i/s

Curve: Theoretical
M

W2 for R(ca=0) =i/2

Similarly, simple expressions are obtained for 8'i and
t/t/'2 since

2+A
Fss'/(iv)= op '«-expl: —(h+s)'/»lv'I/c 'j'

for example,

(v/M)W, ~4(1+X/Xy)) pp 'ct, 1/co~ ~.
ACKNOWLEDGMENT

l

f/2 4 5
v/ q =1/op

I

9

Fzc. 1. Plot of 10' SLAC data for R= 2 and theoretical
curve for R(co =0) = 2.

made of (v/3f)Ws for the extreme limits R=O and
R= po of the quantity R—=az/or and where

v v d'o/dQdE' . 2 tan'(-'8) v'—8"2=— 1+ 1+
M M (do/dQ)M, tt 1+R Ms

l
q'l )

It is a pleasure to thank R. C. Arnold for discussion
on eikonal approximations in strong interactions. Note that for sizable 1/td=v/lq'l data points, such

plots are fairly sensitive to the ratio R, since the quan-
tity 2 tan'(-', 0)(1+v'/3/I'-lq'l) =1.So a point plotted for
nonzero R rises relative to the same 1/to point for which
R=O is taken.

To make a preliminary comparison of our model
(applicable to a smooth asymptotic region), we have
plotted the 10' SLAC data (W=+s)&2 GeV,

l
q'l )&1)

for the modest, intermediate value R= —,
' as well as a

theoretical curve (see Fig. 1).The solid line is Eq. (13),
(v/~)Ws=4) f{ctexpl —(9/g))~(2 —tp) j)L1+R(to)$,
where the ratio R(to) —=o.z/o. r is given by Eq. (12) for
R(~=0) =s. The quantities f(ct) =0.029, et=0.45 are,
as usual, determined from Eqs. (14) and (15), and
}=-,')„ is taken (X„=rn 'R ' 5, lq'l))tn ') From Eq.
(18), this particular value of ), is just that value which
is consistent for R(co=0) =s with an (approximate)
vector-meson-dominance application at q' =0. Then, the
over-all normalization of (v/M)W, as illustrated in
Fig. 1 is a prediction. Let us note that this VMD con-
sideration embodies additional assumptions to our basic
model: It is merely intended to estimate the size of P,
while, in general, the model gives R(to =0) =f(cp)/f(ct)
with no restriction upon X.

emote added in proof. Recently, the SLAC inelastic
e pscatteri-ng data at 10' have been published
LE. I3loom et a/. , Phys. Rev. Letters 23, 930 (1969);
2$, 935 (1969)]. For example, experimental plots are

and
F++&(v,q')/2vriv =Ay'f(gz} U'(q'), q')0

=R'(q') f(cI), q' &0.
Equating, at q =0, the coeffj.cients O(q') and O(i) for the two
solutions of Iiop and I++', respectively, and using R2(0)~Rv2 (to
equate higher-order coeKcients in q', one must take into account,
among other things, the details of q' variation in vector domi-
nance), we obtain f(go) = (2yv)'(&v/~) (po 'co) (~v=Rv'Mv') and
f(g1) = (2yv)'f(c1). Spin independence (v))My2) then says, inde-
pendent of the value for pv2/47', that f(go) =f(g1); i.e., co = (~/~v)
Xppf(ci)

"Applying vector dominance for v)&Mv2 {see, for example,
Ref. 16), Alt for the rartge 0&q'&Mv' oddly, we have for q'&0
(timelike),

Ps(pq2)(q2/~y2) foos(p~y2)U2(q2)
F '(v q~) =f +'(v My }U (q } U(IP}—= ('/vfy~/2/v}/(3ty~ q2), —
where fzf, '(v, Mv') are the on-mass-shell helicity amplitudes for
U'p scattering. Now writing for ff,g' the eikonals, if', = —gf,
)&exp( —52/2Rv2), where the gq are some constants, we obtain
solutions (v»tvly', I q'I )

J oo'(p q2)/2~iv= (q2/3fv')Ry'f(go) U'(q'), q'&0
=It'(q')f(op~ '&'(q')

I q'I),


