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The relativistic equations expressing analyticity, crossing, and unitarity are analyzed without approxima-
tions. An infinite family of solutions is constructed, corresponding to a Castillejo-Dalitz-Dyson (CDD)
ambiguity in the s wave. This ambiguity is in addition to the one resulting from arbitrary inelastic functions.
The amplitudes constructed have nonvanishing single spectral functions, and this implies that a Kronecker
§.is present in the angular-momentum plane. This relation between CDD poles and the Kronecker § is
proved only within a certain limited range of the coupling strength. A computational program for reaching
the interesting domain of large couplings is outlined. In the latter domain it is not expected that all CDD

poles entail Kronecker &’s in the / plane.

I. INTRODUCTION

CONSTRUCTIVE proof has recently been given!
of the existence of functions that satisfy the
following conditions:

(1) A Mandelstam representation holds with no
subtractions.

(2) The crossing symmetry appropriate to pion-pion
scattering is observed.

(3) The elastic unitarity condition holds below the
four-pion threshold.

(4) The inelastic unitarity constraints are satisfied
above the four-pion threshold.

It was shown that there exists an infinite number of
functions that satisfy these conditions, corresponding
to an infinite number of allowed input inelastic func-
tions v(s,?).

In the present work, it will be shown that there is a
further infinity of functions, corresponding to the
Castillejo-Dalitz-Dyson (CDD) ambiguity. For a given
v(s,f), we prove the existence of an infinite family of
functions that satisfy conditions (1)-(4). This family is
parametrized by the positions and residues of the CDD
poles in the s wave.

It is expected that a similar analysis should be
applicable to a function that satisfies a Mandelstam
representation with, say, # subtractions, and that one
would then be free to add CDD poles to the n-+1 lowest
partial waves. The CDD pole-free equations have been
treated, for general 7z, in Ref. 2, but so far without
condition (4) above, while Kupsch® has given an
existence proof for the case =1, with condition (4).
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It is interesting to review briefly the history of the
CDD ambiguity. Since the early work of Poincaré,
Hilbert, and others, it has been known that singular
integral equations with Cauchy kernels possess, in
general, infinite families of solutions. It is clear from the
book of Muskhelishvili* that an understanding of the
linear Hilbert problem is a key to most of the problems
of the theory of linear singular equations. The Hilbert
problem is known to have an infinite family of solutions;
an arbitrary rational function occurs as a factor in the
general solution.

In 1956, Castillejo et al.® obtained explicitly the
general solution of the Low equation for certain static
models with simple crossing properties. Their solutions
can be understood in terms of an auxiliary, linear
Hilbert problem, and their celebrated ambiguity is
exactly the ambiguity in solving this Hilbert problem.
In the general static-model problem where the crossing
matrix is arbitrary, one has a nonlinear Hilbert problem.
No solution of the latter has been obtained in closed
form, but for a small coupling strength solutions have
been constructed by a convergent iterative procedure.
Because of the particular form of nonlinearity arising
from unitarity, a portion of the nonlinear problem is
linearized by the N/D method. The D function is a
solution of the linear Hilbert problem

D(s—10)=€**® D(s4-10), (1.1)
where 8(s) is the phase shift. In Refs. 6 and 7 it was
shown that the ambiguity in the solution of this linear
problem makes itself felt in the solution of the full non-
linear problem of either the static model or the Chew-
Mandelstam equation. This was shown to be true in a

¢ N. I. Muskhelishvili, Singular Integral Equations (P. Noordhoff
Ltd., Groningen, The Netherlands 1953).

51.. Castillejo, R. H. Dalitz, and F. J. Dyson, Phys. Rev. 101,
453 (1956).

6 D. Atkinson, J. Math. Phys. 8, 2281 (1967).

7H. McDaniel and R. L. Warnock Phys. Rev. 180, 1433 (1969).
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domain of small coupling constants. In this domain the
nonlinearity due to crossing and unitarity is essentially
irrelevant for existence of the CDD ambiguity. We
cannot say what happens at large couplings (near the
physical values) but at present we have no reason to
expect the disappearance of the ambiguity.

By means of heuristic arguments and examination of

soluble models, CDD poles have been associated with
elementary particles in Lagrangian field theory.®® An
elementary particle is understood as being represented
by a definite field operator in the free Lagrangian. A
composite particle, on the other hand, does not enter
the free Lagrangian, but appears as a bound state or a
scattering resonance when the interaction is present.
It has been argued plausibly by Mandelstam® that
an elementary field of spin o will give rise to a Kronecker
4 in the angular-momentum plane at /= ¢ (unless special
cancellations occur).l® In that case, elementary fields
may be ruled out by a principle of “maximum
analyticity in the ! plane,”'' which would forbid
Kronecker §’s. By the same principle we rule out any
CDD poles which are due to elementary particles.

Within the class of amplitudes constructed in this
paper, a CDD pole in the s wave does indeed give rise
to a Kronecker § at I=0. This is wholly consistent with
the above picture, but this consistency may be traced
to the fact that we work in a domain of weak couplings.
When the couplings become strong, it is known that
there can, in general, be another kind of CDD pole
which is associated with important many-channel
effects, and not necessarily with elementary particles
at all. We expect that such a pole would not lead to a
Kronecker é.

The contents of the paper are arranged as follows.
In Sec. IT we state the equations which express uni-
tarity, crossing, and analyticity. The s wave is treated
explicitly by an V/D equation with only one CDD pole,
but it would be a trivial extension to allow any finite
number of CDD poles. The equations are interpreted
as nonlinear operator equations in an appropriate func-
tion space. In Sec. III we analyze the N/D sector of
the problem, while Sec. IV is devoted to the unitarity-
crossing equations for the double-spectral functions.
The results of Secs. IIT and IV together imply that the
equations constitute a contraction mapping of a sub-
space of our function space into itself. Consequently,
there is a unique solution in that subspace, and this may
be constructed by iteration. In Sec. V we describe a
program for extending our solutions into the region of

8 See, e.g., M. T. Vaughn, R. Aaron, and R. D. Amado, Phys.
Rev. 124 1258 (1961).

9S. Mandelstam Phys. Rev. 137, B949 (1965).

10 M. Gell- Mann M. L. Goldber er, F. E. Low, and F.
Zachariasen, Phys. Letters 4, 265 (1963) M. Gell- Mann M. L.
Goldberger, F. E. Low, E. Marx and F. Zachanasen Phys Rev.
133, B145 (1964); M. Gell- Mann M. L. Goldberger, F. E. Low,
V. Slngh and F. Zachanasen ibid. 133, B161 (1964).

11 G, F. Chew and S. C. Frautschl Phys Rev. Letters 7, 394
(1961); see also G. F. Chew, The Analym S-Matrix (W A.
Benjamin, Inc., New York, 1966).
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large coupling strengths. We suggest stepwise applica-
tions of the Newton-Kantorovich iteration, for larger
and larger values of the coupling. We show that our
weak-coupling solutions depend analytically on a
parameter multiplying the inelastic input function, and
this procedure will amount to an analytic continuation
in that parameter.

II. FORMULATIONS OF EQUATIONS

The equations for the double-spectral function and
for the s-wave amplitude will be written down as a
double mapping. In the notation of Ref. 2,

p(s,t) =[p(t,5)+2(t,5) J+BLa(s,) (s, 1, (2.1)
ﬁ[’(S,t)=’yIM'N/ dllf dt2
XK (s; tts,te)dar* (s,t)dn(s,t2) ,  (2.2)

where the upper limit of the double integration is defined
by the first zero of K~2%, and

1 r~ 1 7
d(s,) = / i [——+
TJa s—s §'—u

149 t—4
ln(l f
t—4 s

)]p<t,s'>+a<t>, (23)

with y=4—s—1;

d(s)=
2q(s)
[1—x(s)J[ReD(s) 4-[1+1(s)Ig(s)n(s)]? o
[ReD(s)]+[g(s)n(s) ]2 S
Here
g(s)=[(s—4)/s]", (2.5)

and z(s) satisfies the following linear integral equation!?:

B ""‘B(S])
» )= BE) Lo

S—31
1 0~ B B(s’
- / i 275D ey, o)
where o o
B(s)=Bg(s)+Br(s). (2.7)
Here P oo ds 1)
5" 1—n(s
r(s)=— o 8
Br(s) oY= 20 (2.8)
and
1 0 4
Buls)=- / ~Aw), 2.9)
TJ o §'—5

12 G, Frye and R. L. Warnock, Phys. Rev. 130, 478 (1963).
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where

ZB 4—s
Als) =—— / di Red(s,l). (2.10)
4—s 4

In Eq. (2.4), the function ReD(s) is defined in terms of
the solution of Eq. (2.6) by

C1 P i !
ReD(s)=14+———

S—351 ™

q(sHn(s"). (2.11)

4S—.Y

In Eq. (2.1), 5(s,t) is the elastic part of the double-
spectral function, which is to be determined, while
9(s,£) is part of the inelastic contribution, and is assumed
to be given. The isospin matrices 8, 7, and y/*+¥ have
been given in Ref. 2, as has the well-known unitarity
kernel K (s;,t1,:). The subtraction term o(f) in Eq. (2.3)
is the s-wave absorptive part of the amplitude. The
elasticity parameter 7 (s) is regarded as given. The CDD
pole is located at the point s;>4, at which the residue
of the D function is ¢;.

Equations (2.1)-(2.11) may be represented com-
pactly as follows:

p'=M(po), (2.12)
o'=N(p,0). (2.13)
Our object is to find a fixed point of this double map-
ping: 3’ =, ¢’ = ¢. Once this fixed point has been located,

the amplitude can be defined by the Mandelstam
representation

F(s,t)=A(tu)+BA (s ) +nBnA(ts), (2.14)
where .

0 d 7 7
A(t) = / sl"@
m™J 4 S =S

/) )

+— /dz/ T (2.15)

001" (l —t)(u —u)

in which the single-spectral function is defined by

1 0
o(s)=a(s) ——— / di [f(s,t)+nf(sm)], (2.16)
S_4‘ 4—s

with

1 = di'p(s,t
(s) =— / welst) 2.17)
w2 a0 (s) =t

The single-spectral function p(s) ensures that the
s-wave projection of Eq. (2.14) agrees with the N/D
amplitude, and therefore satisfies unitarity (for the
s wave). Provided that D(s) has no zero on the physical
sheet, the NV/D amplitude and the s-wave projection
must be equal, because their discontinuities on the
right-hand and left-hand cuts are the same, and they
both vanish asymptotically. As in Ref. 1, inelastic uni-
tarity constraints in higher partial waves will be satis-
fied by imposing suitable restrictions on the input func-
tion v(s,t). :
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The existence of a fixed point of the mappings
(2.12) and (2.13) will be proved by an application of the
contraction mapping theorem. The operators M and N
will be defined on the direct product U of two Banach
spaces B and €. The space B, which is to contain
p(s,t), is defined to be the set of all real functions F(s,t)
with domain 4<s,/< 0, for which

IFll=  sup | F(s1,t1) —F(s2,t2) | In%s 1n2t/
4. s1,82,81,12<0
(s1—=s2)|*  |(t1—t2)|*
—| + (2.18)
S1Szt tltgg
exists, where sup means least upper bound,

§=min(sy,ss), t=min(ly,t2), and the Holder index u is
a fixed number that satisfies 0<u<%, and for which

lim F(s,t) =0=Llim F(s,t). (2.19)
s> t>0
The space €, which will contain ¢(s), is the set of all

real, continuous functions f(s) with domain 4<s< e,
for which

[fll= sup [s*f(s)[+e*sup| f(s)|  (2.20)
s€ce sEQ
exists, where Q is the interval [si—e, s1+¢€], with

s1i—e>4, and CQ is the complement of Q with respect
to [4,%). Here € is a small, positive number, the magni-
tude of which will be dictated by the technical require-
ments of the proof.

Linear combinations in the product space A= BX €
are defined by

)\1(F17f1)+>\2(F2;f2) = (7\1F1+)\2F2,>\1f1+)\2f2) , (2.21)
and, for the norm in the product space, we take
I (F, )ll=max{||F]], | £1]} - (2.22)
The fixed point (p,0) will be sought in the subset
A= B1X €s. (2.23)
Here 9 is defined by the requirements
518, (2.00
and
p(s,H)=0, (2.25)
for
4t 16¢
s< min( , —) . (2.26)
(—16 t—4
The set € is defined by
ol <e. (2.27)

Since @1 s a closed subset of a Banach space, it is itself

a complete metric space in the norm topology.
Acc01d1ng to the contraction mapping prmuple there

is a unique fixed point, in Ay, of the mapping (2.12),
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(2.13), provided A; is mapped into -itself, and the
following Lipschitz condition holds:

[|(31',01") = (2" ,02) || S k| (Br,o1) — (Boyoa) ||, (2.28)

for any (p1,01) and (ps,02) belonging to Ay, where k<1.
In Sec. III, it is shown that, under suitable restrictions
on b, ¢, c1, € 7(s), and v(s,t), the operator N takes
A, — €, with

”N(ﬁlial) '—N(l—’f%;a?)“

Skmax{[p1—p|, [lor—o2l[}, (2.292)
and in Sec. IV that M takes A; — By with
1M (p1,01) — M (pa,02) |

Skmax{[[pr—pa|, [[or—02f}.  (2.29b)

These conditions imply (2.28), and so conclude the
existence proof.

The constraints which are imposed upon 7(s) and
v(s,t), for the proof of Egs. (2.29a) and (2.29b), will now
be described. Let ¢(s)=[1—n(s)]/2¢(s). Unitarity
requires ¢=0, 4<s< 16. We assume that ¢(s) is twice
differentiable, 4< s< o, and that

B)=g(e)=g"(=)=0,  (230)
s—s'|2#1
0= <oleh[ | <, @
SS S
where
ol = sup_|stg(s)| < oo,
1gage0 (2.32)

§=min(s,s’).

Here and in the sequel, y=0(x) means that |y| <M | x|,
for some M>0, at all x. As in (2.31), we also write
y<O(x)z, meaning sup|y/z| <M |x|. The least pos-
sible value of M, although definite in (2.31), may be
different at different places where the symbol O(x) is
employed. From (2.30) and (2.31) it follows immediately
that

2

|¢<s>—¢<s'>l<o<u¢n>ls—s_s—f~ L)

2u

#O-#@I<oeb | = @

Since 7 is (sectionally) the boundary value of an
analytic function, existence of ¢’ between thresholds is
assured. The lowest threshold, s=16, is the most
" doubtful regarding differentiability. Studies of threshold
behavior of the s-wave 4r state!® indicate, however, a
behavior like (s—16)7/?, which implies that ¢’ exists
and is Holder-continuous.
The function v(s,f) must belong to the space B, and
must satisfy
v(s,)=0

(2.35)
3 L. M. Delves, Nucl. Phys. 9, 391 (1958),
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for all s if <16 and for s< a1(f) if £ 16, where s=01(f),
the boundary of the support of v(s,f), must satisfy
a1()>16 for all {>16. In addition, the following
positivity conditions will be imposed, which will be
necessary for the proof of the inelastic unitarity bounds:

2(s,0) 2 0 (2.36)
for all s and ¢, and also
gs)>0 and Be(sH30 (2.37)
for 4<5<20 and 16< i< o, where
g(s,0) =P/ ds’
o1(t)
1 , 2 —4
P G|
s'—s §'—u t—4 s’
X[o(s,0)+Be(t,s") . (2.38)

It has been shown in Ref. 1 that one can find functions
v(s,?) that satisfy these positivity requirements. More-
over, one can work the proof with the weaker require-
ments of the Introduction of Ref. 2, according to which
o(s,f) may oscillate, but for simplicity this refinement
will be omitted here.

III. ANALYSIS OF s-WAVE N/D EQUATION

In abbreviated notation the N/D equation (2.6) is
written as

n=f+Kn, 3.1)
where ()—B(s)
B(s)—B(s1
16)=170)| B JECE
S—35
© K(s,s"x(s")ds’
K(s)= f —(if)—x(s-)-i (3.3)
4 S—3
K(s,s") =Y (s)[B(s) —B(s") 1g(s")- (3.4)

We study (3.1) as an equation in the Banach space D of
all real, continuous functions x(s) on [4,%) with the
norm

el = sup [s*x(s)]. (3.5)

4<8<»

The exponent u is to be the same as in (2.18) and (2.20).
We shall make sure that f& D and that K is a bounded,
completely continuous operator on ®©. Then, with f
and K fixed, the Fredholm theorems imply that (3.1)
has a unique solution in D, provided that || K] is less
than 1. The norm of K is defined by

|| Ka

(3.6)
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Our analysis of the nonlinear mapping, (2.12) and
(2.13), will require the following behavior of #:

[l =0w), 3.7

(3.8)

We use the convenient notation ¢ for the quantity

y=max(b, ¢, |[7]], |[1—n]]), (3.9)

where b and ¢ are defined in (2.24) and (2.27). The scale
of our scattering amplitudes is set by ¥, which will be
small (in an appropriate sense).

Suppose that ||K||<%k<1, and let # be the unique
solution of (3.1). Then

. llll < AKX ] (3.10)
an
=l <[ A1l/(A—F). (3.11)
To get such a bound %, we note the inequality
K(s,t)
|| Kx|| =sup s“"‘/ t‘“[ﬁ"x(l)]dtl
¢ s—1
K(s,t) /s\**
| <l sup /:7(‘) dt| , (3.12)
“ K(s,t) / s\
IK]I< sup /S_l (—) di| . (3.13)

Similarly, to derive the bound (3.8) we begin with the
inequality

[n(s)—n(s) [ <1 f()—f (5]

+lol [ jK(S KD

After these remarks, it is easy to state conditions
on fand K which guarantee that the N/D equation has
a unique solution in © with the properties (3.7) and
(3.8):

dt
—. (3.14)

12

(@) I7ll=0w),
® O I,
© |K(s,s)| <O —] (3.15)
SS
@ K(s,t)-K(s ) — 2/" "2 1
s—t $S

(e) ¢ is sufficiently small.
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By definition, fis a real, continuous function on [4,%),
so (a) means that fED. Condition (c) and (3.13) show
that K is a bounded operator on . If ¢ is suitably
small, then ||K]||< 1. Conditions (b) and (d) with (3.14)
show that K maps any bounded set in © into a uni-
formly bounded, equicontinuous set of functions. By
reference to Ascoli’s theorem it follows that K is
completely continuous. Finally, (a)—(d) combined with
(3.11) and (3.14) yield the desired properties (3.7) and
(3.8) of the solution 7(s).

The properties (3.15a)—(3.15d) are easily derived
from the results of Sec. IV. The details of the derivation
are explained in Appendix A.

Our main task in this section is to analyze the s-wave
absorptive part constructed from the unique solution of
the V/D equation. This is expressed by the formula

N (1—n)(ReD)*+(1+n)(gn)*

o(s) =Im5= 2L (ReD) - @n)"] , (3.16)
D(s)=1+4P(s) —Rel (s)—ig(s)n(s),
where
Rel(s) P / i Q(sl)?(sl)ds’ P = @A)
T J4 S —S S—3S1

Unitarity is not explicit in (3.16) when n#1, but one
may nevertheless show!* that N/D is indeed unitary,
whenever 7 satisfies (3.1). Thus, we have the unitarity

bound
o(s) < (14n)/2¢<1/q.

The first step is to control the magnitude of the
integral which appears in ReD. It is decomposed as
follows:

(3.18)

Rel(s)=—

™

/ (s In(s")ds’

S —S

1 pQtes n(s") —n(s)
== / q(S’)[~——-—}is’
TJ (1-es )

P (1+e€)s q(s’)ds'

1
=—[Ii+I+15+1.]
T

+n(s)— -
(1—e)s S,_S
(I—e)s ’ ’
q(s")n(s")ds'
[ / f ] . (3.19)
(1+e€)s s'—s
By (3.8) and the substitution s’=sx one finds
Ite dx
|L|<0W)| ————=0@). (3.20)

1—¢ x“[ 1-—-90] 1—2u

14 R. L. Warnock, in Lectures in Theoretical High Energy Physics,
edited by H. Aly (Wiley-Interscience, Inc., New York, 1968),
Chap. 10.
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Also, (3.7) shows that I, I3, and I, are all O(||n]|).
Hence,
Rel(s)=0(), (3.21)
uniformly in s.
The following analysis proceeds by discussing

separately a neighborhood @ of the CDD pole. Define

Q= [Sl—e, 51+€], Sl—€>4

CQ=[4,»)—Q. (3.22)
The pole term of (3.17) is bounded in CQ:
1
sup|P(s)| =|—]| . (3.23)
cQ €
We choose |¢1/e| and ¢ to be so small that
C1
—|+sup|Rel|<1. (3.24)
€ 8

This means that ReD(s)#0 when s is in CQ, and that
o(s) may be given a small bound for s in that region. In
Q, on the other hand, ReD may vanish and we have
only the large unitary bound (3.18).

In the region CQ of good behavior, we have

2[[A—n)g || +-8#]n]>

sup|sa| < . (3.25)
@ (1=|c/e| —sup|Rel|)*
In Q, on the other hand,
1
sup|eo| < =—. (3.26)
@ g(s1—€) 1
It follows that
llo]l =sup|s*o | +€'/2sup|o|
ce 2
=O[max(|[1—x[], 2 €/3)]. 3.27)

We see that the set 9y of Sec. IT is mapped into €1 by
the N/D operator, provided the quantities ¢, ¢, and
|c1/€| are sufficiently small, i.e.,

o'l <e. (3.28)

Next we must establish the contraction property
(2.29a) of the N/D operator: For all (51,01) and (p2,02)
in 9;, we must have

|V (01,1) =N (o2,52) |

Skmax([|pr—pel], [|o1—oo|)=«dr2, «k<1. (3.29)
We write o=x/y, y= | D|2 Then
[o1—02| < (1/y2)(|@r—22| +02|y1—72]), (3.30)

1—n 1+
|1 —a| <—2—| (ReD1)?—(ReDy)?| +79|"1—%2|
q

X |n1+ﬂ2] , (331)
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[y1—y2| < | (ReD1)?— (ReD2)?| 42| ny—na|
X |nitns], (3.32)
| (ReD1)?—(ReDo)?| <[2(1+]| P|)+|Re(l1+12) | ]
X |Re(I1—1)|. (3.33)
In Appendix B it is shown that

[[n1—ns|| =0(dr2), (3.34)

s—s'|2
—

| (r1—12) () = (n1—n2)(s") | < O(d12) (3.35)

When (3.35) is combined with the argument of Eq.
(3.19) and following, we get

]Re([l—l2)l =O(d12) . (336)
From Egs. (3.30)-(3.36) one finds the required bound

in CQ:
Sél§|s2”(01—ag)[ =0)ds2. (337)

In Q the situation is more delicate, since we must be
able to bound 1/¥; in spite of a possible zero of ReDy,
and because the pole term P occurs in the numerator
via (3.33). We bound 1/y; by forbidding #(s) to vanish
in Q. Then .

1

= < s
yi |Dil? (qumo)?
|n(s)| Z>ne>0, sEQ.

(3.38)

Presently we shall describe the method for preventing
zeros of # in Q, which gives an 7, vanishing as y:

no=0).

To handle the pole term P in (3.33), we pick out a
subset 6 of Q as follows:

(3.39

0={w||ci/e| <|P|<3}. (3.40)
In 6 we employ the bound
| P|/y1<3/(qmo)?, sE0. (3.41)
In @—6 we have
| P] |P|-
— <3, s€Q—0, (3.42)
Y1 [(1—-Re[1)/P—1:|2
since |[1—Rel;1|<2, |P|>3. Thus, supg|oi—oe]

= O(d12/ﬂ02), and
”0'1—02“ = O(\l"l“ 6”2%0—2)(112.

If we take e=O(@*), A\>4, then for sufficiently small ¢
we have the required contraction property

(3.43)

”01—0'2”<Kd12, K<1 (344)
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To rule out zeros of # in ©, we make the following
observation: The contribution of v(s,t) to the left-cut
term can be made to dominate the /D equation. This
part of the left-cut term is denoted by B,(s):

28 r° ds’
B,(s)=—| ——

) s —sd—s

4—s’
/ dt Reg(s',t), (3.45)
4

where g(s,) was defined in Eq. (2.38). Since B,(s) is
analytic and not identically zero in a neighborhood of
the right cut, it is certainly possible to find some closed
interval [s1—e, s1+¢], si—e>4, in which B,(s) has no
zero. We identify this interval with Q, putting the CDD
pole at s=s;. The difference between 7(s)(s) and B,(s)
can be made small enough to ensure that %(s) and B,(s)
have the same sign in €, and that #(s) does not vanish
in Q. That is, we prove existence of a §,>0 such that

Slxlzp| 1(s)n(s) —B.(s) | €Bo<igfl3u(5)[ . (346)

Therefore, we have a lower bound #,:

[n(s)| 2 s%p(l/n)[igf]Bv(s) | =Bo]=n0, sEQ. (3.47)

To find By, one applies the N/D equation (3.1) to obtain
[n(s)n(s) —B(s)|

C(5)—C(s1)

S—3S1
=0(lall+lol)+ e OW)+0W?) -

Now ¢1=O(Y*), A>4, since | ¢1]| <e=0@?). If |||+ ]|
and ¢ are sufficiently small, then the right-hand side
of (3.48) may be made less than infg|B,|. Although
B,=0(||v]|)=0@), the terms of the right-hand side
are of higher order in ¢, or else independent of v, and
therefore can be relatively small. Since infq|B,| and
the right-hand side of (3.48) are O(y), we obtain the
bound (3.39) on #,.

The dominance of u(s,) over the elastic spectral
function p(s,?) is also a feature of the second part of our
proof described in Sec. IV.

To complete the discussion of the s-wave equation we
must show that there are no ghosts, i.e., no zeros of
the D function on the physical sheet. This is done by
showing that outside a particular circle with center at
s1theintegral —I(2) is too small to cancel the remainder
1+P(2) of D(3). Inside this circle we use the positive
(negative) definite property of n(Rez) to show that
ImD(z) cannot vanish.

The uniform bound (3.21) is easily extended to the
entire cut plane. Consequently, for all z we have

SIC=B.||+]a KX ]

(3.48)

D) —1]<|——

+0W). (3.49)

Z2—3S1
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For |z—s1| > 2¢1, say, D cannot vanish if ¢ is sufficiently
small. To treat the interior of this circle, we suppose
that #(s)>0 for s€EX=[s1—3c1, s1+3¢1] and take
¢1>0. [The same argument will apply if #(s)<0,
¢1<0.] We make 3¢1<e, so that ZC Q. In Q the property
ImD= —pn><£0 is already established. For Imz50, we
employ the identity

ImD(z)=—1 [ / gl (s)ds
) z)=—1mgz —

l[z—nl? 7)oz |s—3|2

I oot e ds
—I—n(Rez)—[ / + ]4~)
) 4 s1+3c1 [ §—2 R 2

. 1[ /“‘3” 4 / ’ ]‘li[_”ﬂi”ﬁ{e‘z)]} . (3.50)
o si+3e1 |s—z[?

The first three terms in the bracket are positive. We
show that the fourth term, although not necessarily
positive, is less than ¢1/|z—s1|? in magnitude. In view
of Eq. (3.8), the fourth term is majorized by the
expression

1 8$1—3c1 o0
L
T 4 s1+3ec1 s—Rez

s1—3c1 dS
soop)(Rez)—?u( /

4 S2”|S—81+261|\2——2“

n(s) —n(Rez) 1

|s—Resz

0

ds
- ) (3.51)

s1+3c1 52” | S"'SI_ZCI\ =2

We must know how this term behaves for small ¢;. To
ascertain the behavior one can change to a new inte-
gration variable #, where s= s;4-c1u, in the integrals on
the right-hand side of (3.51). The result is that (3.51) is
bounded by {¥er 2, where { is a constant. The first
term in (3.50), on the other hand, has a lower bound
in the circle:

C1/IZ—Sll2> 1/461. (352)

We merely have to choose ¢ so small that {Ye,?#<4, to
rule out zeros of ImD in the circle.

IV. ANALYSIS OF DOUBLE-SPECTRAL
FUNCTION

The first problem in this section is to show that
Egs. (2.1)-(2.3), which were summarized by the formula

p'=M(p,0)

of Eq. (2.12), map 2; into By, for a suitably small
value of the parameter ¥ of Eq. (3.9).
Suppose one writes Eq. (2.3) as

d(s,8) = da(s,t) —d2(t)+ o (1),

(4.1)

(4.2)



188

where
1 0
dl(s)t> == / |:~-+ ]p(t,s/) ’
TJa s'—s s'—u
4.3)
149 1 ® 1—4&
do(t) =———— | ds’o(1,s") 1n<1+———> .
T [— 4 S,

As in Ref. 2, one can show that

|di(s,8) ] SOW)(st)™* In~25 In~% (4.4)
and
S1—S2|#
ldsGsu)—da(sat)| <O "2 tas oo, (4.5)
S152t

Since ds(f) and o(¢) do not depend on s, it follows that
an equation similar to Eq. (4.5) holds also for d(s,t).
However, an equation like (4.4) does not hold for ds(?)
and ¢(#). Instead, one has

ld2(D)| SOW)E
for 4<1< 0, and also
[o()| SOW)[1+€711200() 12, (4.7)

where 0o(f)=1 for s;—e< i< s1+€ and 6g(t)=0 other-
wise. One can then show, following a slight generaliza-
tion of Ref. 2, which is outlined in Appendix C, that
Eqgs. (4.4)-(4.7) imply

16" =0

Hence one can certainly choose ¥ so small that the
right-hand side of Eq. (4.8) is less than ¢, so that
2[1'* B1.

Next, in a closely similar way, as in Refs. 1 and 2,
one can show that, given (51,01) and (ps,02) belonging

to 2[1,
lpy’ —5'|| S OW) max(||p1—pel|, [[o1—0v]).

Hence, if ¢ is small enough, one has proved the condition
(2.29b), which completes the contraction-mapping
proof.

It remains to be shown that the positivity constraints
(2.36)—(2.38) suffice to demonstrate that the partial-
wave projection of F(s,f) [Eq. (2.14)],

(4.6)

(4.8)

(4.9)

1 0 21
Fils) ——— / dtPl<1+———>F(s,t), (4.10)
4: 4—s S'—4

s—
satisfies the inelastic unitarity condition
ImF(s) > q(s)| Fu(s) | 2, (4.11)

forI=1, 2, 3, ..., and s> 16. For the s wave, (4.11) is
guaranteed by the fact that Fy(s) agrees with N/D,
and that 0< 7(s) < 1, of course.

The proof of (4.11) is closely modeled on Sec. 3 of the
second paper in Ref. 1. One defines first the subset of
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B1X € obtained by adding the conditions
8P / as' <_ﬁ+ )p(z,s')zo (4.12)
4 S —S S —Uu
for 4<s<20, 20<¢<» and
[ (~;+ P20 @)
' s'—s s'—u

for 4< s<min[4#/(t—16), 16¢/(1—4)], 4<t<20 to the
defining_equations (2.24)—(2.27). Let this subset be
called B;X €. Then one can show that M maps
B1X €, into By, much as in Ref. 1. The only new
points arise from the subtraction in Eq. (2.3). In Ref. 1,
a key point was the positivity of the term 1/ (s’—s)
+n/(s'+s+t—4) for 4<s<s, t>4. For the isospin-0
and -2 states this is now replaced by

1 1 2 t—4
+ ln<1+~—>
s'—s §'—u t1—4 s’
1
~——2Qo(~')] (4.14)

2 [ 1
C—aly— g’z

where 3=2s5/(t—4) and 2’'=2s'/(1—4). In Appendix D,
it is shown that the quantity in large square brackets [ ]
is positive if 2'>22> 1. For the isospin-1 state, one has
simply the term

1 1 2s+1—4
—_— =— ,  (4.15)
s'—s —u (s'—s5)(s'+s+1—4)

which is again positive. Moreover, the subtraction
term o(#) in Eq. (2.3) is non-negative at the fixed point
of A;— Ay, as can be seen from Eq. (2.4). This allows
one to prove that d(s,) is non-negative throughout
4< s<max[44/(1—16), 16¢/(1—4), 207, 4< < o, just as
in Ref. 1, which means that, for ||9]| sufficiently small,
one can certainly arrange that p(¢,s)+v(t,s)+Bv(s,t) is
non-negative everywhere, and this implies Eq. (4.11),
as in Ref. 1.

Finally, we turn to the question of the I-plane
analyticity of the partial-wave projection of our solu-
tion. The partial-wave projection of Eq. (2.14) is

81,0 [ds'p(s
Fz(S)=~—/ Sp(—2+[1+n( DYuls),

™ )

(4.16)

where
’

B 2t
m) =" [ o (1+—4)
Wﬂﬂ/’/dl du'p(' ) <1 | 2u’'
4o’ +s—4 I s——4>
ds'du'o(s’u') 2u’
LD
s'—s s—4,
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The signatured Froissart-Gribov amplitudes are
Fix(s)= (1==n)lu(s) . (4.18)

The (4) analytic interpolation agrees with (4.16) for
even / and even I, and the (—) interpolation agrees
with (4.16) for odd ! and =1, except for the s wave,
since the first term in (4.16) is a Kronecker & at I=0
(assuming that the single-spectral function does not
vanish).

It will be shown that, in our case, the single-spectral
function does not vanish everywhere, so that necessarily
the continuation of the Froissart-Gribov amplitude to
1=0 does not agree with the s wave. This is evident
from (2.16), since o(s) attains the unitarity limit
3(14-7) at a point near the CDD pole where ReD= 0.
The other term in (2.16) is of order ¢, so that it cannot
cancel o(s) at this point for sufficiently small . The
vanishing of ReD near s=s; is certain when the CDD
residue ¢; is sufficiently small, since the difference
between ReD and the pole term is uniformly close to
unity.

V. APPROACH TO STRONG-COUPLING
PROBLEM

In this section we outline a program for passing into
the physically interesting region of large coupling con-
stants. For the present we discuss only the equations
without subtractions or CDD poles, purely for
simplicity.

Our basic concern is with the Fréchet derivative!® of
the crossing-unitarity operator. Once we gain control of
this linear operator, we then should be able to take a
step from one point in the Banach space to another
point nearby. We shall see that one might, in principle,
generate a ‘“‘global solution curve” corresponding to
larger and larger values of the coupling.

Define the crossing-unitarity operator ® from Eq.
(2.2) as

<I>(/3;s,t)=p(s,t) _'YM’N//dtldt2

XK (s; Ltnla)dar* (s,t1)dn (s,t2) ,  (3.1)
where the isospin index 7 is suppressed, and
1 1 7
d(s,t)=—/ds’ <—’-——l— - >
T s'—s §'—u
X[a(s",0) 481, ) +o(s" 1) +Bu(t,s) 1. (5.2)

The equation we wish to solve is
®(5)=0. (5.3)

15 For an introduction to the ideas of this section, including
references to mathematical literature, see R. L. Warnock, in
Lectures in Theoretical Physics, edited by K. T. Mahanthappa et al.
(Gordon and Breach, Science Publishers, Inc., New York, 1969),
Vol. 16.
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The Fréchet derivative of ®, evaluated at the point 3,
operating on a member %(s,f) of our Banach space 9,
is defined by

@l(ﬁ)h(3,1)= —2 Rel:’yM'N//dtldtz

X [{(S, talhh)dM*(syll)gN(S,t2):|+h(S,t) s (54)

where

1 1
g(s,t) =~/ds' <T—--I— ,71 )[h(s’,t)—l—ﬂh(t,s')]. (5.5)
T sS—s §'—u

The second Fréchet derivative, which acts in BX B,
is given by

@”hl}m(‘?,l‘): -2 Re[’yM’N//dhdh

XK(S; l,ll,tz)gLM(S,fl)gz,N(S,lz):| . (56)

Here g1 and g, are related to £y and /. in the same way
that g is related to % above. The second derivative is a
constant operator, independent of 5.

We wish to apply the implicit function theorem to
show that a small change in the input function (s,
will produce, in general, a small change in the solution
p(s,t). This requires that the inverse &1 of the Fréchet
derivative exist. Thus, we must show that the following
equation has a unique solution in B for every o& B:

' ()h(s,)=w(s)l). .7

For a suitably restricted p, this may be done by a
further ~application of the contraction-mapping
principle. We write ®=1—K, corresponding to
Eq. (5.4). Then solving (5.7) is equivalent to finding a
fixed point of the mapping

Rhtw—1. (5.8)
First we note that for any fixed w, (5.8) takes B into
itself. That is clear from the work of Sec. IV. Further-
more, if /1,h:E B, then

I —he' =K (hy—hs) (5.9)
and .
(17 = b/ || < NIKJ|X [ =], (5.10)
where . .
K[ = sup [ K]l / ||«] . (5.11)
&8
Again, by Sec. IV we know that [|K||=0(y), so that for

sufficiently small ¢, (5.8) is a contraction mapping. It
follows that for small ¥ there is one and only one solution
of (5.7) for each w, i.e., &1 exists.

To apply the implicit function theorem we multiply
the inelastic function 2(s,t) by a real parameter \, and
consider the corresponding equation

®(\,5)=0. (5.12)
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The operator A\, p— ®(\,5) is a mapping from RX B
into B, where R is the real line. Suppose that we have
a solution gy for some A:

q’()\o,f)o) =0. (513)

We note that ®()\,5) possesses derivatives of all orders
with respect to X and 5. In fact, all derivatives beyond
the second vanish. If, in addition, the derivative with
respect to 5 at (\o,po) has an inverse, then the implicit
function theorem!® guarantees existence of a function
A#(\) in some neighborhood G of \¢ such that

G d050\))=0, A\EG
(i)  A(\o)=po,
(iii)
We have proved the existence of the inverse ®;1(\o,p0)
for small ¢, so in that case the conclusions (5.14) follow.
We expect that the inverse will exist at most points
(M\o,p0) even when ¢ is not small, and, therefore, that
there will be an infinitely differentiable solution curve
p(\) passing through almost every solution po.

The problem of how to compute the inverse of the
Fréchet derivative at large ¢ is not yet solved; nor do
we have a proof of its existence when ¢ is large. To solve
these problems, which do not seem insuperable, we must
master the linear, multidimensional, singular, integral
equation (5.7) in the region where its kernel is large.
The equation is of an unfamiliar type, but we shall soon
see that an understanding of its properties will be
important for further progress.

In applying the implicit function theorem we may
consider Fréchet derivatives with respect to v(s,t)
instead of the simple derivatives with respect to A\. Once
more, ®(v,p) is infinitely differentiable with respect to
both variables, and if ®;7'(vo,50) exists, we find that
there is a solution curve 5(v) having Fréchet derivatives
with respect to v of all orders.

We see that, in general, a small change v in v will
produce a new solution p(ve+6v) from a given solution
p(v0). If we knew how to compute this new solution, we
would have a procedure for following our weak-coupling
(small-v) solution into the strong-coupling (large-v)
domain. The Newton-Kantorovich method, 1% which
is a generalization to Banach space of the classical
Newton procedure, provides a specific means of com-
puting the new solution. For any given inelastic function
we wish to solve

(5.14)

p(\) has derivatives of all orders.

®()=0 (5.15)
when an approximate solution 5o is known (here we
suppress reference to N or v). The approximate solution
po may be, for example, an exact solution for a smaller
value of . The (modified) Newton-Kantorovich

16 J. Dieudonné, Foundations of Modern Analysis (Academic
Press Inc., New York, 1960), Theorems (10.2.1) and (10.2.3).

171.. V. Kantorovich and G. P. Akilov, Functional Analysis in
Normed Spaces (Pergamon Press Ltd., Oxford, 1964).
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method is based on the iteration
Pri1=pn—P (50) ' ®(pn), (5.16)

which just amounts to successive linearizations of
(5.15). Suppose 5; is so close to o that

ll51—a0ll X || @' (30| X [| @[ < % - (5.17)

Then by Kantorovich’s theorem'” one knows that there
is a unique solution of (5.15) in the closed ball

(15— oll < 2/|p1~oll - (5.18)

Instead of taking 5o to be a solution for a smaller v,
we may make a linear interpolation between one v and
the next. For simplicity, suppose that v is altered only
by varying its real multiplier X. Then we may start the
Newton-Kantorovich method with the linear expression

dap
po=p(Mo)+—| (\—Xo),

Ao

(5.19)

for X near A\o. By differentiating ®(\,5(A\))=0 we may
calculate dp/d\ in terms of quantities that are already
required for the Newton-Kantorovich procedure:

dp

N = —&;71(\0,6(A0))Pr(N0,5(N0)) .

Mo

(5.20)

In practice, it may occur that, as X is increased step
by step by successive applications of the Newton-
Kantorovich method, one eventually gets to a point
where Eq. (5.7) is ill conditioned, i.e., where & (5)~! no
longer exists. This does not necessarily mean that one
cannot reach larger values of A\: One may be able to
skirt the bad point by going out into the complex A
plane, and then returning to the real axis beyond the
point of ill condition (which need not correspond to a
singularity of the solution, considered as a function
of A). To show that this is a sensible procedure, we now
demonstrate that 5(s,f) is holomorphic in A at fixed s,
for sufficiently small |X|. Consequently, an analytic
continuation exists which should allow one to attain
large, real values of A. First we must say what we mean
by a solution of (5.3) at complex . In place of (5.2)
we write

1 1 7
d(s,t;N) =—/ds’ <———I— )
T s'—s s'—u

XLa(s" 5 M) 485" N) Ao (s’ 1) +NBu(t,s") . (5.21)
In Eq. (5.1) the factor da*(s,t1)dn(s,l2) is replaced by
dM*(S,ll; )\*)d]v(.&‘,tz; )\) y (522)

while the first term j(s,f) is replaced by (s,t;\). Now
if we begin our iterative solution of the resulting equa-
tion with a polynomial in A—for instance, the trivial
one p=0—then every iterate p, will be a polynomial
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in \. The estimates which establish the contraction
property of the mapping go through as before, with |\]
replacing X\ in the estimates when X is complex. Thus
the sequence {p.(st;\)} of polynomials in A is uniformly
bounded in a circle of the X plane |N| <\¢ at fixed s,
where )\ is the same limit that one has at real \ for
validity of the contraction-mapping proof. The uniform
bound comes just from the fact that s, belongs to the
subspace Bi [cf. (2.24)]. It now follows from Vitali’s
theorem that the limit of the sequence, 5(s,;,\), is ana-
Iytic in || <Xe.

Although there may be singularities for larger values
of A, one should in general be able to go round them.
In practice, then, upon hitting a bad point on the real
\ axis, one could continue into the complex plane, by
the Newton-Kantorovich method, and then try to get
back to the real axis after a few complex steps. One of
three things could happen:

(1) On reaching the real axis again, 5 becomes real
again, so that one can then continue along the real axis
as before. In such a case, the point of ill condition of
Eq. (5.7) would correspond either to an isolated
singularity of g or to no singularity at all.

(2) On returning to the real axis, 5 is complex. This
could happen if there were a branch point on the real
axis, and probably no further continuation would be
possible, consistent with p’s being real.

(3) A natural boundary frustrates the attempt to
regain the real axis.

In either of cases (2) or (3), one would not be able to
continue analytically to larger, real values of v. As a
matter of fact, one expects that a barrier, either of
type (2) or (3), will eventually be encountered, since
Martin and Lukaszuk!® have shown that analyticity,
crossing, and unitarity imply an absolute bound on the
modulus of the scattering amplitude. Below this barrier,
the Newton-Kantorovich method should suffice for a
computer construction of a solution.

As an alternative to detours into the complex A plane,
one may sometimes get past a singularity of the Fréchet
derivative by means of a procedure due to Anselone
and Moore.!® This “change of parameter” method is
discussed in Ref. 15.

Finally, we note that the Fréchet derivative (5.4) is
not expected to have an inverse when evaluated at a
CDD-type solution p of the sort discussed in Secs.
IT-TV. One cannot, therefore, follow a CDD solution to
large couplings using the equations employed in this
section. Instead, we must compute Fréchet derivatives
of the coupled mappings M and N defined in Sec. II.
A Newton-Kantorovich iteration based on those
derivatives can be used to follow a CDD solution, with
either fixed or variable CDD parameters.

18 A, Martin and L. Lukaszuk, Nuovo Cimento 524, 122 (1967).

19 P, M. Anselone and R. H. Moore, J. Math. Anal. Appl. 13,
476 (1966).
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At large values of v(s,f) there may be problems in
enforcing the unitarity constraints in the inclastic
region, as well as the possible entry of ghosts into the
N/D sector. Hopefully, one can use the freedom in
choosing CDD parameters and the form of »(s,t) and
7(s) to keep these difficulties in abeyance.
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APPENDIX A

In this Appendix we wish to verify properties (3.15a)-
(3.15d) of the kernel K and the inhomogeneous term f
of the N/D integral equation. Tirst, one shows that the
discontinuity A over the s-wave left cut is bounded
as follows:

A() SOW)(—s)2,

This is a straightforward deduction from Eq. (2.10),
if the following bounds from Secs. IIT and IV are

invoked:
() SO+,

p(s,) SOW)(s)~,

s—s
—

§$'t

§— —o,

(A1)

(A2)

2p

lo(s,)—p(s',)| SOW)

The s’ integral is majorized easily; the principal-value
integral with denominator §'—u, 0 u< «, is treated
by the technique of Eq. (3.19), while a bound on the
logarithm term may be read off by means of the change
of variable s’ — x, s'= ({—4)x. The three terms of the s’
integral are seen to be of orders (—st)=#, (uf)~*, and 2+,
respectively, and when these bounds are integrated
over ¢, the result (A1) is apparent.

It is now immediate to establish (3.15a)-(3.15d) for
the left-cut parts of f and K; the latter are denoted
by fr and Kr. We note two simple lemmas, (A3) and
(A4). Without loss of generality we take s>s to prove
that

| BL(s)—Bu(s)]|

1 Alw)du
r/ﬂo (u—s)(u—s")

=[s—+]

s—s'| 1 0 dx
<o [ |
sl )y x(x—1)
<ow)|— (A3)
SS
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B(s)—B(t)

s—t

Bi(s")— BL(l)
s’ —t
0 A(u)du I

e (=) (=) (u—1)

0 dux 1
/ﬂo x2(x—1)

is—S’Iv

s—s’

N

SO0W)

ts'2m

S—'S

< O(t//)

(A4)
ss’

With these results and our assumptions about 7 [cf.
(2.30) and (2.31)7], we have

[7zll= sup |s*fu(s)]
4 s<0

§20 Br(s)— BL(SI)
=sup 77(S)|:BL(S) c1— o j”
oW, (AS)
| F2() =725 <v|BL<s>—BL(s'>
7(s)
+cl[§f(5>‘3@ _ _%(S'{*BL(SQ]
S—381 S —95
(D) —n()]| OW) | ——| . (a6)

It follows directly from (A3), (A4), and (2.33) that
| KL(s,s")|

—_g(‘z|BL(S) Bi(s ”, (AT)
w 7(s)
Ki(s) K L(s’,t)!
s——t—_ s’ —t
<1£s’) Br(s)—BL(t) BL(s')—BLQ
S n(s) s—1 s’ —t
BL(S')—BL(l)/n(S')ﬂn(S)
* \ )
s'—t 7(s")
1|s—s' |2+
SOW)- (A8)
tl ss

Jor(2)

| B'(s)— BR’(S’)1<-—I¢(S) —¢(s") | +-

€S
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To complete the proof of the bounds (3.15), we shall
prove that the right-cut terms, fz and Kg, obey condi-
tions similar to (A5)-(A8). The only difference will be
that £ in (A8) is replaced by (=, A\42u> 1. First we
note that the Holder continuity of », Eq. (2.33), and
the end-point conditions 7(16)=n(«)=1 imply a
similar Holder continuity of the right-cut integral Bg:

IBR(S)—BR(S

(A9)

This follows from a well-known theorem on Hélder
continuity of Cauchy integrals with density functions
vanishing at the end points (make the change of
variable s=1/¢, and apply the theorem of Sec. 19 in
Ref. 4). We now study Bg'(s) with the help of the
identity

6(5) — (") = (s—") / o [ast(1—x)sTdx. (AL0)

It is useful to compute Bz'(s) from the formula

(492 (1) —(s)
—dl

t—s

BR(S) =

(1—e)s

(I=e)s ¢(t)dt
[/ / :I —, 0<e<1. (A1)
(140)sd E—S
The result is
20(s)  pOtOre() —¢(s) do dt
Bg'(s)= + f [————\}——. (A12)
€s (1—6)s t—s ds dt—s

After two applications of (A10) the integral in (A12)
becomes

(14+€)s 1 1
/ dtf dyf xdx ¢ [xyi+(1—xy)s]. (A13)
( 0 0

1—e)s

We can now bound Bg'(s) —Bg/(s’) by making use of
Eq. (2.31). Supposing that s<s’, we have

2(1—xy)2|s—s'| 2

+0([ll)

(1+e)s
dai (ly/ .
1-os / o Loyt —wy)sPelayid A —xy)s' Prlayi4-(1—xy)s]?

(A14)
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The integral in (A14) is majorized by discarding xy? in the first two factors of the denominator. In the third factor,
replace ¢ by its smallest value (1—¢)s. Then the integral is smaller than

s—s'

21 2e

s—s'
ss’

2u (1+e€)s 1 1 x
/ dt/ dy/ dx
(1—e)s 0 o (I—xy)*(l—exy)?

1
s

AR

1 1 x
- f dy / d—
S (1—6)2 0 0 (1—‘30}1)2“

1
= O(—
S

s—s'

2“) . (A15)

ss’

The first two terms in (A14) are readily seen to have similar bounds, and we conclude that

B0~ B )| <OalD|
$S

2u

_— (A16)
§

Now (A16) and one more application of (A10) give us the last inequality required:

1

Bg(s)—Bz(?) B Bg(s")—Bz(t)

s'—t

s—i

<O(ll¢l)

1js—s
<ol
Moss

This is enough to prove Egs. (3.15a)-(3.15d).

It should be noted that (A9) is easily proved by
means of (A10) if Eq. (2.34) is assumed. The more
difficult proof quoted from Ref. 4 does not require ¢’ to
exist. Correspondingly, it is probable that (A16) can
be deduced from appropriate Holder continuity of ¢/,
without existence of ¢"'.

APPENDIX B

Here we show how to obtain Egs. (3.34) and (3.35)
from the integral equation (3.1). Let 73 and %, be the
solutions of (3.1) corresponding to (51,01) and (52,02),
respectively. The integral equation gives

(n1—n2)(s) = (f1—f2)(s)
1 /”(Bl—‘Bz)(S)—(&—Bz)(S')
T () Ja /

q(s")ni(s")ds’

S—S

’

1 i Bz(s) —Bz(S')
} " (n1—ne)(s)ds’. (Bl
[ s @Y

We write this in a shorter notation, and then take
norms

ni—ne= f1— fot Kisni+ Ko(ni—ns) , (B2)
[ma—nal| < || fr— foll 4[| Kzl X |24
+H[ Kol X [[n1—mnaf . (B3)

- / 4| B[54 (1—x)]— B Tas'+ (1 —x)¢]|

x| s —s'| 2

o A1 1|s—s'
[ assm—ar<otii] =
. MM oss

d
/0 ’ [ws+ (1 —x)t 124 xs’+ (1 —x)f 2L ws+ (1 —x)t Par—>

2p

(A17)

Since we have already required || K| <1, this yields

/1= fall 1| Kol X [} a]

B4
1=K .

[[n1—ns]| <

In fi—f; and By—Bs, the contributions of #(s,f) and
Bg(s) do not appear. In other respects the analysis
of fi—f, and B;—B; is the same as that of f and B.
Therefore, Appendix A implies that

| fi=fell=0(d1), [|Kuel|=0(drs), (B3)
drz=max[ [|p1—pe|], [lo1—o2l| J. (B6)
Since ||Kq|| and |4 are O), Eq. (B4) yields (3.34):
1 —nal| = O(dr2) .-

In a similar way we can use (B2) to treat the Holder
continuity of (#1—#,)(s). One employs (3.15d), but
with B;— B, replacing B. The result is (3.35):

/

s—s'| 2

| (n1—=n2)(s) — (n1—n2)(s") | L O(d12)

ss’

APPENDIX C
In this Appendix, it will be shown that Egs. (4.4)-(4.7)
imply Eq. (4.8). One certainly has
|d(5,8)] < OW){(st)* In?s I~

+[1+e 2091 J ). (C1)
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The double integral (2.2) contains the quadratic form
d*(s,t1)d(s,l2), which can be split into three terms
corresponding to the two terms of Eq. (C1) and the
cross term. The first gives an integral that has already
been treated in Refs. 1 and 2. The second term can be
shown to give an integral that is bounded by

O®W)(st)~% Int,
which is not greater than a term of the required form

OW)(st)y™In~2s In™2%. (C3)

(C2)

Note the importance of the extra inverse powers of ¢,
which allow both the In=% and In=% factors to be
fabricated. The factor 14 ¢ 1/204(¢) disappears, since the
double integral produces a factor €*/2 from the integra-
tion of 6q(t1)0a(f), which more than cancels the coeffi-
cient €1 Note that 14 € 69(f) could not have been
handled: The reason is essentially because of the inverse
square-root kernel in the #; integration. The cross term
from (C1) is certainly majorized by

OW)s™* In~2s (taty) ™ In~%1 In=%, [14-€7/200(t5) ]  (C4)

and this immediately yields a bound of the form (C3).
In a similar way, by considering the Holder-continuity
condition (4.5) and the bound (C1), one can show that

|5’ (s1,00) =5’ (52,0) |

S1—S2|*  |hi—ia|* ;
<O(1//2)|: - ]ln—2§ In—2%. (CS5)
189t {1898
APPENDIX D

In this Appendix, it will be shown that, if 1<2<2/,
then

1
. -

—200(z') > 0.
d—z 24tz g

(D1)
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The Darboux-Christoffel identity is
— T QHDPOE)
2 —z =0
L+1
=z’ _Z[PL+1(2)QL(Z') —Pr(2)Qra(z')]. (D2)
For L=1, this gives
S PR —3PEOE)
2
=ZT_—ZEP 2(2)Q1(z") —P1(2)Q2(2)].  (D3)
Hence, on replacing z by —z, one finds
1
———Po(2)Qu(z)+3P1(2)Q1(2" )
2 +z )
=——[Py(2)01(z") +P1(:)Q2(z))]. (D4)
2z

Add (D3) and (D4):

1
+———20u(z)

o —z 'tz

2
=——{[P2(z) —P1(2) J01(2) +P1(z) [Q1(z") — Qa(=") ]}

2 —z
2
+z, Z[P 2(2)Q1(z") +P1(2)Q=(z")].  (D5)
This proves (D1), since
Py(z)2P1() 211,
and (D6)

Qi(z) 2 x(2) 20, z72>1.



