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Persistence of the Castillejo-Dalitz-Dyson Ambiguity in Relativistic
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The relativistic equations expressing analyticity, crossing, and unitarity are analyzed without approxima-
tions. An infinite family of solutions is constructed, corresponding to a Castillejo-Dalitz-Dyson (CDD)
ambiguity in the s wave. This ambiguity is in addition to the one resulting from arbitrary inelastic functions.
The amplitudes constructed have nonvanishing single spectral functions, and this implies that a Kronecker
5 is present in the angular-momentum plane. This relation between CDD poles and the Kronecker 8 is
proved only within a certain limited range of the coupling strength. A computational program for reaching
the interesting domain of large couplings is outlined. In the latter domain it is not expected that all CDD
poles entail Kronecker b's in the / plane.

I. INTRODUCTION

CONSTRUCTIVE proof has recently been given'

~ ~
~

of the existence of functions that satisfy the
following conditions:

(1) A Mandelstam representation holds with no
subtractions.

(2) The crossing symmetry appropriate to pion-pion
scattering is observed.

(3) The elastic unitarity condition holds below the
four-pion threshold.

(4) The inelastic unitarity constraints are satisfied
above the four-pion threshold.

It was shown that there exists an infinite number of
functions that satisfy these conditions, corresponding
to an infinite number of allowed input inelastic func-
tions u(s, t).

In the present work, it will be shown that there is a
further inanity of functions, corresponding to the
Castillejo-Dalitz-Dyson (CDD) ambiguity. For a given

w(s, t), we prove the existence of an infinite family of
functions that satisfy conditions (1)—(4). This family is
parametrized by the positions and residues of the CDD
poles in the s wave.

It is expected that a similar analysis should be
applicable to a function that satisfies a Mandelstam
representation with, say, n subtractions, and that one
would then be free to add CDD poles to the n+1 lowest
partial waves. The CDD pole-free equations have been
treated, for general n, in Ref. 2, but so far without
condition (4) above, while Kupsch' has given an
existence proof for the case n 1, with co=ndition (4).

*Work partially supported by the National Science Foundation,
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It is interesting to review briefly the history of the
CDD ambiguity. Since the early work of Poincare,
Hilbert, and others, it has been known that singular
integral equations with Cauchy kernels possess, in
general, infinite families of solutions. It is clear from the
book of Muskhelishvili' that an understanding of the
linear Hilbert problem is a key to most of the problems
of the theory of linear singular equations. The Hilbert
problem is known to have an infinite family of solutions;
an arbitrary rational function occurs as a factor in the
general solution.

In 1956, Castillejo et al. obtained explicitly the
general solution of the I.ow equation for certain static
models with simple crossing properties. Their solutions
can be understood in terms of an auxiliary, linear
Hilbert problem, and their celebrated ambiguity is
exactly the ambiguity in solving this Hilbert problem.
In the general static-model problem where the crossing
matrix is arbitrary, one has a nonlinear Hilbert problem.
No solution of the latter has been obtained in closed
form, but for a small coupling strength solutions have
been constructed by a convergent iterative procedure.
Because of the particular form of nonlinearity arising
from unitarity, a portion of the nonlinear problem is
linearized by the X/D method. The D function is a
solution of the linear Hilbert problem

D(s —iO) = e"'&'D(s+iO),

where 5(s) is the phase shift. In Refs. 6 and 7 it was
shown that the ambiguity in the solution of this linear
problem makes itself felt in the solution of the full non-
linear problem of either the static model or the Chew-
Mandelstam equation. This was shown to be true in a

N. I.Muskhelishvili, Singl/ar Integral Equations (P. NoordhoB
Ltd. , Groningen, The Netherlands, 1953).

~ L. Castillejo, R. H. Dalitz, and F. J. Dyson, Phys. Rev. 101,
453 (1956).

6 D. Atkinson, J. Math. Phys. 8, 2281 (1967).
~ H. McDaniel and R. L. Warnock, Phys. Rev. 180, 1433 (1969).
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domain of small coupling constants. In this domain the
nonlinearity due to crossing and unitarity is essentially
irrelevant for existence of the CDD ambiguity. We
cannot say what happens at large couplings (near the
physical values) but at present we have no reason to
expect the disappearance of the ambiguity.

By means of heuristic arguments and examination of
soluble models, CDD poles have been associated with
elementary particles in Lagrangian 6eld theory. ' An
elementary particle is understood as being represented
by a definite field operator in the free Lagrangian. A
composite particle, on the other hand, does not enter
the free Lagrangian, but appears as a bound state or a
scattering resonance when the interaction is present.

It has been argued plausibly by Mandelstam' that
an elementary field of spin 0 will give rise to a Kronecker
3 in the angular-momentum plane at I= a (unless special
cancellations occur)." In that case, elementary fields

may be ruled out by a principle of "maximum
analyticity in the 1 plane, "" which would forbid
Kronecker b's. By the same principle we rule out any
CDD poles which are due to elementary particles. '

Within the class of amplitudes constructed in this
paper, a CDD pole in the s wave does indeed give rise
to a Kronecker 5 at l= 0. This is wholly consistent with
the above picture, but this consistency may be traced
to the fact that we work in a domain of weak couplings.
When the couplings become strong, it is known that
there can, in general, be another kind of CDD pole
which is associated with important many-channel
effects, and not necessarily with elementary particles
at all. We expect that such a pole would not lead to a
Kronecker b.

The contents of the paper are arranged as follows.
In Sec. II we state the equations which express uni-

tarity, crossing, and analyticity. The s wave is treated
explicitly by an N/D equation with only one CDD pole,
but it would be a trivial extension to allow any finite
number of CDD poles. The equations are interpreted
as nonlinear operator equations in an appropriate func-
tion space. In Sec. III we analyze the N/D sector of
the problem, while Sec. IV is devoted to the unitarity-
crossing equations for the double-spectral functions.
The results of Secs. III and IV together imply that the
equations constitute a contraction mapping of a sub-

space of our function space into itself. Consequently,
there is a unique solution in that subspace, and this may
be constructed by iteration. In Sec. V we describe a
program for extending our solutions into the region of

large coupling strengths. We suggest stepwise applica-
tions of the Newton-Kantorovich iteration, for larger
and larger values of the coupling. We show that our
weak-coupling solutions depend analytically on a
parameter multiplying the inelastic input function, and
this procedure will amount to an analytic continuation
in that parameter.

p(s, t) = [p(t,s)+s(t,s)j+P[p(s, t)+e(s, t)], (2.1)

pr'(s, t) =yr~ ~ dti dts

XE(s; ti t„ts)dsr*(s, tr)ds (s,ts), (2.2)

where the upper limit of the double integration is defined

by the 6rst zero of E 2, and

d(s, t) =— ds' —+
1

4 -s —s s —II

1+q t —4q-
ln 1+

i p(t,s')+o-(t), (2.3)
s' J

with 1=4—s—f;

~'(s) =
2q(s)

[1—g (s)$[ReD(s)$'+ [1+rt(s))[q(s)rt (s)j'
X

[ReD(s)3'+[q(s)rt (s)$'
Here

q(s) = [(s—4)/s]'"

(2.4)

(2.5)

and n(s) satisfies the following linear integral equation":

B(s)—B(s,)
rt (s)rt (s) =B(s)+ct—

s —sy

, &()—&(')
+— ds' q(s')n(s'), (2.6)

4 s —s
where

B(s)= Btt(s)+BI,(s) . (2.7)

IL FORMULATIONS OF EQUATIONS

The equations for the double-spectral function and
for the s-wave amplitude will be written down as a
double mapping. In the notation of Ref. 2,

Here
I' " ds' 1—rt(s')

Btt(s) =-
re s —s 2q($ )

(2.8)

and

(2.9)

r2 G. Frye and R. L. Warnock, Phys. Rev. 130, 478 (1963).

8 See, e.g. , M. T. Vaughn, R. Aaron, and R. D. Amado, Phys.
Rev. 124, 1258 (1961).

9 S. Mandelstam, Phys. Rev. 137, B949 (1965).' M. Gell-Mann, M. L. Goldberger, F. K. Low, and F.
Zachariasen, Phys. Letters 4, 263 (1963); M. Gell-Mann, M. L.
Goldberger, F. E. Low, E. Marx, and F. Zachariasen, Phys. Rev.
133, B145 (1964); M. Gell-Mann, M. L. Goldberger, F. E. Low,
V. Singh, and F. Zachariasen, ibid. 133, B161 (1964)."G.F. Chew and S. C. Frautschi, Phys. Rev. Letters 7, 394
(1961); see also G. F. Chew, The Analytic S Matrix (W. A. -
Benjamin, Inc. , New York. , 1966).
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where

A(s) =
4—s 4

dt Red(s, t) . (2.10)

In Eq. (2.4), the function ReD(s) is dedefined in terms of
the solution of Eq. (2.6) by

xed oint of the mappings

in theorem. The oPerators M acontraction mapp' g .
d t g of two Qanachwill be defined n, h' h is to con

n the direct pro uct o w
and K. The space, w rc is o

h f all real functions F(s,t)t&
'

defined to be the set o a re
with domain 4~& s,t& ~, for w ic

(2.11)ReD(s) =1+ —— — It(s')n s
$ —$] X' 4 $ —$

sup
4 ~( s].) S2) ti. , t'2(~

I F(s))t)) —F(s2, tg) I
ln's ln't

2.1 p(s, t) is the elastic part of the double-

to be given. an

yp
pole is located at the point s~) 4, at w ic .e re

'

of the D function is c~.
Equations (2.1)—(2.11) may be represented com-

pactly as follows:

(s,—s,) ~ (t, —t,) ~

s~s~t t yt28

(2.18)

here su means least upper bound,

a fixed number that satisfies p -„an

lim F(s,t) =0=lim F(s,t). (2.19)

which will contain 0- s, is the set of all
real, continuous functions f s wi om

'

for which
p'=~(p o)

o'= X(p,a) .
(2.12)

(2.13)
Ilffl=— p I "f()I+ "' plf()I

~Cog
(2.20)

'ect is to And a fixed point of this double map-
'

fi d oint has been located,
e defined by the Mandelstamthe amplitude can be de ne y

representation

F(s,t):=A (t,u)+PA (s,u)+ rtPrtA (, ),A t s (2.14)
where "ds'p(s')
A(t, u) =—

4 S —$

h 0 is the interval
I

sq —e, s) withexists, where is
4 and CQ is the complement of 0 wit r pwith res ect

4 ~ . Here eisa srna, posi iv
~ ~' t ted by the technical require-tude of which will be icta e y

Linear combinations in t e pro uc
are defined by

(2.21)&) F))f))+4(F~)f2)=prF)+4F2)&rfr+ ~ 2 )

+— dt
7I op(t')

(2.is)dQ
(t' —t) (u' —u)

and, for the norm in the product space, we take

ll(F,f) II
—=max(IIF li, llfll ). (2.22)

The fIxed point (p,o.) wrll be sougu ht in the subset

8&= 8&X Kr.1
p(s) =o(s) ——

s —4 4,
(2.23)

d,' tLf(s, t)+)tf(s,u) j, (2.16)
Here ~is e nd fi ed by the requirements

with

f(s, t) =
L

(2.24)
(2 17) and

(2.25)p(s, t) = 0,

in which the single-spectral functiotion is defined by

function p(s) ensures that theThe single-spectral function p
of E . (2.14) a,grees wit t es-wave projection o q

litude and therefore satisfies unitari y
h D( ) has no zero on the physical

/
'

d the s-wave prolection
. Provided that s as no

~ ~

h
7, D am litu e an

be e ual, because their iscon inui
'

d t e the same, and they
Rf1 l t

d left-hand cuts are
~ ~ ~

both vanish asymptotitoticallv. As in e . , in
'll be satis-a y on a Il n g

fied by imposing suitable restrictions on e i
tion a(s, t).

fOI'

4t 16t
s~& min

t —16 t —4
(2.26)

The set 5& is de6ned by

(2 27)

ince g is a c oseinc. & l d subset of a Banach sp ace it is itselfSine
s ace in the norm topology.

is a unique xe poin,
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(2.13), provided Si is mapped into itself, and the
following Lipschitz condition holds:

ll(pi', oi') —(ps', os')
ll

&~~ll(pi, oi) —(ps, os) II, (2 28)

for any (pi, o.i) and (ps, os) belonging to 5i, where ~(1.
In Sec. III, it is shown that, under suitable restrictions
on b, c, ci, e, q(s), and v(s, t), the operator 1V takes
Si—+ Ki with for all s and t, and also

v(s, t) &~0 (2.36)

for all s if I& 16 and for s& oi(t) if t)~ 16, where s=oi(t),
the boundary of the support of v(s, t), must satisfy
o i(t) )&16 for all t ~) 16. In addition, the following
positivity conditions will be imposed, which will be
necessary for the proof of the inelastic unitarity bounds:

l[N(pi, oi) —N(ps, ~s) II

&&~ max{[[pl. pslf l[oi —os[i & (-'

and in Sec. IV that M takes Si-+ Si with

g(s, t) & 0 and Pg(s, t) &~0

for 4~&s~&20 and 16&&3&~, where

(2.37)

I[M(pi, oi) M—(ps, os) II

& ~ max{[[pi —
ps[i lloi —os[i) (2 29b)

g(s, t) =I' ds

These conditions imply (2.28), and so conclude the
existence proof.

The constraints which are imposed upon g(s) and
o(s, t), for the proof of Eqs. (2.29a) and (2.29b), will now
be described. Let g(s) = L1—g(s) j/2q(s). Unitarity
requires @=0, 4&&s&~16. We assume that p(s) is twice
differentiable, 4~&s( ~, and that

0( ) =4'( ) =4"( ) =o, (2.3o)

s —s
14 "(s)—0 "(s')

I
&~O([loll) —, —, (2 31)

$$ 8
where

1 ~ 2 t —4
X —+— — ln 1+

s —s s —n t —4I sI

It has been shown in Ref. 1 that one can find functions
v(s, t) that satisfy these positivity requirements. More-
over, one can work the proof with the weaker require-
ments of the Introduction of Ref. 2, according to which

v(s, t) may oscillate, but for simplicity this refinement
will be omitted here.

II+II= sup I""+(s)l&",
16 &@&oo

s =min(s, s') .

(2.32)
III. ANALYSIS OF s-WAVE N/D EQUATION

In abbreviated notation the 1V/D equation (2.6) is

written as

s —s
I y(s) —y(s')

I
& o(ll@ll)—

$$

s —s
q (') —y (")I &o(lip I)—

$$ 8

(2.33)

Since q is (sectionally) the boundary value of an
analytic function, existence of @"between thresholds is
assured. The lowest threshold, s= 16, is the most
doubtful regarding diff erentiability. Studies of threshold
behavior of the s-wave 4x state" indicate, however, a
behavior like (s—16)"', which implies that @" exists
and is Holder-continuous.

The function v(s, t) must belong to the space 8, and
must satisfy

Here and in the sequel, y = O(x) means that
I y I

&~ M
I
x I,

for some M)0, at all x. As in (2.31), we also write
y&0(x)s, meaning sup[y/s[ ~&M[x[. The least pos-
sible value of M, although definite in (2.31), may be
different at different places where the symbol O(x) is
employed. From (2.30) and (2.31) it follows immediately
that

m= f+En,

B(s)—8 (si)
f(s) = n '(s) 1~(s)+ci

s —sy

(3 1)

(3.2)

1Cx(s) =
"X(s,s') x(s') ds'

s —$1
(3.3)

E(s,s') = q '(s)[8(s)—B(s')jt1(s') . (3.4)

We study (3.1) as an equation in the Hanach space Z of
all real, continuous functions x(s) on L4, oo) with the~ ~ ~

norm
[[xi[ = sup [s' x(s) f.

4 &a&co
(3 5)

The exponent p is to be the same as in (2.18) and (2.20).
We shall make sure that fg g and that E is a bounded,
completely continuous operator on Q. Then, with f
and E fixed, the Fredholm theorems imply that (3.1)
has a unique solution in Tl, provided that [[E[[ is less
than 1. The norm of E is defined by

o(s, t) =0
"L.M. Delves, Nucl. Phys. 9,. 391 (1953),

(2.35)
I[I~[I = sup

*Ca f[xf[

(3.6)
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Our analysis of the nonlinear mapping, (2.12) and
(2.13), will require the following behavior of n:

flnli =op), (3 7)

s —s
I n(s) —n(s')

I
& 0g )—

$$
(3.8)

We use the convenient notation P for the quantity

4=max(&, c, lloll, ff1 —vlf), (3 9)

where b and c are defined in (2.24) and (2.27). The scale
of our scattering amplitudes is set by f, which will be
small (in an appropriate sense).

Suppose that IIEII &k&1, and let n be the unique
solution of (3.1). Then

By definition, f is a real, continuous function on
I 4, ~),

so (a) means that f/Z. Condition (c) and (3.13) show

that E is a bounded operator on Z. If P is suitably
small, then IIEII(1. Conditions (b) and (d) with (3.14)
show that E maps any bounded set in '7) into a uni-

formly bounded, equicontinuous set of functions. By
reference to Ascoli's theorem it follows that E is
completely continuous. Finally, (a)—(d) combined with

(3.11) and (3.14) yield the desired properties (3.7) and
(3.8) of the solution n(s).

The properties (3.15a)—(3.15d) are easily derived
from the results of Sec. IV. The details of the derivation
are explained in Appendix A.

Our main task in this section is to analyze the s-wave

absorptive part constructed from the unique solution of
the Ã/D equation. This is expressed by the formula

llnil & Ilfll+ IIEII && llnll

llnll & Ilffl/(1 —&).

To get such a bound k, we note the inequality

{3.10)

(3.11)
2qL(ReD) '+ (qn) 'j

D(s) = 1+I'(s)—ReI(s) —iq{s)n(s),

X (1—it) (ReD)'+ (1+g) (qn) '
o(s) =Im—=

D
(3.16)

E(s,t)
IIExll =sup s'&

'
t, '&Lt'&g(t)jdt

s —t

where
I' "q(s')n(s') ds' ci

ReI(s) =— —, I' {s)=—. (3.17)
7r s —s S—$1

1.e.
&

sup

E(s,t) s)'~

s t—
E(s,t) (s

dt .
s t kt—

(3.12)

(3.13)
o (s) & (1+it)/2q & 1/q. (3.18)

Unitarity is not exp/icit in (3.16) when rt/1, but one

may nevertheless show" that E/D is indeed unitary,
whenever n satisfies (3.1). Thus, we have the unitarity
bound

Similarly, to derive the bound (3.8) we begin with the The first step is to control the magnitude of the

inequality integral which appears in Rea. It is decomposed as
follows:

ln(s) —n(s')
I

& lf(s) —f(s')
I

+llnll
E(s,t) E(s', t) dt

(3.14)
s —t s' —t

I' "q{s')n(s')ds' 1
ReI(s) =— — = [Ii+I2+I3+I—,]

7r $ —$

After these remarks, it is easy to state conditions
on f and E which guarantee that the E/D equation has
a unique solution in Z with the properties (3.7) and

(3.8):

Iffll =op),

(1—.) s

n(s') —n(s)
q(s') ds

s —s

I' ~'+" q(s') ds'
+n(s)—

1
7l (] q) s S S

(b)
s —s

lf(s)-f(") I
&og)

Ss

(1—e)s q(s') n(s') ds'—

(3.19)
I

1+e)s- $ $

(c)
s —s

I
E (s,s')

I
& O Q')

SS

By (3.8) and the substitution s'= sx one finds
(3.15)

E(s,t) E(s', t) 1 s—s' '&

(d) — ——, ~«(4)—
„s—t s' —t t" ss'

(e) f is sufliciently small.

IIil &oQ) =O(4) (3 20)

"R.L.Karnock, in Lectnresin Theoretical High Energy Physics,
edited by H. Aly (Wiley-Interscience, Inc., New Pork, 1968),
Chap. 10.
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Also, (3.7) shows that Ip, Ip, and I4 are all 0(llnll).
Hence,

ReI(s) =Og), (3.21)
uniformly in s.

The following analysis proceeds by discussing
separately a neighborhood 0 of the CDD pole. Define

lyi —
ypl &«l(ReDi)' —(«Dp)'I+a'lni —npl

(3.32)

I (ReDi) ' —(ReDp) '
I

«& [2(1+I
P

I )+ I
Re (Ii+Ip) I ]

X I
Re(Ii I2) I

(3.33)

Q —[$1 pl $1+p] i $1 p) 4

CQ= [4,~)—Q.

In Appendix 8 it is shown that
3.22

lln, —n, ll =0(d„), (3.34)
The pole term of (3.17) is bounded in CQ:

C1

suplP(s) I

=— (3.23)

s —s
I (ni —np)(s) —(ni —np)(s') I

&«O(d»)—
$$

(3.35)

We choose
I ci/p I

and g to be so small that

Cy—+sup
I
«I

I
&1.

S

When (3.35) is combined with the argument of Eq.
(3.19) and following, we get

I
R.e(I,—I,) I

=O(d»). (3.36)
(3.24)

From Eqs. (3.30)—(3.36) one finds the required bound
in CO:

This means that ReD(s) WO when s is in CQ, and that
o (s) may be given a small bound for s in that region. In
0, on the other hand, Rea may vanish and we have
only the large unitary bound (3.18).

In the region CQ of good behavior, we have

2ll(1 —~)v 'll+8 "llnll'
supls'&ol &« (3.25)
ca (1—

I oi/p I
—sup

I
«I I)'

In 0, on the other hand,

supls'&(oi —op) I
=0(P)d». (3.37)

1 1 1

(Vinp)' (3.38)

In 0 the situation is more delicate, since we must be
able to bound 1/yi in spite of a possible zero of ReDi,
and because the pole term I' occurs in the numerator
via (3.33). We bound 1/yi by forbidding n(s) to vanish
in Q. Then

It follows that

1
suplo.

l «&

g($1 p) gl
(3.26)

In(s) I &np)0, $&Q.

Presently we shall describe the method for preventing
zeros of n in Q, which gives an np vanishing as P:

lloll =sup I""oI+""sup Io I
no=0(P). (3.39)

=0[max(II1 nil& P' "")] To handle the pole term P in (3.33), we pick out a
subset 8 of Q as follows:

We see that the set I,i of Sec. II is mapped into 5& by
the N/D operator, provided the quantities f, p, and

I
c&/p

I
are suKciently small, i.e. ,

(3.28)

Next we must establish the contraction property
(2.29a) of the N/D operator: For all (pi, o i) and (pp, o p)

in Si, we must have

S=(~l loi/pl & IPI &3).

In 0 we employ the bound

IP I/yi& 3/(ginp)', $&e.

(3.40)

(3.41)

IIN(oi, pi) —N(o. ,pp) II

«& ~ max(llpi —
ppll, Ilo i opII) =~d—», ~—(1. (3.29)

We write o = x/y, y= I Dl'. Then

( & 3, sg Q —0, (3.42)
yi [(1—ReIi)/P —1]'

since
I
1 ReIil (» I

P
I

~~ 3. Thus, supa Io&
= 0(dip/npP), and

Ioi—opl ««(1/yi)(l» —»I+oplyi —ypl), (3.30)
lloi —

opll = 0(P+ p'I'np ')d» (3.43)
1—

n

I &1 &2
I

«& I
(«Di)' —(ReD2) I + Q I ni np

I

2g 2

X
I
ni+np I, (3.31)

If we take p=0(P"), X)4, then for suKciently small f
we have the required contraction property

(3.44)
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2p ' ds' 1
B„(s)=—

4—8'

dt Reg(s', t), (3.45)

h if p is sufficien/or ls —s,
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&2c4 ay

~ '
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employ the identity
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+.—Is —zl'

—ds[n(s) —n(Res)]

fs —al'1+8C1-

)
'

(2.38). Since B„(s) is
H i i hbo hood

t'~ was defined in Eq.

p 'bl t find some closed
ot identically zero in a
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s 1 6~ Sy —6)4) ln w ic

'hQ i h CDD
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all enou h to ensure
'

n in 0 and that n s o
7i — 4

have the same sign in
in 0 That is, we prove existence o a

(3.50)

sup l)t(s)n(s) B„(s)
I ~&—Pp(inf

I
B.(s) I

.

Therefore, we have a lower bound np.

—
p =np, s 0.In(s) I »up(1/~) Linf

I
B.(S) I Po1 =—no,

(3.46)

(3.47)

The first three
show that the
positive, is less
of Eq. (3.8),
expression

terms in t e rach b ket are positive. We
rilalthough not necessari y

the fourth term is majorized y
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81 8C1

1+8C1-

n(s) —n(Rez)
ds

s —Rex Is —Rel
I

(s)n(s) —B„(s)I

&llc —B II+Icil +Illtll xllnll

81 8C1

&O(P)(Ree) '"(
ds

s "Is —si+2ci
)

$—Sy
(3 51)

s')' s —si —2ci
I

' ')

ci/ I
a —si

I
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where
00

di(s, t) =— ds' ——+
I-$ —S S —I p (t,s'),

(4.3)

SiX Ki obtained by adding the conditions

1
h3F cs' —,—+, ip(t, s ) ~

s —s s —u)
(4.12)

1+9 1
ds'p(t, s') lnl 1+

s4

d2(t) =
t —4

As in Ref. 2, one can show that

I
d, (s,t) I

&&O(p) (st) I' ln ——'s ln—'t

I d, (si,h) di(—s2)t) I ~&0(p) ln 'sin 't. (4.5)
sisgh

Since d2(t) and a(t) do not depend onon s it follows that
to E . (4.5) holds also for d(s, t .an equation similar to Eq. ( . o

However, an equation like ~ . ,~4.4~ does not o or
and o (t). Instead, one has 1 1 2 t —4

+ — ln 1+
(66) z' —s z' —u t —6 s' )ld, (t) I

&o(y)t-"

for 4& s& 20, 20& t(~ and

ds'
I

—+ p(t, s') &&0 (4.13
(s —s s u

for 4&~s~&minL4t/(t —16), 16t/(t —4)j, 4~& t~&20 to the
4)—(2.27). Let this subset bedefining equations

H

1

8 XS . Then one can show that 3II maps
t 8 much as in Ref. 1. The on ySx

traction in E . (2.3). In Ref.
a key point was the positivity of the term 1 s —s

his'+s+t 4) for 4&—s(s', t&4. For the isospin-07) S

and -2 states this is now replaced by

for 4~& t& ~, and also

I (t) I
& o(P)Lip.-i'2e. (t)]t-", (4 7)

2 1

t —4 s' —z s'+s
2Q0(s'), (4.14)

where 06i(t)=1 for si —6&&t&~si+6 and ii, ,—e,t, =0 other-
ow following a slight generaliza-

tion of Ref. 2, which is outlined in Appen ix, a
Eqs. (4.4)—(4.7) imply

II li=og2). (4.8)

Fi(s) =
s —4

ch P,I 1+ iF(s,t), (4.10)
( 2t)

s—4)
~ ~

satisfies the inelastic unitarity con ition

ImF, (s) ~& q(s) I
F6(s) I

',

or I= 1 2, 3, . . . , and s~& 16. For the s wave, (4.11) is
f t that Fo(s) agrees with 1V/D,guuaranteed by the act a

and that 0 ~s~& 1 of course.
odeled on Sec. 3 of theThe roof of (4.11) is closely mo e e on c.

f 1. One defines first the subset ofsecond paper in Re . . ne

(4.11)

] choose ~li so small that theHence one can certain' c oose
so thatright-han si e o-h d 'd f Eq. (4.8) is less than 1t, so a

as in Refs. 1 and 2,Next, in a closely similar way, as in
one can show that, given (pi, oi) and (p2, 0.2) belonging

lip
' —p, 'll & og) max(lip —p II, il~ —~,il). (4.9

~ ~

ence if is sma enoug, onence
'

ll h e has proved the condition
~ ~

l the contraction-mapping(2.29b), which compietes e c

to be shown that the positivity constraints
(2.36)—(2.38) suKce to demonstrate a p
wave projection of F(s,t) L q. ( .(2 14)j

h it —4) and s'=2s'/(t —4). In Appendix D,
itis s own a eh that the quantity in large square rac e s
is positive i s s~'f '& &1. For the isospin-1 state, on
simply the term

1 1 2s+t —4
)s' —s s' —u (s' s) (s'+s+t —4)—(4.15)

Ch'du'p(t', u') 2u' )—Qi 1+
t'+u'+s —4 s —4)

'i (4»)
s' —s E s —4)

'

~ ~ ~

r the subtractionw ic ish h
'

a ain positive. Moreovei,
E . (2.3) is non-negative at the fixed p

~ ~

xed oint
2.4 . Thi lloof pi~ gi, as can be seen from Eq. 2. . is

hat d(s t) is non-negative throughout
4& s& maxL4h/(t —16), 16t/(t —4), 20), 4 t( ~, ju

one can certainly arrange that p(t, s)+n(t, s)+Pm(s, t is
non-negative everyw
as in Ref. 1.

of the 1- laneI '
ll we turn to the question o e -pina y, we

of our solu-ana ytici y ot f the partial-wave projection o
2.14 istion. The partial-wave projection of Eq. ( . ) is

6 I

Fi s = —+I 1+it(—1)'jhi(s), (4.16)
71 $ $

where

P ( 2th()=- ch' (t')Ql 1+
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V. APPROACH TO STRONG-COUPLING
PROBLEM

In this section we outline a program for passing into
the physically interesting region of large coupling con-
stants. For the present we discuss only the equations
without subtractions or CDD poles, purely for
simplicity.

Our basic concern is with the Frechet derivative" of
the crossing-unitarity operator. Once we gain control of
this linear operator, we then should be able to take a
step from one point in the Banach space to another
point nearby. V, e shall see that one might, in principle,
generate a "global solution curve" corresponding to
larger and larger values of the coupling.

Dehne the crossing-unitarity operator 4 from Eq.
(2.2) as

C (p., s,t) =p(s, t) —7 d&&dj2

XI).(s; t)ti)t2)der*(s&ti)dv(s)t)) ) (5.1)

where the isospin index I is suppressed, and

1
~

1
d(s, t) =— ds' —+

ir S —S S —Q

X[p(s,t)+Pp(t, s')+v(s', t)+Pv(t, s') J. (5.2)

The equation we wish to solve is

C(p) =0. (5.3)

"For an introduction to the ideas of this section, including
references to mathematical literature, see R. L. Warnock, in
Lecturesirl, Theoretica/ Physics, edited by K. T. Mahanthappa et al.
(Gordon and Breach, Science Publishers, Inc. , New York, 1969),
Vol. 16.

The signatured Froissart-Gribov amplitudes are

Fi+(s) = (1a)t)hi(s) .

The (+) analytic interpolation agrees with (4.16) for
even / and even I, and the (—) interpolation agrees
with (4.16) for odd t and I= 1, except for the s wave,
since the first term in (4.16) is a Kronecker tI at t=0
(assuming that the single-spectral function does not
vanish).

It will be shown that, in our case, the single-spectral
function does not vanish everywhere, so that necessarily
the continuation of the Froissart-Gribov amplitude to
1=0 does not agree with the s wave. This is evident
from (2.16), since 0.(s) attains the unitarity limit
—,'(1+)t) at a point near the CDD pole where ReD==--0.

The other term in (2.16) is of order iP, so that it cannot
cancel a(s) at this point for sufficiently small )P. The
vanishing of Rea near s= s~ is certain when the CDD
residue c& is sufficiently small, since the difference
between Reo and the pole term is uniformly close to
unity.

The Frechet derivative of 4, evaluated at the point p,
operating on a member h(s, t) of our Banach space 8,
is defined by

4)'(p)h(s, t) = —2 Re y~ ~ dtidt2

where

X1&(s; t,tl, t2)&M*(s,tl) g~(s, t2) +h(s, t), (5.4)

X ( j ) 1)t2)gi's'(S)tl), g i'(s))t ) 2(5.6)

Here g& and g2 are related to h& and h2 in the same way
that g is related to h above. The second derivative is a
constant operator, independent of p.

We wish to apply the implicit function theorem to
show that, a small change in the input function v(s, t)
will produce, in general, a small change in the solution
p(s, t). This requires that the inverse C' ' of the Frechet
derivative exist. Thus, we must show that the following
equation has a unique solution in P for every &vQ 8:

C'(p)h(s, t) = co(s, t) . (5.7)

For a, suitably restricted p, this may be done by a
further application of the contraction-mapping
principle. We write C

' =- 1—E, corresponding to
Eq. (5.4). Then solving (5.7) is equivalent to finding a
fixed point of the mapping

Eh+a) ~h'. (5.8)

First we note that for any fixed co, (5.8) takes P into
itself. That is clear from the work. of Sec. IV. Further-
more, if hi, h2&8, then

and

where

hi' —h2'= E'(hi —h2)

llhi' —h 'll(ll&flxllhi —h II,

II&II = sup II&xll / II*II.

(5.9)

(5.10)

(5.11)

Again, by Sec. IV we know that IIXII = 0()p), so that for
sufficiently small )p, (5.8) is a contraction mapping. It
follows that for small )p there is one and only one solution
of (5.7) for each cu, i.e., C' ' exists.

To apply the implicit function theorem we multiply
the inelastic function v(s, t) by a real parameter X, and
consider the corresponding equation

C(~,p-) = o. (5.12)

1 t 1
g(s, t) =— ds'

I

—+ Lh(s', t)+ph(t, s')]. (5.5)
7l' S —S S —I

The second Frechet derivative, which acts in SX8,
is given by

C "hih~(s, t) = —2 Re yM ~
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The operator X, p —+ C(X,p) is a mapping from RX 8
into 8, where R is the real line. Suppose that we have
a solution po for some Xo.

method is based on the iteration

p-+i= p- —C"(pp) C'(p-), (5.16)

C( p pp)=0. (5.13) which just amounts to successive linearizations of
(5.15). Suppose pi is so close to pp that

We note that C(X,p) possesses derivatives of all orders
with respect to X and p. In fact, all derivatives beyond
the second vanish. If, in addition, the derivative with
respect to p at (Xp,pp) has an inverse, then the implicit
function theorem" guarantees existence of a function
p(X) in some neighborhood G of Xp such that

(i) C (X,p(X))=0, XgG

(ii) p(xp) = po

(iii) pP) has derivatives of all orders.

(5.14)

We have proved the existence of the inverse C-, '(Xp,pp)
for small f, so in that case the conclusions (5.14) follow.
We expect that the inverse will exist at most points
(Xp,pp) even when f is not small, and, therefore, that
there will be an infinitely differentiable solution curve
p(X) passing through almost every solution pp.

The problem of how to compute the inverse of the
Frechet derivative at large f is not yet solved; nor do
we have a proof of its existence when P is large. To solve
these problems, which do not seem insuperable, we must
master the linear, multidimensional, singular, integral
equation (5.7) in the region where its kernel is large.
The equation is of an unfamiliar type, but we shall soon
see that an understanding of its properties will be
important for further progress.

In applying the implicit function theorem we may
consider Frechet derivatives with respect to p(s, t)
instead of the simple derivatives with respect to X. Once
more, C(v,p) is infinitely differentiable with respect to
both variables, and if C; '(op, pp) exists, we find that
there is a solution curve p(r) having Frechet derivatives
with respect to v of all orders.

We see that, in general, a small change bv in v will

produce a new solution p(mp+bv) from a given solution

p(vp). If we knew how to compute this new solution, we

would have a procedure for following our weak-coupling
(small-m) solution into the strong-coupling (large-o)
domain. The Newton-Kantorovich method, ""which
is a generalization to Banach space of the classical
Newton procedure, provides a speci6c means of com-
puting the new solution. For any given inelastic function
we wish to solve

C(p) =0

when an approximate solution pp is known (here we
suppress reference to X or r). The approximate solution

po may be, for example, an exact solution for a smaller
value of v. The (modified) Newton-Kantorovich

"J.Dieudonne, Fogndations of Modern Analysis (Academic
Press Inc. , New York, 1960), Theorems (10.2.1) and (10.2.3).

L. V. Kantorovich and G. P. Akilov, FNnctiona/ Analysis in
Normed Spaces (PerLamon Press Ltd. , Oxford, 1964l.

dp
Pp =P(~,)y— (Z —I,),

dA. )„
(5.19)

for X near Xp. By differentiating C(Ii,p(X))=0 we may
calculate dp/dX in terms of quantities that are already
required for the Newton-Kantorovich procedure:

dp— = —C;-'(I o,p-(~o))C (~.,p(~.))
0

(5.20)

In practice, it may occur that, as X is increased step
by step by successive applications of the Newton-
Kantorovich method, one eventually gets to a point
where Eq. (5.7) is ill conditioned, i.e., where C'(p) ' no
longer exists. This does not necessarily mean that one
cannot reach larger values of X: One may be able to
skirt the bad point by going out into the complex X

plane, and then returning to the real axis beyond the
point of ill condition (which need not correspond to a
singularity of the solution, considered as a function
of X). To show that this is a sensible procedure, we now
demonstrate that p(s, t) is holomorphic in X at fixed s,t
for suKciently small IXI. Consequently, an analytic
continuation exists which should allow one to attain
large, real vat.ues of X. First we must say what we mean
by a solution of (5.3) at complex X. In place of (5.2)
we write

1 t 1
d(s, t;I~) =— ds'I —+

7r ks' —s s' —u

&&I p( ts; X)+Pp(t s', 3)yap(s', t)/APED(t, s')j. (5.21)

In Eq. (5.1) the factor dsr*(s, ti)dier(s, ts) is replaced by

dsr (s, ti& X )dp'(s, tp, X), (5.22)

while the first term p(s, t) is replaced by p(s, t; &). Now
if we begin our iterative solution of the resulting equa-
tion with a polynomial in X—for instance, the trivial
one p=0—then every iterate p„will be a polynomial

Ilpi —po ll &&Ilc"(po) 'll & flc"'ll & l. (5.17)

Then by Kantorovich's theorem'~ one knows that there
is a unique solution of (5.15) in the closed ball

II@
—

Boff ~ 2IIPi —Poll ~

Instead of taking po to be a solution for a smaller v,
we may make a linear interpolation between one v and
the next. For simplicity, suppose that ~ is altered only
by varying its real multiplier X. Then we may start the
Newton-Kantorovich method with the linear expression
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in g. The estimates which establish the contraction
property of the mapping go through as before, with

~
X~

replacing X in the estimates when 'A is complex. Thus
the sequence {p„(st; X)}of polynomials in P, is uniformly
bounded in a circle of the X plane

~
X~ &~ho at fixed s, t,

where Xo is the same limit that one has at real X for
validity of the contraction-mapping proof. The uniform
bound comes just from the fact that p„belongs to the
subspace Si Lcf. (2.24)]. It now follows from Vitali's
theorem that the limit of the sequence, p(s, t, X), is ana-
lytic in ~&~ (X„.

Although there may be singularities for larger values
of P, one should in general be able to go round them.
In practice, then, upon hitting a bad point on the real
), axis, one could continue into the complex plane, by
the Newton-Kantorovich method, and then try to get
back to the real axis after a few complex steps. One of
three things could happen:

(1) On reaching the real axis again, p becomes real
again, so that one can then continue along the real axis
as before. In such a case, the point of ill condition of
Eq. (5.7) would correspond either to an isolated
singularity of p or to no singularity at all.

(2) On returning to the real axis, p is complex. This
could happen if there were a branch point on the real
axis, and probably no further continuation would be
possible, consistent with p's being real.

(3) A natural boundary frustrates the attempt to
regain the real axis.

In either of cases (2) or (3), one would not be able to
continue analytically to larger, real values of v. As a
matter of fact, one expects that a barrier, either of
type (2) or (3), will eventually be encountered, since
Martin and Lukaszuk' have shown that analyticity,
crossing, and unitarity imply an absolute bound on the
modulus of the scattering amplitude. Below this barrier,
the Newton-Kantorovich method should suffice for a
computer construction of a solution.

As an alternative to detours into the complex A. plane,
one may sometimes get past a singularity of the Frechet
derivative by means of a procedure due to Anselone
and Moore. ' This "change of parameter" method is
discussed in Ref. 15.

Finally, we note that the Frechet derivative (5.4) is
not expected to have an inverse when evaluated at a
CDD-type solution p of the sort discussed in Secs.
II—IV. One cannot, therefore, follow a CDD solution to
large couplings using the equations employed in this
section. Instead, we must compute Frechet derivatives
of the coupled mappings M and E defined in Sec. II.
A Newton-Kantorovich iteration based on those
derivatives can be used to follow a CDD solution, with
either fixed, or variable CDD parameters.

At large values of n(s, t) there may be problems in
enforcing the unitarity constraints in the inelastic
region, as well as the possible entry of ghosts into the
cV/D sector. Hopefully, one can use the freedom in
choosing CDD parameters and the form of v(s, t) and
it(s) to keep these difhculties in abeyance.

ACKNOWLEDGMENT

One of us (D.A.) would like to thank Dr. K. C. Wali
for his hospitality at the Argonne National Laboratory,
where this work was performed.

A(s) & 0(P) (—s)
—'~, s ~ —~ . (A1)

This is a straightforward deduction from Eq. (2.1p),
if the following bounds from Secs. III and IV are
invoked:

's —s
I p(s, t) —p(s', t) I O(y)—

ss $

(A2)

The s' integral is majorized easily; the principal-value
integral with denominator s' —u, 0~(N(~, is treated
by the technique of Eq. (3.19), while a, bound on the
logarithm term Inay be read off by means of the change
of variable s' ~ x, s'= (t —4)x. The three terms of the s'
integral areseen tobeof orders (—st) &, (ut) ", and t '&,

respectively, and when these bounds are integrated
over t, the result (A1) is apparent.

It is now immediate to establish (3.15a)—(3.15d) for
the left-cut parts of f and E; the latter are denoted
by fr, and EI,. We note two simple lemmas, (A3) and
(A4). Without loss of generality we take s) s' to prove
that

I
Bl.(s) Bl,(s')

I

1 " A(u)du
s —s

7f
'

~ I—S Q —S

$ —s&Og)—
$ St'2p

APPENDIX A

In this Appendix we wish to verify properties (3.15a)—
(3.15d) of the kernel E and the inhomogeneous term f
of the N/D integral equation. First, one shows that the
discontinuity 6 over the s-wave left cut is bounded
as follows:

» A. Martin and L. Lukaszuk, Nuovo Cimento 52A, 122 (1967).» P. M. Anselone and R. H. Moore, J. Math. Anal. Appl. 13,
4'76 (1966).

s-s' "
&o(p)—

ss
(A3)
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B~(s) B—~(t) B~(") B—~(t)

S' —t

1 ' A(u)du
Is —s I—

„(u—s) (u —s') (u —t)

$ —s 1 dx&OQ)—
s ts" x' (x—1)

1s—s' 2~

&~Op)——
SS

(A4)

=o(4),
Bz, (s) BI.(s')—If~(s) —f~(") I

&
'(t (s)

-B.()—B.( ) B.(")—B.( )-
Cy

S—Sy S —Sy

(AS)

With these results and our assumptions a oabout ~cf.
(2.30) and (2.31)], we have

llf~ll = sup Is'"f~(s)
I

4(' s(oo

s2 Br, (s) BL,(s))—
=sup BI.(s)+('r-

e(s) S—Sy

s —s / 2

B,(s) —B,(")I
& O(llyll)—

1—)t(s)
(s) =

2xq(s)

(A9)

This follows from a well-known theorem on Holder
cont1nu1 y o a't f Cauchy integrals with density unctions

e ofvanishing at the end points (make the change o
val la e $=.' bl =1/t and apply the theorem of Sec. in

el of theRef. 4). We now study Bz'(s) with the he p o
identity

P(s) —P(s') = (s —s') P'[xs+ (1—x)s']dx. (A10)

It is useful to compute Bg'(s) from the formula,

To complete the proof of the bounds (3.15), we shall
prove that the right-cut: terms, fz and ICR, obey con i-
tions similar to (A5)—(AS). The only difference will be
h ' in (AS) is replaced by t ~, X+2t()1. I'irst we

note that the Holder continuity of )t, Eq. ( . ),
the end-point conditions )t(16)= q(~) = 1 imply a
similar Holder continuity of the right-cut integral 8&.

B~(s)=
+fi(s') [n(") n(s)] ~& O—(4) —, (A6)

SS

It follows directly from (A3), (A4), and (233) that

"+"4(t) —4 (s)

(1—e) s

P(t)dt-
+ —,0- e(1. (A11)

I Kr.(s,s')
I

I
B,(.) —B,(")

I

& og) —,
vr rt(s)

Kl, (s,t) Kl.(s', t)

S—t S' —t

(A7
The result is

2(t (s)
B~'(s) = +

es

(1+c)s-

"+" 4(t) 4(s) ~4—
ds t —s

(A12)

1 q(s') Br,(s) —BI.(t) Bz,(s') BI.(t)—
n q(s) s t—

8 (s') B(t) g(s') —g(z))—
s' t g(s')—

After two applications of (A10) the integral in (A12)
becomes

(1+e)s 1 1

dt dy xdxy"[xyt+(1 —xy)s]. (A13)

E . (2.31). Supposing that s(s', we havess

21 2 S —S

I B~'(s) —B '(")
I

&- -
I ~(s) —0(s') I+- ~(s') —,

$

yo(II@II)
(1+e)s

1—e)s

x(1—xy)'
I
s —s'

I

'"

[x t(1—xy) s]')"[xyt, + (1—xy) s']')"[xyt+ (1—xy) s]'0 0
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1 s—s 2'

I
$ $$

1 1 (
(1—xy) '&(1—

waxy)
'

0 0

1s —s' 2I'1 2e

s (1—e)'$$I
(1—xy)'~(1—e) s

. In the third factor,rs of the denominator. In e4
' ' tin theist twofactorso t edlscal ding xp

hei te alis 11l (1—e)s. Then t e in'ts smallest va ue — . e in

S

replace t by its sm

(1 s —s' '&

=ol (A15)

s and we conclude thatseen to have similar bounds, an wes in (A14) are readily seen to aveThe first two terms in ar

s —s»1
I
B~'(s) —B~'(")

I «(If@If) —, (A16)

h 1 t '
quality required:re a lication of (A10) give us the last inequNow (A16) and one more application o

Bp s Bg(t) —Bg(s') —Bz(t)
I

1

1—x)t$ I
dxlBg xs+(1—*)tj—B, Lxs+(—

x" s —s' »
&0(ll~ll) d

'-*)'~'"L-"'+('-*)1 x» xs' — '~ xs 1—x)t)"4'-~o xs 1—xt "xs

1 $—$
& o(llyll)-—

1 $—$ 2p

dxx—' (1—x)
—

'&0(fjcgll)—— (A17)

.15a —(3.15d).This is enough to pr

m Ref 4 does not require p
exis .

"ld o t t off',ro riate o erbe deduced from approp
'

without existence of p".

APPENDIX 3
how

'
s. (3.34) and (3.35)how to obtain Eqs.

ation ( .1). I.et ni and n be
solutions of . o

l . The integra equrespective y.

)()=(f -f)()
I" (B —B ) (s) —(B —B )

Is —s

«uired II%If&1, t»s yield~Since we have already require

llfi —f2ll+ II&»ll && llnill
(&4)

'
ns of v(s, t) and81—82, the contributions o

s ar. In other respects the anaysis

endix A implies thatTherefore, Appen ix im

l~.Ii=0(d.),llfi —
f2ll o(d»),

d»= maxL lit i—t 2ll, if~i —~2

»nce IJIt2II and llnill a«Since 2 e 0(P), Eq. (B4) yields (3.34:
n —n, ll =0(d„).

(&5)

2ps—s

fl i

82 to treat the HolderIn a similar waya we can use o

Th lt (3.35)witth 8 —82 replacing 8. e

n q(s)
Is —s

")( — )( ')d '. (»)ps ni —nu Qj —B2 S —S1—S2 $ni —ng — — s' &0(d»)-

n —n2 ——fi—fp+Ei2ni+E2(ni —n2,111

Jfni —n2IJ ~& Jl fi—f2—2ll+ fl&i2JJ x flnifl

ll&.fix llni
—»II. (

'
n and then takea shorter notation, anWe write this in a s o

(82)
norms

APPENDIX C

's A endix, it will be shown that Eqs.s. 4.4)—(4.7)
imply Eq. (4.8). One cer ain

"ln 'sin 'tld(.,t) I &og)((.t—
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The double integral (2.2) contains the quadratic form
d*(s,t~)d(s, t2), which can be split into three terms
corresponding to the two terms of Eq. (C1) and the
cross term. The 6rst gives an integral that has already
been treated in Refs. 1 and 2. The second term can be
shown to give an integral that is bounded by

The Darboux-Christoffel identity is

——Z (2t+1)&~(s)e~(s')
s —s

I.+1
L& + ( )Q ( ') —~ ( )e + ( ')1 (D2)

OQ) (st)
—2~ lnt, (C2)

which is not greater than a term of the required form For L=1, this gives

O(P) (st) "ln 's ln 't. (C3) —2'o(s)eo(s') —3~i(s)ei(s')
Note the importance of the extra inverse powers of t,
which allow both the ln '$ and ln 't factors to be
fabricated. The factor 1+o "'Oo(t) disappears, since the
double integral produces a factor ~'~' from the integra-
tion of Ho(t~)8a(t2), which more than cancels the coefFi-
cient o '. Note that 1+o 'ea(t) could not have been
handled: The reason is essentially because of the inverse
square-root kernel in the t2 integration. The cross term
from (C1) is certainly majorized by

O(f)s & ln 's (toto) "ln 'tz ln 'to $1+o 'I'8&(t2)$ (C4)

2=—,—L&o(s)Q~(s') —~~(s)Qo(s')) (D3)

Hence, on replacing s by —2', one finds

—&o(s)eo(s')+3~x(s)ex(s' )s'+s
2

=—,—L&2(s)Q~(-")+~~(s)eo(s')] (D4)
s'

1
+—,—2eo(s')

s s s+3It'(» t~) —t'(» to)
I

and this immediately yields a bound of the form (C3). Add (D3) and (D4):
In a similar way, by considering the Holder-continuity

condition (4.5) and the bound (C1), one can show that

&O(P)
— s,—s, ~ ti —t2 ~-

+ ln '8 in 't. (CS)
$1$2~ t lt28

APPENDIX D

2
(L~2(s) ~1(s)jel(s) ++1(s)LQ1(s ) Q2(s )3)

2
+—,—5~2(s)e~(s')+~~(s)e2(s')] (D3)

3' 3

(D1) and2Qo(s') & O.
s' —s s'+s

In this Appendix, it will be shown that, if 1&~s(z, This proves (D1), since
then

1 ~o(s)~&~~(s) &1,
(D6)


