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The problem of the #-p mass difference is carefully analyzed in the framework of dispersion theory. The
author has studied the models recently used to obtain interesting properties of the electroproduction struc-
ture functions, in order to calculate an important piece of the mass shift coming from the subtraction con-
stant that entersinto the dispersion relation for the spin-nonflip forward Compton amplitude of the nucleon.
It was hoped that in some simple model one might enhance this piece in the right direction and thereby
obtain at least the required sign reversal. It is shown that this is not so. Thus, unless the contributions of
the higher resonance states (in addition to the nucleon pole) or those of the fixed poles to the Compton
amplitude are important, the #-p mass shift cannot be understood from the viewpoint of dispersion theory.

HE problem of calculating the electromagnetic
mass differences of hadrons within an isomultiplet
has turned out to be very complicated. It is well known
that the #-p or K™-K° mass shifts of order o with only
the lowest states retained in the self-energy diagrams
yield the wrong sign,! whereas the same procedure gives
the correct magnitude and sign for the a*-x® mass
difference.?

In a rather convincing argument based on dispersion
theory, Harari® has shown that if the high-energy be-
havior of the forward Compton amplitude is controlled
by the crossed-channel Regge exchanges, then the spin-
nonflip amplitude [#1(»,¢%] in the Cottingham formula
must satisfy a once-subtracted dispersion relation in
the energy variable for all A7=1 mass differences such
as the #-p mass splitting. On the other hand, the “
subtraction hypothesis” may hold for all A7=2 mass
shifts such as the #™#® problem with the standard
assumption, in view of the absence of low-lying 7=2
mesons, that the /=2 Regge intercept ar—.(t=0)<0.
The unknown subtraction constants present in A7/=1
mass shifts may be identified with the “tadpole” terms
proposed by Coleman and Glashow.!

Strong objections have been raised against all the
#-p mass splitting calculations reported in the literature.*
In this paper we show that it is not possible to under-
stand the #-p mass difference of order « in the frame-
work of dispersion theory in a natural way with the
customary approximation of neglecting the fixed I=1,
J=0 poles in the complex angular momentum plane
and the higher 7=% nucleon resonances and multi-
particle intermediate states in the dispersion integral.
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Recently Gross and Pagels® (GP) systematically
analyzed the problem of electromagnetic mass differ-
ences and attempted to estimate the subtraction-
constant contributions. Let us briefly review the central
part of their work.

To order «, the electromagnetic self-energy of a
hadron is

,L' 0
om=—-
81 )

Oy
y T,L,,<g2,v) s
g2 —ie

dq
where T',,(¢%») is the forward Compton amplitude of a
photon of mass ¢% and lab energy v=—p-¢/M scattered
from a hadron of mass # and four-momentum p. We
are free to choose the Feynman gauge for the photon
propagator, since 7', is gauge-invariant. Lorentz and
gauge invariance of 7', (after summing over the hadron
spins) allows us to express it in terms of only two in-
variant amplitudes$:

Tu(g® ) = t(g% V) (4?0 —qug 1 Hta(g%v)
X208+ (/M) pupt (/M) (pugt pog.) 1. (1)

By rotating the integration contour in the ¢, plane in a
counterclockwise direction through ix(v—i») and
carrying out the angular integrations, Cottingham? ob-
tained an elegant formula for the #-p mass shift:

= dg’
AM =omp— = —— / dv(g?—v?)1/2

X[392t1<“(92,iV) —(P+2960(¢%i)]. (2)

The time-ordered product of two electromagnetic cur-
rents in the Compton amplitudes contains pieces of iso-
spin 0, 1, and 2. The /=0 part cancels out in mass-
difference problems, the /=2 part cannot contribute
to mass shifts of /=13 objects, and therefore the n-p
mass difference transforms like a pure 7=1 object.

In presence of fixed /=0 poles in the complex J plane,

the high-energy behavior of the two invariant Compton

®D. J. Gross and H. Pagels, Phys. Rev. 172, 1381 (1968).
There is a small printing error in Eq. (2. 15) of this paper.

6 For details, see Cottingham’s paper in Ref. 1. We are using
the Pauli metric.
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amplitudes is given by
[1(1)((12,1}) - R1(1)(q2) +61(1)(q2)yau(0) ,

3
150 (g2 p) —> Ry (q2)y—24-BoD (g2)pear©—2, )

y—>00

The superscripts refer to the isospin exchanged in the
¢ channel. For the present, we confine our attention to
Al=1 mass differences only, especially the neutron-
proton problem. The R; 2™ (¢?) are related to the resi-
dues of the I'=1, J=0 fixed pole; B1,:V(¢?) are the
residues of the leading charge conjugation even natural-
parity /=1 Regge pole, and the =0 intercept of this
trajectory is a4,(0)>0.4.
GP? introduce the function

HO(gw)= 16D () —[810(¢")/B:V V(%) . (4)

From Eq. (3) it is clear that the 4,° trajectory contribu-
tion cancels out in Eq. (4), and consequently H,®(g2%»)
has improved the high-energy behavior at the expense
of introducing the ratio of Regge residues.

The fixed-¢? dispersion relations in » for the Compton
amplitudes, after separating out the pole terms, have
been written down by several authors” and are given by

16M%2f,0(q?)

BO(g) =6 (g50)+
(g —4M%?)

© Imit (P (g%p")
_ M
/2 V2" 2—p?)
and (5)
AM@f20(g?) 1 = ImiV(g%)
w0 = LI
@P—4AM»: 7w ), V22

We have used the crossing symmetry for both the
amplitudes and have subtracted the £,V (r,¢%) dispersion
relation at v=0; f1,,®(¢?) are certain combinations of
the electric and magnetic form factors of the nucleon,
M is the nucleon mass, and », is the inelastic threshold.
So, the dispersion relation for H ¥ (¢2) is®

B (g% Mg £,V (g")
2(1)((]2) —AM 2
BV (%) 4Mq°f2 (¢
B2 (q?) 4M (q* —4M )
1 = ImH®(g2")

H®(g*w) =Ri*(g*) — R, (g

dv'?.  (6)
T V22—l

From the Cottingham formula [Eq. (2)], the contribu-
tion of the subtraction constant to the #-p mass shift is

7 See Refs. 3 and 5, for example.
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dq
AMgub——~ / dv(g*—v)*[3¢°1'(¢%0) ]
=— / dg*q*1 M (¢%,0)
8Jo

3 00
- / APEHD(@0). (7)
8/
Equation (6) leads to

3 0
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and AM’, and AM'ipe are the nucleon pole and con-
tinuum contribution, respectively.
The net expression for the mass shift is

=AM = AMsub+ AMelo+ AMinelo
= AM91+ AMinel+ AMﬁxed pole+ AMRegge ) (1 1)

where AM =AM’ 4+ AM )% and similarly for AM i,i;
AM ° and AMi,e° are the contributions of terms not
involving the subtraction term in Eq. (5).

The elastic piece coming from the nucleon pole con-
tribution has been calculated by several authors!:

AM ==+0.8 MeV.

Mp—Mm

(12)

The well-known 1236-MeV nucleon resonance does not
contribute because of isospin. The. somewhat higher
I=% nucleon resonances and even the multiparticle
states can certainly contribute, but it is almost impossi-
ble to make a reliable quantitative estimate of their
contributions. For the moment, we ignore AM i1 and
shall make further comments later on in this connection.

Next, we study the AM regee piece coming from the
subtraction-term contribution. For this, we require in-
formation regarding the ratio of Regge residues. GP?
consider crossing relations between s and ¢ channels and
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the virtual-photon helicity decompositions to obtain

Fy2(s,0)+(v%/ %) Foo*(5,0)

¢ ( 2,”):
! q V2+q2
=R1(1)(q2)+.31(1)(92)1,0!/12(0)
and (13)
V2F++s(.\',0) —VZF()()S(S,O)
via(ghy) =

V2+q2
=Ry (g2) B2 (g2)prxa2®,

The subscripts +, —, and O refer to virtual-photon
helicities. The (»?*4-¢% in the denominator gets rid of
kinematic singularities. Thus, in the limit of » —o,

BV (g»H 1 v P(¢?)
B:D(g?) @ vr®(g)—vi V()

(14)

where yr,.V(¢?) refer to the coupling of the A.° tra-
jectory to transverse and longitudinal photons, re-
spectively.

Recently, there has been considerable interest in the
study of electroproduction structure functions W1(¢2%)
and Ws(g%v) which are the absorptive parts of the in-
variant Compton amplitudes #(»,¢%) and f3(v,¢?).5 Let
us first consider the vector-dominance model of the
inelastic electron scattering suggested by Sakurai.’
Since fixed poles are absent from the absorptive parts,®

i) | o)

=lim ,
vrP(g?) "7 orP(gy)

(1)

where o,7(¢%v) are the difference between the total
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cross sections of proton and neutron scattered from
longitudinal or transverse photons, respectively.
In Sakurai’s model®

(g2 (6)( " )2[ (K) =0 mn(K)]
T 1o/ \g*+m,* o o ,

e\ m? \2 ¢ /K\?
RSB
fp 92+mp2 mP2 v

X [‘TPLP(K) _Uan(K)] s
K=v—¢?/2M;

f» is related to the coupling of a p meson to a photon.

oM (gy) ¢ 7\’
=£(K)~*(1— > )
or(g*) mI\  2My

P

(16)

with

To1(K) =0,10(K)
Equations (15) and (16) tell us
v V(g g
T )
vr (g% m,*

When one considers the virtual Compton scattering of
the proton and not the difference between the proton
and neutron scattering, it is possible to fix £(«) by
relating the total photoabsorption cross section for the
proton to the constant approached by »Ws(v,q*) for
large v/¢2.°

In the present calculation, we shall treat £(«) as a
free parameter and study the £() dependence of the
mass shift:

(K

(17

AMRegge=_i /w dg* ) 9*f2(g?)
8MJo 1)~y (g
S Y ALl (18)
8M Jo " gP—m?/E() ’
gy 2 TC @) =G g MG g ~G )]
T gX(g>+4M?)
@ @*(up* —pa?)+4M?
(19)

x [14¢2/0.71 BeV2]ig(g*+4M?)
We have used the standard dipole fit to the nucleon electromagnetic form factors with the usual normalization

8H. D. I. Abarbanel, M. L. Goldberger, and S. B. Treiman, Phys. Rev. Letters 22, 500 (1969); R. Brandt, ibid. 22, 1149
(1969); H. Harari, sbid. 22, 1078 (1969); S. D. Drell, D. J. Levy, and T. M. Yan, ibid. 22, 744 (1969); also see J. D. Bjorken,
Phys. Rev. 179, 1547 (1969).

9 J. J. Sakurai, Phys. Rev. Letters 22, 981 (1969).
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at ¢?=0. Thus,
(up?—pa?)3a = 4
AMRegge= ? dq2 ?
8rM o (¢PH4M)[g*—m,?/E()](1+¢%/0.71)*
3aM q*
- 7> . (20)
2r Jo o (@PHAM[g*—m,?/E()](14¢*/0.71)*
With the dimensionless integration variable y=¢%/m,?,
(up —u,,2)3a my* dy y*
AMRegge:' /
81rM 2M? (ym, >/ AM 1)y —1/&(0 ) ] (ym,2/0.714+1)*
3aM M2 dyy 21)
o AM? / (ym,2/AM2+1) [y —1/£(0 ) [(ym,?/0.7141)4

Because of the presence of squares of the electromag-
netic form factors, we have very strong damping in ¢?
and therefore the low-¢? region is the most important
in the piece of the mass-shift expression under consider-
ation. The vector-dominance model is known to be valid
for low ¢ and hence is expected to work well in the
present application.

We shall have to take the principal parts of the in-
tegrals. The evaluations are lengthy but straightforward.
Because of the Pomeranchuk theorem, £(«) must go to
a constant independent of ». We substitute various
values of £() after carrying out the integrations and
the following set of discouraging numbers emerge.

With £(0)=1, AM Regee~—0.01 MeV, which is far
too small for sign reversal of the over-all mass shift.
From its definition, clearly £( %) may assume negative
values too. () — o corresponds to vz ®(¢2)>yr®(¢?)
considered by GP’ and indeed we recover AM gegeo
~—0.34 MeV from our general expression by setting
#(0) —co. Several cross checks on the evaluation of
integrals have been made. We summarize our results in
Table I. To obtain the correct sign and magnitude of
the #-p mass difference with AMAM o1+ AM Regge, We
need AM gegge==—2.1 MeV. Thus, the expected enhance-
ment of AM gregee required to achieve the sign reversal
does not occur even when 7 (go?)>2y 1P (go?) for some
small ¢? in the neighborhood of m,%; AM Regee merely
oscillates near zero and does not attain large and nega-
tive values in the domain of interest.

It is well known that the application of the Bjorken
limit at large ¢2 applied to the time-ordered product of
two electromagnetic current leads to logarithmically
divergent mass shifts. This divergence comes from
large-¢? contributions and even in a model with

L97u(x)/91,5,(0) J6(x0) =0,
which gives finite mass shifts,10 the ¢? integral is barely
convergent if [9%7,(x)/ 8%, 7,(0)16(x0) %0 and the high-¢?

oM. B. Halpern and G. Segré, Phys. Rev. Letters 19, 611
(1967) ; also see J. D. Bjorken and R. A. Brandt, Phys. Rev, 177,
2331 (1969)

domain is still important. The general feature of dis-
persion calculations, on the other hand, is strong damp-
ing in ¢2 because of the appearance of form factors. If we
demand consistency between the two approaches, the
sum of the coefficients of terms with large negative
powers of ¢? in the dispersion approach must add up to
zero as a consistency condition.!!

Recently Pagels!? has discussed the question of the
convergence of the ¢? integration in the Cottingham
mass-shift formula if the Bjorken scaling law for the
inelastic-electron-scattering structure functions Wy and
W in the limit of large ¢% and » holds, and has shown
that the mass shift is at least logarithmically divergent
unless some remarkable cancellations occur. This con-
clusion depends on the assumption of analyticity of a
partial-wave amplitude in the J plane for ReJ> —1.
Whether such cancellations indeed occur can be
answered by performing difficult experiments. It has
been pointed out by Pagels that the above conclusion
may be avoided if there are fixed poles at J=0.

B In our approach, this divergence (if there is any) is
probably hidden in the piece AM’;pe1. Our experimental
knowledge of the ¢? dependence of the Regge residue
functions and the excitation form factors of resonances
is very little, but the study of the electroproduction of
several nucleon resonances indicates strongly damped
¢ behavior of the relevant form factors, and finite-
energy sum rules (FESR) may be used to infer similar

TasLE I. Calculated results of AM regge for
various values of the parameter £().

£()  AMRegee (MeV) £() AM Regge (MeV)
S —0.34 —0.5 +0.03
2 +0.20 —1 +0.47
1 —0.01 —1.33 —0.13
0.5 +0.72 —2 —0.2
0.1 —0.11

11 R. Chanda, R. N. Mohapatra, and S. Okubo, Phys. Rev.
170, 1344 (1968)
wyy Pagels, Phys. Rev. (to be published).
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behavior of the 4, residue functions. If this strong ¢?
damping is indeed the case, we do not encounter any
divergences.

An alternative approach has been tried by Harari
and Elitzur!® by dropping the scaling assumption for
the 7=1 amplitude and using the duality ideas in the
FESR sense to estimate the Regge residue. They also
conclude that the sign of the #-p mass difference can-
not be explained.

Recently, several authors® have studied the joint
implications of Bjorken (large ¢%) and Regge (large »)
limits on the inelastic-lepton-scattering structure func-
tions. Since W, and W, are the absorptive parts of
Compton amplitudes, they should vanish below the
threshold and one can express the asymptotic behavior
at fixed ¢% and » — as!t

WiO(g*y) — B1 V(%) (v —¢*/2M)*,
p->0
(22)
Wa(ghy) — BV (¢%) (v — g%/ 2M) 2,

where a=ay4,(0) is the {=0 intercept of the leading
C=+1, I=1 Regge trajectory. Assuming that there

exists a nonvanishing Bjorken limit, in the domain of
large ¢?, one obtains®

B1P (%) =MD (a)(1/¢7)=
and (23)
B2 (g%) =AM (@)(1/g%) "
Therefore,
B1V(g%ha) MP(a) 1
B2V (%) _7\2(1)(01) ¢ .

Although we do not expect this result to hold in the
low-¢? domain, let us see if this form of the ratio im-
proves the #-p mass difference in case Eq. (24) holds
down to reasonably small values of ¢2

From Eqgs. (10) and (24), we obtain

(24)

>\1(1) o

3 00
AMRe ez_f dq2q2_
s/, A ()

L. (25)

It is possible to evaluate A1 (a)/A:®P(a) from certain
sum rules involving the structure functions. The well-
known Bjorken inequality for electron scattering, based
on the algebra of currents,!® may be written as

/ SIWa o)+ Wen(g)]>3. (26)
quasi-elastic region

3 H. Harari and M. Elitzur, Weizman Institute of Science,
Israel Report, 1969 (unpublished).

4 R. Brandt (private communication); however, the ratio
MWD (@) /A2® (o) does not change even if we take the asymptotic
behavior as W1® —, . 81D (¢%,0)r* and WW—, o Bo® (g,a)re2.

15 J. D. Bjorken, Phys..Rev. Letters 16, 408 (1966); S. L.
Adler, Phys. Rev. 143, 1144 (1966); for “backward” inequality
see J. D. Bjorken, 7bid. 163, 1767 (1967).
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The diffractive region should not be included on the
left-hand side of this inequality, since the Adler neu-
trino sum rule,'® from which this inequality is derived
by isospin rotations, has a difference between the »p and
7p cross section and the diffractive contributions cancels
out.

Using the quark model with the naive additivity as-
sumption, it is possible to obtain more detailed sum
rules in the g2 —o limit!s:

2
/ & W algtp)=21,
quasi-elastic region

2
/ dv Wa,u(gv)~3.
quasi-elastic region

Equation (27) has also been obtained by Gottfried.!®

The background scattering inequality of Bjorken,
in the case of quark-model space-space component cur-
rent commutators,’® is given by

@7

(28)

©

dy
l¢?| ~;EW1,p(q2,v)+W1_n(q2,v)]> 3.

R

(29)

Using the quark model as before, one obtains the fol-
lowing sum rules for large ¢216:

dv
lg?| —Wis(ghw)~1 (30)
d quasi-elastic region V
an
dv
l¢| —Wan(g*w)~3. (31)

quasi-elastic region V

Now, it is easy to obtain the M(«) parameters from these
sum rules. For example,

N

/ dy W (g2l
vo

(vo=the quasi-elastic threshold), together with Egs.
(22) and (24), yields

(@) H(a—1)

)\2,1,(0[): o
- (N =g/ 2M) 1= Gru—g?/ 210)
Similarly,
N @)= a=1)
3 (N =2/ 2M) = (vo— g2/ 20 )
and
N (@*)*(a—1) .
1L,p= )
LV =g%/20) 1= Gu—g?/200)]]
5 2 (¢)*(a—1)

v LV —g¥/2M) >t —(vg—q?/2M)=1]| g?|

16 J. D. Bjorken, in Proceedings of the International School of
Physics, “Enrico Fermi,” Course IXL, edited by ]. Steinberger
(Academic Press Inc., New York, 1968). See also K. Gottfried,
Phys. Rev. Letters 18, 1174 (1967).
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In the present case, a~0.4.
MP (@) Mpl@) =Mna) ¢
M (@) Aepl@) =Nen(@) [

—1. (32

Since the quark-model sum rules hold for large negative
¢* in our metric, this ratio of parameters leads to

3 £
AMRggge: —gﬁ '/;) q2f2(1)(qz)(iq2= —0.34 MeV.

It is interesting to note the above set of approximation
schemes gives the result obtained by assuming v ®(g?)
~0 or £( ) — in the vector-dominance model.

Srivastava!” attempted to calculate the #-p mass dif-
ference by writing £V (g2%y)=t;1*ole4-8, D (¢?)r*. One
of the objections to this calculation has been that one
is not allowed to use this expression for ¢ (¢2) directly
in the Cottingham formula, since the Regge region does
not enter explicitly in that formula.® However, in the
present approach, we are interested only in the ratio of
the Regge residues and, following Srivastava, we can
use the FESR for its determination. Let the cutoff in
the FESR be N. Then,

N2 (N2)el2
/ dy? Iml2l,p01e(q2,v2) 2182(q2)‘ ,
0

3a

4M g1V (g)

gt —AMY?

tgl,pole(QZ’V2) -

whence
B2V (¢*) =m(g*/ M) (5e) fr V(g )N = (33)
Similarly,
B10(gH) =n(g*/ M) (Ga+1) f2 P (¢)N 72,
Therefore,
81V (¢?) _a+2 fl(l)(qZ)[‘\.‘«—z. -

B:0() @ f20(g?)

Since » must be larger than ¢* in order that Regge be-
havior holds, it is reasonable to choose a cutoff depend-
ent on ¢ A choice of N=¢?/2M, the threshold value
of », produces a strong enhancement in AM gegge, but it
should be noticed that the numerical value of the mass
shift varies very strongly, in fact, as the square of IV,
which is a rather disagreeable feature of this approach.
If we choose a cutoff independent of ¢% then AM gegee=0
for all reasonable values of the cutoff.

Thus, we find that it is impossible to understand the
n-p mass difference in the framework of dispersion
theory in a natural way with the usual assumption that
AM ine1 and AM tixed pole are negligible. It was hoped that

17Y, Srivastava, Phys. Rev. Letters 20, 232 (1968).
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in some simple and reasonable models one might be
able to enhance the AM gegee contribution in the right
direction and thereby obtain at least the required sign
reversal. We have shown that this is not so.

Let us now present a few conjectures regarding this
problem. The failure of the #-p mass difference calcu-
lation in this approach may indicate that the AM ine
piece is in fact quite important. In the past, dispersion
sum rules for virtual Compton scattering of pions
coupled with low-energy theorems for the process were
studied in detail.’® There were indications that only the
lowest-lying states may not be sufficient to satisfy the
sum rules. The present investigation may be considered
as an indication that the same is true for virtual Comp-
ton scattering of nucleons and no accidental cancellation
is taking place. Unfortunately, the lack of any experi-
mental data on the radiative decay widths of the 7=3%
nucleon resonances makes it impossible to estimate
AM inels

There have been some interesting attempts to under-
stand the electromagnetic mass differences using the
so-called feedback mechanism by taking the effect of
electromagnetic mass splittings themselves on the self-
energies due to strong interactions.!® The ‘“driving
term” generated by the electromagnetic field is purely
long-range, but the feedback terms may be both of the
long- and short-range types. The short-range effects
are very difficult to estimate and the results are not
very reliable.

Finally, the fixed-pole contributions to the #-p mass
shift may be non-negligible. However, it seems to us
that no clear statement about fixed poles may be made
at the present time. The demonstration that an /=1,
J=0 fixed pole is present in #,®(¢%v) assumes the ab-
sence of higher states contributing to the absorptive
part of the amplitude.’ No definite statement can be
made regarding RiM(g?), the residue of £4®M(¢%p) at
J=0 fixed pole. Thus, we do not have sufficient reason
to believe that fixed poles alone would account for the
puzzling #-p mass shift.

Note added in proof. T. Muta has found the centribu-
tion of the Roper resonance to the p-» mass difference
to be very small.®

It is a pleasure to thank R. Brandt for very valuable
discussions. Thanks are also due to C.-H. Woo and
L. J. Swank for encouragement and to D. R. Divgi
for some help in the computations.

18 See Ref. 10. K. C. Gupta and J. S. Vaisya [ Phys. Rev. 176,
2125 (1968)7] argue that that the logarithmic divergence of the
pion mass shift indicates that subtraction is required in virtual
-7 scattering dispersion integrals. This is not true, since the
divergence in the mass shift comes from the high-¢? contribution,
which has nothing to do with the question of subtraction in dis-
persion relations in the » variable; the large-» behavior is given
by Regge theory.

19 See, for example, G. Barton and D. Dare, Phys. Rev. 150, 1220
(1966); S. L. Cohen and C. R. Hagen, bid. 157, 1344 (1967).

20T, Muta, Phys. Rev. 171, 1661 (1968).



