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A model for interacting single-mode electromagnetic radiation and matter consisting of N two-level
particles is solved exactly using a representation in which the creation and destruction operators for the
field act by multiplication and differentiation, respectively. The model includes off-resonant interactions.
Closed-form expressions can be given for some special cases. The solutions are transformed to the more
familiar Fock and Schrodinger representations. Numerical results are given to indicate the behavior of the
solutions. An equation for a generating function is derived which would give solutions of the (algebraic)
matrix equation to which the problem has been reduced.

I. INTRODUCTION: MODEL AND
REPRESENTATIONS

HE purpose of this paper is to give the exact solu-
tion for a quantum model of interacting radiation

and matter. As a physical model we take the following:
Consider a collection of particles —S in number—
interacting with an electromagnetic (EM) radiation
6eld consisting of a single mode in some region of space.
The presence of the single mode can be considered as due
to a resonant structure of some sort. The particles
interact with each other only through the radiation
field. The energy separation of the levels need not cor-
respond exactly to the quantum energy of the radiation
field. We may write the Hamiltonian as K=Kf+3C, ,
where Kf ——era~a is the "free" radiation field Hamil-
tonian (we use Pi=c=1) and K; represents the inter-
action with the particles. As a speci6c example, con-
sider that the interaction is through a magnetic dipole.
Assume that the jth particle has a magnetic mo-
ment p, and a gyromagnetic ratio y such that p; = —yS, ,

where S, is the particle angular momentum. Then
X;= —p; Ir;. H(x, ), where the summation is over all

particles and x; is the position of the jth particle. II
is the (time-dependent) magnetic field at the particle.
If we now assume that II is essentially constant over
the whole collection (which implies the collection
occupies a small portion of the resonant cavity), then
R;= —H P, tr, =yH S, where S—=P, S, is the sum of
the individual particle angular momenta. Ke assume
herein that the particles all have an angular momen-
tum amplitude of ~.

For the 6eld, assume

H= Hp +esH(te cross/+ es slnppI),

where the ~; are orthogonal unit vectors, i.e., a static
field IIO along the 3 axis and a circularly polarized
transverse field. The transverse field can be written (so
as to display the positive- and negative-frequency parts
for second-quantization purposes) as

Hp ——(Hi/&2)(e '"'a~+ e'"'e ),
* Supported in part by the Atomic Energy Commission.

where e~= (e—i&ice)/V2. The x dependence (in the entire
cavity —not the sample) is contained in Hi. When we

quantize the 6eld, it becomes

Hp ——(E'/v2)(as~+a e ),
where E' is a constant. If we define in the usual way

5~———', (St&iSs),

then S Can be Written aS S,e,+&2(e 5++ e+5 ),
whence

3C;= yH pSs+yE'(aS++atS ) .

(Note that e~ e~=0, e~ e~=1.) Define oip=+yHp,
E=+yE', and our Hamiltonian becomes

BC=cpata+ pppss+&(aS~+atS ) . (1.1)

In addition to the circularly polarized case above, the
model may be taken as a "rotating-wave" approxima-
tion when a linearly polarized radiation 6eld is used. '

The approximation is quite good near resonance. '
The terms in the Hamiltonian (1.1) can be interpreted

in the following way: era~a is the energy of the free
radiation field; &ppSs is a Zeeman splitting into 2s+1
levels caused by the static 6eld Hp, the operator a~S

creates a photon and lowers the material excitation by
one level (or, alternatively, one less particle is excited);
the operator aS+ destroys a photon and raises the
material excitation. The last two terms include the
action of the material on the 6eld and the reaction of
the Geld back on the material system.

To obtain this model Hamiltonian, it is not necessary
that the interaction be via magnetic dipole; electric
dipole interactions are handled analogously. ' The
essential points of the model are that the particles have
effectively two energy levels (generated above by the
Hp term) and tha, t the field operators appear linearly in
the interaction Hamiltonian.

We shall be concerned with finding the eigenvalues
and eigenfunctions of the Hamiltonian (1.1).

See, e.g. , W. H. Louisell, Radiation and Poise in QNantlm
electronics (McGraw-Hill Book Co. , New York, 1964), pp. 212
and 213.

PE. T. Jaynes and F. W. Cummings /Proc. IEEE 5I, 89
{1963)g discuss certain neglected terms in this approximation.
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The above model and equivalent ones have been
considered previously for various purposes. The single-
particle model has been used most, ' and the exact solu-
tion was obtained by Jaynes and Cummings. ' The more
general model was used by Dicke4 and others. ' Recently
Tavis and Cummings' have found the exact solution for
the resonant case Go =cop.

The model is important because it is one of the sim-
plest for radiation-matter interaction and is hence more
tractable than more complicated (albeit more realistic)
models, which, for example, include the effect of spatial
distribution of particles and perhaps randomizing effects
of thermal reservoirs. The solutions found herein can be
used as a starting point for more realistic models. The
solutions may also by themselves reveal facts not ob-
tainable from the usual perturbation treatment of
radiation-matter interaction, especially in the presence
of high-amplitude fields as in lasers.

The unique contributions of this paper are the treat-
ment of the nonresonant model and the use of a realiza-
tion of the field on the Bargmann Hilbert space of
entire functions. ~' In this representation the field
creation and annihilation operators u~ and a are repre-
sented by s* and 8/riz", respectively, where z is the
complex eigenvalue of the annihilation operator a.
Because of its close connection with the coherent-state
description of the field, the representation is appropriate
for "classical fields" where large uncertainties in photon
number exist. Schweber used this representation in a
similar case but found it necessary to make certain ap-
proximations for his model. ' The nonresonant case can
also be treated by an extension of the method of Tavis
and Cummings. "

References 7-9 discuss extensively the continuous
representation used herein for the fields. BrieQy, it is as
follows.

The coherent state Is)," labeled by the complex
number s, satisfies al z) = z

I s), (sl at= (s I
s*, where a and

at are the (boson) field annihilation and creation opera-
tors, respectively. In terms of the Fock states In) which
satisfy ata

I ri& = ri
I
ri»

(mls&=e ~*~"'s"/j/I!.

We have the resolution of the identity

I
z&&z I

d'z =1,

'N. Chandra and H. Prakash, Phys. Rev. Letters 22, 1068
(1969);J. A. Fleck, Jr., Phys. Rev. 149, 309 (1966).

~ R. H. Dicke, Phys. Rev. 93, 99 (1954).' A. D. Gazazyan, Zh. Eksperim. i Teor. Fiz. 51, 1863 (1966)
LEnglish transl. : Soviet Phys. —JETP 24, 1254 (1967)); J. H.
Shirley, Am. J. Phys. 36, 949 (1968), and references therein.

6 M. Tapis and F. W. Cummings, Phys. Rev. 170, 379 (1968).
Also see references of similar models therein.

7 V. Bargmann, Rev. Mod. Phys. 34, 829 (1962).
8 J. R. Klauder and E. C. G. Sudarshan, Fmndumentals of

Quantum Optics (W. A. Benjamin, Inc. , New York, 1968), p. 127.' S. Schweber, Ann. Phys. (N. Y.) 41, 205 {1967).
"Reference 1, Eq. (5.178).
n R. J. Glanber, Phys. Rev. 131,2766 (1963).

where d's= d(Ims)d(Res), and the integral extends
over the entire complex plane. The states lz& are not
orthogonal for different z. For an arbitrary state 1$&
we have, using the solution of the identity, Eq. (1.3),

(z 14) I
z&d".

We define lt(s*) by

(s
I
&)—= e ~'~ "V(z*),

and therefore

lk)=~ ' k(z*)e 't"'lz&d'z

P(s*) must be an entire function" of s*. It serves as a
representation of lit& in the coherent-state expansion.

To find the operator representation, consider an
analytic function of the creation and annihilation opera-
tors Q(at, a). I.et

14'& =-r Q(~', ~) lit &.

Now by Eq. (1.4),

I
p~) —~—i p~(se) e

—
( s( ~/21 z)dsz

We seek an operator function f(z,z*) such that

0'(z*)= f(s,z')0(s*)

Now using Eq. (1.3), we obtain

(z I
0'&

I
z&d"

or

(z I Q(~', ~)14& I
z&d"

Use (1.3) again to expand 1$&:

I~i') =~ '
&z IQ(~', ~) lz'&(" l4) lz&d'zd"' (17)

Since Q is analytic, we can expand in a power series
in a and at. It is easily shown using the properties of
the coherent state that" (sl at

I
s') =s*(sl s') and (sl al s')

= (-',s+rl/c)z*)(s
I
z'). If this is combined with the series

expansion for Q, we obtain

(s I Q(~' &) I
z'& = Q(s* zs+ ~/»*)(z

I
z')

Substitute this in Eq. (1.7) and use Eq. (1.3) to remove
the s' dependence:

IP') =~—' Q(z*, -', z+a/as*)(z

lit�&

lz&«'z.

"Reference 8, p. 114.
"Reference 8, p. 127, Eq. (7-93).
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Use the definition (1.4) to obtain

Iy') =7r—' Q(s* -'z+cj/c!s*)e ~'~'"f(s*) Iz)d'z.

By expanding Q(s*, —,'s+8/Bs*) it can be shown that

Q(s*, 'z+r/-/c/ze)e ~ ~'/'p(s*) =e /'~'/'Q(s*, 8/8 s) pi( s).

Hence,

e ~'"'LQ(z*~~/~z*)4(s*) j I
s)d'z.

P ( z*B—/Bz*) "/e!.
j=0

Another relation we shall need is that between the
continuous complex representation used herein and the
Schrodinger wave function'4:

y(y)
r

(A)
—3/4ey /2A (p, 2y I4)dp

By comparison with Eqs. (1.5) and (1.6) we see that the
desired operator representation is Q(s*,B/Bz*), which is
obtained from the abstract operator Q(ut, a) by replac-
ing at by s* and a by 8/Bs*. For example, exp( —ata) is
represented here by expI s*(—B/Bs*)j, which is identi-
cally equal to

sa=+-,' and one with s3= ——,'. This may obviously be
done in S ways, so there must be S states with
s3= —,'E —1. One of these belongs to the state s= —,'E; the
rest must belong to states with the only other conceiv-
able value of s, s=-,'E—1. Hence there must be 2V —1
such states. By reasoning along this line, we And" that
the degeneracy of the state (s,s3) is

X!(2s+1)

(-',X+s+1)!(-', 1V—s)!

This degeneracy parameter does not enter into the cal-
culations of this paper but would be important, e.g., in
forming distributions of the solutions calculated herein
in thermal equilibrium.

The representation space for the combined matter
and radiation is just the direct product of the continuous
representation for the radiation and the (2s+1)-
dimensional matter representation.

In Sec. II we reduce the solution for arbitrary s to a
matrix eigenvalue problem Subsequent sections con-
sider the transformation of the solutions to more
common representations, treat the matrix equation
analytically for some special cases, and display and
discuss solutions of the matrix problem. Also, a partial
differential equation is derived for a generating function
for the matrix eigenvalues and eigenvectors.

(we put in A explicitly only when dealing with the
Schrodinger representation), where g(y) is the Schro-
dinger wave function, and

I p, 2y) is the coherent state
with real and imaginary parts explicitly indicated, i.e.,
s= (2y+ip)/(2A)'/'. According to Eq. (1.4),

(p, 2y I 1!)= expI —~(4y'+ p')/Aj
XL&(2y —ip)(2A) "'j. (1.9)

The Hamiltonian K of Eq. (1.1) commutes with
the square of the total angular momentum S'=S32
+-,'(S+S +S S+). Therefore K does not connect states
of different s, and we need consider only representations
in which one value of s appears. The complete solution
for the E atoms will then be just an arbitrary combina-
tion of solutions for s=-,'E, —,'E —1, . . ., s, ;„, where
s;„is zero or 1 for Ã even or odd, respectively. Because
of the form of the Hamiltonian we will also take as a
basis for the matter state the state labeled by s3, the
eigenvalue of S//. There are of course 2s+1 such states
for a given value of s.

One should keep in mind that values of s and ss do
not completely specify the atomic states because of the
equivalent ways in which particles may be combined to
form a given value of s and s3. The state s= &S, s3= —,'E
is nondegenerate. The state with s3=2E—1 may be
chosen by picking S—1 particles with their individual

"Reference 8, p. 122, Eg. (7-76).

II. REDUCTION TO ALGEBRAIC FORM

Consider the Hamiltonian (1.1).We use the following
notation: For the states let

2s+1

4(z*)= 2 4 "'(s*)e~,

where the s* dependence represents the field as dis-
cussed in I, and e, is a (2s+1)-dimensional column
vector with zeros everywhere except for a 1 in the jth
row; it represents the matter state having total angular
momentum s and s3=s—j+1.With this particle state
representation, the required particle operators are
represented" by square matrices of dimension 2s+1
having elements

(S3) „=b„„sa=8 (s+1—m),

(S„) „=8(„+i)„Im(2s+1 —m) j'/',
(S-)-= (S+)

where 8 „is the Kronecker 6 and s3 is given by s+1—m.
YVe have ignored the subscript s to simplify notation
since it will be the same throughout. Combining the
above with the representation for the field operators
at —+ s*, a ~ 8/Bs*, and with I1f) ~ it/(s*) in the

"Reference 4, Eq. (20).
16L. I. Schi8, QNuntgm 3fechenics (McGraw-Hill Book Co.,

New York, 1955), 2nd ed., pp. 143-146.
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Hamiltonian (1.1), the eigenvalue equation X
~ f)

= E
~ P) becomes (with x= s~, P &"=dP")/dx)

2m+1

Q {&p&(&)p +&tp&p(s+1 j)—E—$P(') p;
j=1

+Kxf~'~+)0"'+Kf~ ~&"-"~ ~) =o
~

where f,= Lj(2—s+1—j)j"'.This is a vector differential
equation and is equivalent to the 2s+1 coupled scalar
equations

(pxp(&')+ L&pp(s+1 —j) E)f(&—)+Kf, expo' "
+Kjg('+')=0, j=1, 2, . . . , (2s+1). (2.1)

The first and last equations have the simpler forms,
respectively,

(dxg~')+ ((dps E)P(' +—KV2s"'j &'& =0,
(dxg( '+'& (p)os+ E)P—( '+ +KV2s'( ~( '& = 0

the jth equation by x&+' ' we obtain

&p(z+ j—1) U"'+)&op(s+1 —j) E)—U(»+Kf;, U&& ')

+Kf~(v+j ) U "+"= o

The functions P&&'(x) must be entire functions" of
x (—=s*). They can only be so if 7 is an integer n such
that n+ j—1&0 for all j for which U&') WO. If y is not
an integer, P(&'(x) will have a branch point at the origin;
if n+j 1 i—s a negative integer and U(&)&0, f(&')(x) w&ll

have a pole there. Within this restriction n is an
arbitrary integer. Thus there are solutions for n&0,
with all U(j) in general /0; n= —1, U(')=0, U& &

U&3), . . ., /0 in general; and n= —r, U&')= U&2~

=.. .= U('= 0, U('+'), U('+'~, . . . , U("+'~&0 in
general (r= 1, 2, . . . , 2s). Then the solution to (2.1) is an
arbitrary combination of

2s+l

0 ( ) = 2 U "'( *)"+' '

P(i) = U(i)xi+i
7 (2.2)

where U''&'~ is independent of x and p is an arbitrary
constant. After dividing the resulting expression for

since fp fp,+~=——0.
Since, as mentioned in Sec. I, we are only interested

in analytic solutions for the P"), we can look for a solu-

tion which is a power series in x. However, examination
of the different terms of Eqs. (2.1) indicates that the x
dependence is a simple power of x with P(J+') having
one higher power than tt &&'). For such a dependence the
power of x in x) "&, P'&), x&t (' '&, and P(&+') is all the same.
Therefore, we insert the trial solution

for n= —2s, —2s+1, . . ., —1, 0, 1, 2, . . . , where the
U (" for fixed n are to be determined from the set of
equations

)co(n+j 1)+&p—p(s+1 —j)—E )U.o

+Kf; )U„(& '&+K(n'+ j)f U &'+'&=0, (2.3)

where U„(j~=—0 for j&1—n if n&0. Equivalently,
Eq. (2.3) can be written as a matrix eigenvalue equation

LC„—E„ljU=0, (2.4)

where I is the unit matrix of proper order and we have
labeled the eigenvalue 8 to distinguish between those
for different n C„has th. e tridiagonal form

g&

Kf&
0
0

0

K(n+1) f&

g +A&p

Kfp
0

0
K(n+2) f,
g +26&p

Kfp

0 ~ ~ ~

0 ~ ~ ~

K(n+3) fp

Kfp,
K(n+2s) fp,
g„+2sh(p,

(2.5)

where g„=n&p+s&dp= (n+s)(p sAp), &—&p=—&p
—

&pp

that f„k=f„+,. It, is to be understood in (2.5) that if

n(0, the first jn
~

rows and columns are to be replaced

by zeros everywhere before proceeding with the eigen-

value problem

det(C„—E„I)=0, (2.6)

since these elements are the coeKcients of those UU)

in (2.4), which must be zero.
Then for n&0, Eq. (2.6) yields a (2s+1)-degree equa-

tion for the energy eigenvalue E„, and hence 2s+1
values for it, which we denote E„I,. If n&0, the order
of the determinant, and therefore the number of solu-

tions, is reduced. In this case there are 2s+1+n solu-

tions. In all cases we denote the corresponding eigen-

vectors U„~ and the corresponding wave function as

2s+1
Q„&(sp') = Q U &o')(s+) +'—lp. (2.7)

For n=O, 1, 2, . . . , we have /=1, 2, . . . , 2s+1. For
«0, U &"'=0 «r j=1, 2, . . ., &nt and 1= 1, 2, . . . ,
2s+ 1+n.

Since the solutions of Eq. (2.1) must be entire func-
tions, the complete solution must be arbitrary combina-
tions of the solutions (2.7). We therefore expect those
solutions to be a complete set. Using this property, a
certain completeness relation can be shown to exist be-
tween the U„~. Because these vectors are not in general
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orthogonal, this relation can be expressed more simply
after a, transformation to be applied in the next section.

We will see in the next section that n corresponds to
the smallest number of photons we might measure in the
state lI)P„1); that if n&0, we might find all values of s1
from —s to s, but that the negative values of n cor-
respond to states in which there are not enough photons
to excite the higher s3 values even if all are "absorbed";
and that, in particular, the case n= —2s corresponds to
the "vacuum" combined with all particles in their
lowest state. We will also see a slightly more symmetric
form in which to pose the eigenvalue problems (2.4)
and (2.5).

We postpone the normalization to the next section.

III. TRANSFORMATION TO OTHER
REPRESENTATIONS

In this section we transform the solutions (2.7) to
more familiar representations, first to the Fock repre-
sentation, then to the Schrodinger representation.

have

x U "'*Ul) {"~,~„(n+z 1
I
t+—p —1),

where ~, is the transpose (row) vector corresponding to
the column vector e;, and from the orthonormality of
the e, and the Fock states we get

Since the Hamiltonian is Hermitian, the eigenvectors
I P„)must be orthogonal —

assuming the corresponding
energy eigenvalues are not degenerate. If we define new
vectors W„by
lfj nm{j' =[(n+j—1)!]"'Unm{j)/

[p j (n+j ' —1)!
I U„„,{»

I

1]')2 (3.1)

we have the orthonormal condition

A. Fock Representation

Using the resolution of the identity for the Fock
representation,

2s+1
lI nm"'*Wn)z"' = {)mk .

j 1

lf, furthermore, we normalize the U„so that

(3 2)

nl m nl m = nl m
m=O

then using Eqs. (1.2)—(1.4), we obtain

2s+1

p (n+ j—1)!IU„„{»I1—1
j=l

the states lgnm) will be ortllonormal. Assuming this
has been done we have

=1r—1 g
—~z~'

I
s

I
m(m!) —1{11t),(s*)d1s

2s+1

I|t 1)= E lf 1"'~ In+ j—1). (3.3)

Using Eq. (2.7) for Qnl, we obtain

{m) —1(m{)—1/2 P . U 1{1)~. g
—Izlzzm(S+) n+j

We use polar coordinates in the complex plane;
a=re'~, d's=rdrd8. The angle integral yields 2~5 („+,- ».
Using this 8 function in the r integral gives m!/2 for
that integral. Combining, we have

In addition to the orthogonality of the vectors W„l,
we have a completeness relation among them. This ca,n
be shown to be true because of the completeness of the
states

I
)P 1) which we write as

Z. , l Ig-l)(g. ll =l.
Multiply from the left by (n'+g 1I ~, an—d from the
right by ez'In'+j' 1) and obtain, using —the orthog-
onality of the e; and In) states,

'Pnl (m ) Qj {)m{n+j—1) Unl tj &
P 1 P „,1{ )lfi„,l{j')—{),, (3.4)

or
2s+1 2s+1

m=1

X U.1{j)ejln+y —1),

with U„l{j)=—0 for n+j 1(0. (The state e,
I
j'l) is-

perhaps more commonly written as
I
k,s, ) where the s,

value corresponding to the particular value of j is
used. We will continue with the notation we have been
using. ) The states I))t 1) above are not normalized. We

&o«&0 the vectors W„l are complete only in the space
of dimension 2s+1+n.

The state l)pnl) can be interpreted as a, sum of states
with n, n+1, . . ., n+2s photons each paired with
atomic states which have a decrea, sing component of
angular momentum parallel to the static field. Different
combinations of these possible states will have different
energies. We should keep in mind that the states and
energies really have an s dependence which has been
largely suppressed.
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There can be no "negative photon states ". This Note that if we substitute the definition (3.1) for
provides a physical basis for the fact that n+ j—1&0, W„~'i into (2.3), the matrix (2.5) takes on the sym
as discussed in obtaining the solution in the last section. metric form

gn
hg

I 0
0

0

hnl

gn+ +&
h 2

0

0 0
h„2 0

g~+ 264)

h„,2,
h„,2,

g +2sdco

(3 5)

h„;=X[(n+j)j(2s—j+1)]'~',
corresponding to the eigenvalue problem for
analogous to (2.4),

(C„'—Z.I)W =0. (3.6)

Hence
[Xi,X2]=0.

[X„X]=0,
and, therefore, the eigenvectors of BC are just linear com-
binations of the eigenvectors of BC&, which are just
«;~n+ j) with I arbitrary. If such a solution is as-
sumed —with arbitrary coe%cients to be determined
from the requirement that the solution also be an eigen-
vector of 3'.2—we obtain the same condition on the
solution, i.e., Eq. (3.6) with Eq. (3.5).

Note added ir4 proof. It has recently come to my atten-
tion that this approach was used by M. Tavis in his
dissertation, University of California, Riverside, 1968
(unpublished).

B. Schrodinger Representation

The transformation to the Schrodinger representa-
tion could be made from either the Fock states or the
coherent-state continuous representation; we choose the
latter. Using Eqs. (1.8) and (1.9) along with the eigen-
state (2.7), we obtain for the Schrodinger wave func-
tion P i(y)

P i(y) = ,'(vrh) 'i4e&'-i'"
1 4y'+p'q

expJ ——

~ +i 2y ip) "+&—
X g V.(&'& , «~ dp

&2h' 'i
2 s+1

', (7rh) 'I'e &"-'" P V„i&&'«,I„~; i,

The matrix equation (3.6) and (3.5) can also be ob-
tained by an extension of the method of Tavis and
Cummings. ' "If we write the Hamiltonian (1.1) in the
form X=Xi+X2, where

Xi=o~(a a+Sa), X2= E(aS++a S ) —buS3,

it can be easily shown that

where

y —ip
~

~

&2h't')

We make the substitution (=y/A'"' and p= p/&2&»2
and use the binomial expansion. Noting that terms with
odd powers of p yield zero, we obtain after straightfoT-
ward integration

[A:/2]

I„~ghll2 P Q„~/k+1(k 2t( 1)tp—()+1)
L=O

IV. ANALYTIC SOLUTION FOR GENERAL MATRIX
EQUATION —GENERATING-FUNCTION

APPROACH

A formal expression for the eigenvector components
V&&'& or W&», in terms of the (unknown) eigenvalues E,
can be obtained from Eq. (2.3) [or Eq. (2.4)] or Eq.
(3.6), respectively. For example, viewing Eq. (2.3) as a
recursion relation, we can express the U'&) for higher j
successively in terms of U('). Even without knowing the
eigenvalues it can be seen that succeeding equations
(j=1, 2, . . ., 2s+1) are independent (up to the last
one) since each new equation involves a new VU&. For
the general case, however, the expression becomes too
unwieldy to provide any insight, especially since it
still involves the undetermined eigenvalues.

One approach to the solution for the eigenvalues and
eigenvectors in the general case is through the use of a

IV The normalization is that of L. Pauling and E. Wilson,
Introduction to Quantum Mechanics (McGraw-Hill Book Co.,Net York, 1935),p. 81.

where [k/2] means "greatest integer in k/2, "
Ck „is

the binomial coefficient, and I'(l+ —,') is the gamma
function.

If a few of these polynomials are checked, we find,
not unexpectedly, that they are closely related to the
Hermite polynomials" H~. Thus

Ik= (irk) 'nv2 n+'Hk(~)
and

2s+1
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generating function" for the components U&') or lVU).
Consider the solution of the matrix equation

dg/dt= Cg.

The solution can be written formally as

g(t) = exp(Ct) g(0) .
Let

x(0) =y,

(4.1)

(4 2)

(4.3)

a column vector whose ith element is y' (y to the ith
power), and call the resultant solution of (4.1) g(t, y).
Let x be a row vector with elements x'. We define the
generating function G(t, x,y) as

Note that
G(t, x,y)=x g(t,y)=x ec'y

23+1

G(O,x,y) = E (xy)'.

(4.4)

(4 5)

To see the utility of this function, use the complete-
ness of the row and column eigenvectors of C. The
resolution of the identity is," for a nonsingular real
square matrix,

P; U;V, =l, (4.6)

where V; is the left (row) eigenvector and U;is the right
eigenvector, i.e.,

then

I'(x) =x U, =Pi x"U, ~'&,

U, &"' = 8"F/Bx'!.=o.

(4.9)

We want now to obtain the differential equation
obeyed by G in terms of the elements of C. It is neces-
sary to eliminate the radicals f; involved in the coef-
ficients of U"~ in Eq. (2.3). In the manner of Lam-
bropoulos" we transform U by U= AP, where A is the
diagonal matrix 3;,=b,,a;, with

a, = L(2s+ 1—j)!/(j—1)!7't'. (4.10)

The eigenvalue equation becomes CAp= &Ap or
C"P= Ep, where

C"= A 'CA. (4.11)

(If C is symmetric, U;= V,r.) Then

G(t,x,y) =p, ,;x U;V,"ec'U, V,"y,
which becomes upon use of (4.6) and (4.7)

G(t, x,y) =P, x U V "yeE~' (4.8)

Thus we see that if G can be found, an expansion which
exhibits the exponential t dependence in the form (4.8)
will yield the eigenvalues. Furthermore, the x depen-
dence furnishes a generating function for the elements of
the column eigenvectors U;. That is, if we let

CU, =Z;U;, VC=Z, V;. (4.7) C" has the form

/I
n

g~
E(2s)

0

E(n+1) 0
g„+t!,&o E(n+2)

2E(2s—1) g„+26~
0

g-+(j—1)~~
E(j—1)(2s+2—j)

E(n+ j)

0

(4.12)

0
IC(n+2s)

E(2s) g„+2shco.

where the subscript n has again been added in recogni-
tion of the dependence of the matrix on n. The eigen-
values are unchanged by the similarity transformation
(4.11).Note that the eigenvectors P;, like U;, but unlike

W;, will not be orthogonal in general, since C„' of Eq.
(3.5) is real svmmetric but C„", like C„of Eq. (2.5), is
not.

From Eq. (4.1) and the definition of the generating
function, Eq. (4.4), we obtain

0G
=x C "y(t,y) =P;,& x'C, &"X&(t,y).

The right-hand side can be converted by differentiation
with respect to x and redefinition of summation indices
to yield the parabolic partial differential equation

BG(t,x,y) O'G BG
+p(x)—+V(x)G,

Bt 8$2 8$
where

p(x) = —(1/ICx') (2sEx'+ Da)x+ E)
q(x) = —(1/Ex4) Dg„—Dco)x+ E(n —1)7,

with the Dirichlet data

G(0»y)= 2 (*y)',
1

20 P. Lambropoulos, Phys. Rev. 156, 286 (1967).

By using C„",we can write

p, c„,pX, =L(j—1)hco+g„7X;+E(j—1)(2s+2—j)&; i

+E(n+2)xi+i and (from the definition of G)
'8 See, e.g. , P. M. Mathews, I. I. Shapiro, and D. L. Falkoff,

Phys. Rev. 120, 1, (1960). G(t,o,y) = o.
~9 F. B. Hildebrand, Method of App/ied Mathematics (Prentice-

Hall, Inc. , Englewood Clips, N. J., 1965), 2nd ed. , p. 76.
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V. ANALYTIC SOLUTIONS FOR SPECIAL CASES with

The eigenvalues and eigenvectors of any 2&2 matrix
are easily found. Since the characteristic equation for a
3&(3 matrix is a cubic equation in the eigenvalue, these
solutions can also be written out explicitly. For the
resonant case the matrix C from Eq. (3.5) can be solved
simply for any case of dimension up to 5&5. This in-
cludes not only the cases s= ~, 1, —,', 2, n+0, butalso
the cases s) 2, n= —2s+k, k=0, 1, 2, 3, 4. The latter
states will be—with exceptions to be noted in the next
section —the lowest-lying states for a given value of s.
Thus for a system of up to four particles interacting
with the radiation field the exact solution for the reso-
nant case can be written in simple form. The system for
a single particle for the nonresonant case is also simply
displayed. The nonresonant solutions for two particles
(s= 1, a 3X3 matrix) and the resonant solutions for
five Particles (including an s value of oo and hence a
6X6 matrix —but a simple one) can also be written as
solutions of a cubic equation.

The simpler solutions will be given herein in the Fock
representation. The cubic solutions are not given, since
they are too unwieldy to provide much insight without
further work. Note that the eigenvectors are orthogonal
(except in the unlikely case of degeneracy) since C„' is
real symmetric.

where

E„~=(n+-,')(o+Eq„,

I p-+) =e-+oiIn&~e-+oo In+»

)1 =—(a'+n+1) i/', n=— h(d/2E, —
e„=L(~„a )/2~„g'/'.

(5.1)

The case n= —2s yields a single "vacuum" state

A. Single-Particle Case

For the single particle the only allowed states are for
the representation s=2i, n) —1. Using Eq. (3.5), we
obtain two solutions for each n& 0:

l(„o——0, X„g——+EI 2(2n+3)]'/'.

The corresponding normalized states are

Iso)= (2n+ 3)
XC(n+2)'/ .iIn& —(n+1)"'oo In+2&g, (5.5)

Ig+)= I 2(2n+3)j '/'L(n+1)i/'oiIn&

~ (2n+3) '"oo
I
n+1)+ (n+ 2)"'oo

I
n+ 2&]. (5.6)

I if+& will be the lowest-lying state of the three for E)0.
For the case n=0, these results were checked with

those of Tavis and Cummings. '
I
n=0 corresponds to

their c=1; their r is our s. We set their @=0.There is
some ambiguity about their Eq. (2.11b) for Ao for this
case, but it can be determined from their Eq. (2.8)
after Ai andAo are found j

It is interesting to note in this case that the strength
of the coupling constant does not enter into the dis-
tribution among the states of diGerent photon number,
etc. However, examination of Eq. (5.1) will reveal that
for the single-atom case the constant E does enter.
Since this case was calculated for nonresonant condi-
tions, we expect that the resonant restriction in the
s=1 case causes the independence. It can be demon-
strated that this is indeed so by examining the non-
resonant case in detail. There is a simple nonresonant
case which will illustrate the point.

The case n= —2s+1, s& 1 has a 2X2 matrix which
can be solved for the nonresonant case. The result is
quite similar to the single-particle solution. We have

E„i—=E( o,+i)p= (—s+1)(o
+(s—-', )6(os%))o, i, (5.7)

I P(— +i)+) e(— +i)6 I 0&~e(— +i)+ +1l 1&, (5.8)

where ))/,. and eo~ have the same meaning as in Eq. (5.1).
It is therefore clear that E is involved in the distribu-
tion of states in general.

Setting s= 1 above yields the solution for n= —1 for
the two-particle case (and for the case ot a higher num-
ber of particles with s= 1 also).

E—28= —s(do~ I~—2 ) ooayil0) (5.2)
C. Three-Particle Case (at Resonance)

for general s. For the single-particle case, s= —,', we have
Solutions are allowed for s= —,', n+ —1; s= ~3, n+ —3.

(5.3) The solutions for s= —,'have been given in Sec. IV A.
The solutions for s= ~, n& 0 are

E-i= —o(oo, I4-i&= so
I 0).

B. Two-Particle Case E.(= (n+-', )(o—X.i,
The state I)/t) will be an arbitrary combination of

states for which s=0 (which are essentially just pure
photon states, since there can be no interaction) and
states for which s=1. In the latter case the eigenvalues
and eigenvectors can be written explicitly, using
standard solutions for cubic equations. In the sim le
resonant case her =0, the three energies E ~ are

li =aEL5(n+2) J"'
(5.9)

(3 2 (n+3) (n+ 1)—1/2 1/2

k5 (n+2)'

E„) (n+ 1)(o X„), ———

where all combinations of the signs yield the four values.
Take l( i=++, X o=+ —,X„o=——,X 4= —+ to

(5.4) order the energies in ascending or descending order
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E(s)
l)R

8

6.
5-

4 -I
-2

I

2 ~
(I
I- ~

0 I 1

I2
0

~ ~

I

-I
-32

4

~ ~
~ ~

~ ~

~ ~

0-I
-3'

-4
6-5

~ ~
~ ~
~ ~

~ ~ ~
~ ~
~ ~

0

0-6 ~
-8

~ ~ ~

~ ~
~ ~

~ ~
~ ~

0
~ ~

~ ~

0

0

With the choice of signs )(„1=++, )1„2=+—,X„8=——,
)(„8———+, the energies are ordered ascending or
descending. The eigenvectors are

lg-1)=(P-1) '[hlh2h82110& —u2h8. 2li&+h8P. —h, )., I2)
—)(P.2 —0') 84

I 3)+hsP. '—0') 88 I 4)), (5.15)

where h;= E[(g+n)g(5 —j))'" 0'= 24E'(n+1)(n+2),
and the normalization factor P„l is given by

P'= 4[18E9,'(2n'+15n+29) —72E'(Sn'+40n+41)).

The solutions for s=2, n= —1 are conta, ined in the
solutions for s&-28, n= —2s+3:

FzG. f. Energies of low-lying states for eight particles. Numbers
at the top are the values of n. 5 =0, E=0.1..

+(—2s+2) 1 ( + )s) ~(—»+2) 1 s

with the three values for A.

)(2= 0, )(p= ME[2(4s —1))'/'

(5.11)

depending on the sign of E. The normalized eigen-
vectors are

lp. ,&
—(p„,) [h,h2), 2, lo& —h2) ., Ii)

+)(P1'—h)') ~8
I 2) —h8(/(2 —h)2) 8, I 3&), (5.10)

where h, =E[j(4—j)(n+ j))'/2 and the normalization
factor p„l is given by

p'= 4E4P.2(26n2+ 109n+ 143)
—9E'(n+ 1)(n+ 3)(2n+ 7)).

The solutions for s= ~, n= —3, —2 are contained in the
previous sections as specia, l cases. The case s= ~,
n = —1 is contains in the general solution for
n= —2s+2, which is

+(—2s+8)l ( s+3)(s) )((—2sp8)l s

)1 =a E[5(2s—1))'/'
(5.16)

3 '2s(2s —2)
X

5 (2s —1)'

I &( 2s+8) 1) = (p(—2s+8) 1) [hlh2/(82s —2 I 0) h2/( &2s—1I 1)

+)'() '—h ') I2) —h () ' —h '). . I3)), (5.17)

where 1= 1, 2, 3, 4 corresponding to the four values of 1
as before;

h;= E[j(2s—3+j)(4—j))'/'
and

P2= 8E4[/(2(52s2 37s+ 10)——18E2(s—1)s(4s+ 1)).

E. Five-Particle Case (at Resonance)

The cases which allow solutions are s=-,', n+ —1;
s= —,', n) —3; s= —,', n& —5. The s=-~ and 2 cases have
been given, as have the cases s=~, n= —5, —4, —3,—2. The solution for s=-,', n= —1 is contained in the
solutions for s&2, n= —2s+4:

+(—2s+4) l ( S+4)(s) X (—2s+4) 1 s

X3=0,

3 1( 4 q2-1/2 1/2

X i~- 1+—
I

5~i 2 E4s —3)with f+ corresponding to l(+.
For P3,

The normalized eigenvectors are

IlI( 2,+2)2)=(4s—1) ' '[(2s)'/'E'2s 1IO) or"' """"'I'" "'" ~-~E[5(4 3))"
l4'(—2.+»+&= [2(4s—1)) "'[(»—1)'"&2.—1 o&

W(4S —1)'/'s2sl 1)+(2$) / 82s+1 2)), (5.13)
(5.18)

E.l (n+ 2)cu —)(„,, ——(5.14)

A„3=0. The other four values of A. are obtained from

3 q
2- 1/2 1/2

)1=WE[5(2n+5))"' 1&— 1+2
5 2n+52

D. Four-Particle Case (at Resonance)

The cases which allow solutions are s= 0, n+ 0; s= 1,
n& —2; s=2, n& —4. All these are contained in the
earlier sections except for s=2, n+ —1. The solutions
for s= 2, n+ 0 are

I 0(—2s+4)8) = (p( 2s+4) 8) '( [12s(-s—1))'"22s—8 I 0)
—[4s(2s—3))"222, 1I 2)+ [3(2s—3)(2s —1))'/'

X...„I4&), (5.19)

where p'=32s' —48s+9. The states for the other four
values of A. are given by

I 0 (—2s+4) 1)
= (P(-2.+8) 1) 'Lh1h h 2„ IO) —V:h,2„.

+h8(/1' —h1') &2s-1I 2) —~() 2 —~2) 22s
I 3)

+h (~'-")".+ I4&), (5.20)
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F. One Solution for All Odd-Order Matrices

It is possible to prove that 8„=g„ is an eigenvalue
for all odd-order matrices for the resonant case by
induction (g is not a root in general for the nonresonant
case nor for half-integral s). The proof is as follows.

The characteristic equation (3.5) increases in order
by 2 as s increases by unity. Suppose we have a deter-
minant A~, ~=0, with a root E„=g„.The determinant
A.„+~ will be

0 . 0 h2

0 ~ ~ 0 0

0 0

0 0
h~n-i 0

0 h2„
h2 0

(5.21)

with E„set equal to g„. If we expand by the Laplace
method about the last two rows or columns, we find
~2n+i h2n ~2n—1—0. Now we know E„=g„is a root
for the 3&3 characteristic equation. Hence it is a root
for the 5)&5, the 7&(7, . . ., equation.

The fact that E„=g„ is a root for integer s is men-
tioned without proof by Tavis and Cummings. '

Examination of Eq. (5.21), incidentally, reveals that
the eigenvalues do not depend on the sign of E, since
h'~ E' and the same sort of inductive proof as above
goes through.

VI. NUMERICAL RESULTS AND DISCUSSION

A digital computer was used with a standard sub-
routine in the IBM library called Krozx to compute
eigenvalues and eigenvectors for the symmetric matrix
C ' of Eq. (3.5). The method used seems to be efFicient
for the tridiagonal matrix involved. As the size of the
off-diagonal elements increases relative to the diagonal
ones the accuracy decreases, but single-precision
arithmetic was found sufhcient to yield answers ac-
curate to four or five significant figures for Inatrices as
large as 26&(26 for any of the parameter values used
herein. In some cases the ratio of the off-diagonal to
diagonal elements was of the order of unity. It seems
entirely practical to incorporate this calculation directly
into numerical computation of other quantities —such
as the density matrix —for matrices of the above order.
Thus problems involving, e.g., thermal distributions of
the solutions for this Hamiltonian can be solved ex-
actly for 25 to 50 particles.

h;=E$j(2s—4+ j)(5—j))'i', 0'=4E'(Ss 6)—,

and

P' =72E4[X'(8s' —2s+ 1)—4E'(32s' —48s+ 9)j.
The solution": for the case s=-,', n+0 involve a cubic
equation.

~ K 0
10-

K O. l

~~ K&l

0)
Ent

A~

0-II K~2

II-5-

-IO-

-15- 'a
K ' 5

4 6
- 20

0 2
I I I I I I I

8 10 12 14 16 18 20

FIG. 2. Energy of lowest state for s = 1, showing
minimum for strong E. 5=0.01.

Parameters varied in the solutions were the cou-
pling constant E, the off-resonance parameter 8= A&o/&u,

the minimum photon number n, and the angular mo-
mentum s. In the results presented below, E„~ and E
have been normalized by dividing by co, or, equivalently,
unit frequency has been used.

We consider first the behavior of the eigenvalues
E„&&'& (the superscript s is used only where it lends
clarity). Figure 1 shows the lowest-lying states for
integral values of s through 4. There is one state for
each value of n& 0 for s= 0, two for each n&0 for s= —,',
three for each n& 0 for s= j., etc. Values of n&0 have a
smaller number of states as discussed previously. The
energies vary somewhat for diferent b, the variation
being greatest for small n and s. For a given s and n, the
states become displaced symmetrically from (m+s)&u
as 8 approaches zero. Larger values of E spread the
2s+1 states more about this mean value. The larger s
values are lower-lying, but it is not always true
contrary to what one might expect from Fig. 1—that
for a given s, the lowest n value has the lowest energy.
Figure 2 demonstrates a case for which higher n have
lower energy for the lowest of the three states belong-

ing to s= 1, E„i&'& (the value of 8 does not significantly
affect these results). The effect occurs here for only
very large E, but for larger s the value of E required
decreases. This can be seen by examination of the
analytic cases in the previous section. From Eqs. (5.2)
and (5.7), we obtain

E~ 2~+i)i —8( 2z)i=(v —
~

E~v2s I

We see that under conditions of strong coupling and/or
coherent actions of many particles, a state with a higher
mean photon number and also some material excita-
tion is lower in energy than a state with less photons
and no (or less) material excitation. This is a reflection
of the difference in "binding" energy between the field
and material system.

Figure 3 shows the behavior of the eigenvalues as a
function of the departure from resonance for various
values of E and n. In practice, of course, E will bea
function of 8, but herc it is treated as ao independent,
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FIG. 3. Energy behavior versus 8 and E for diferent values of n. (a) n=o, (b) n= 1, (c) n=2, (d) n= 10.

parameter. It is clear that the value of b becomes of less
and less importance with increasing niinimum photon
number n. That is, if 8 causes a change AE, then the
fractional change AE/E decreases as n increases. Note
also that larger E causes less dependence on 8. Although
not investigated extensively, it is suggested by Eq. (5.7)
and by the structure of C„' that larger values of s also
decrease the relative effects of b. Let us compare the

results shown in Fig. 3 with those obtained by first-order
perturbation theory.

Write the Harniltonian (1.1) as X=XO+X~, where

Xo co(a~a+ 5,)+E(a5++at5 ——), '

BCg= —Ace S3= —bee S3.

Then standard first-order perturbation theory gives for
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Fin. 4. Eigenvector variation with E/8. 8=0.1 unless other-
wise indicated. s=4, n=0. The two symbols + indicate sections
of the same curve, and similarly for the symbols &(.

the change in energy with departure from resonance

dE„i&'&/d"o= L2(2n+3)] '

for /= 1 and 3 (called & in Sec. V) and

dE„r"&/d8= —(2n+3) '

for/=2. For n=O, these become 6 and —3, respectively,
in agreement with the data of Fig. 3(a). Note that the
slopes for both /=1 and l=3 are positive at 8=0, but
that the slope for /= 1 changes sign when b=

~

E ~.

This point of breakdown appears in the eigenvector
distributions also. Figure 4 shows the eigenvector com-
ponents for the lowest state corresponding to s=4,
n=0. For 6=0 the distribution among the components
is independent of E. For E~O and fixed 8WO the com-
ponents shift with decreasing E to a "pure" state
Wor" =1;Wor '&=0, j /1 (for 8=0 this state is degen-
erate with other such states as 8"0~")=1;8'0~U)=0,

j Ai) The first. -order perturbation theory above
applied to the eigenvectors for s=1 predicts that the
mixing in ~g„i ) with ~P„&) is proportional to o/E so that
the solution for ~h/J

~

&1 cannot be obtained by
perturbation theory from the resonant solution. Quali-

TABLE I. Mean photon number for s = 1, 8 =0, any E+0.

10

1
2
3

1.167
0.667
1.167

2.100
1.800
2.100

3.072
2.857
3.072

11.022
10.956
11.022

TABLE II. Mean photon number for s= 1, 8=0.1, E=—0.1.

10

0.743
0.789
1.467

1.780
1.850
2.370

2.803
2.884
3.313

10.876
10.959
11.167

tatively the same results are obtained by reducing both
E and 8 a factor of 10.

As n increases, the behavior of the eigenvector dis-
tribution depends less and less on E and b. Larger E
always gives a smaller slope magnitude ~dW/dbj, at
8=0, and for any 6xed E this slope decreases as n
increases.

Tavis and Cummings' have described the appearance
of the 2s+ 1 eigenvectors in the Fock representation for
a given s and n. Those states having the slowest varia-
tion or smallest number of nodes among the components
(i.e., in a graph such as Fig. 4) belong to the lowest
energy for E&O. A change in sign of E has the effect
of keeping the magnitudes of the components the same
but switching the signs of the higher- and lower-lying
states. For ii=0, in particular, the magnitudes

~

WU&
~

and
~

W&"+' '&
~

are equal, and changing the sign of K
just inverts the ordering of the states with respect to the
eigenvalues.

A few values of the mean photon number for s= 1 are
given in Tables I and II to illustrate the effect of b on
some low-lying states for s= 1.Only a positive value of 8
is illustrated. The eigenvector is sensitive to the sign
as well as the magnitude of b.
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