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Power Syectrum of Light Scattered by Two-Level Systems
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The power spectrum of the light scattered by a two-level atom driven near resonance by a monochromatic
classical electric field is evaluated. The atom is assumed to relax to equilibrium with the driving field via
radiation damping, which is treated by explicitly coupling the atom to the quantized electromagnetic field

modes. The power spectrum of the scattered field is directly obtainable from the two-time atomic dipole

moment correlation function, which is evaluated by a method based on a Markoff-type assumption analogous
to that used to evaluate the time evolution of single-time atomic expectation values.

I. INTRODUCTION driving fields (Q»x), inelastic scattering predominates
over elastic scattering. The power spectrum of the
scattered field in this limit has peaks centered at the
incident field frequency co and at the displaced frequen-
cies co&0, with widths proportional to the atomic
relaxation rate a.

The model we have adopted as the basis of our

analysis consists of a two-level atom driven by a
classical electric field. The effect of radiation damping,
which has been analyzed in detail in a previous article, 4

emerges naturally as the result of the coupling of the
atom to the quantized electromagnetic field modes

into which the atom radiates. In Ref. 4 the time evolu-

tion of the reduced density operator for the atom, and

hence of the mean values of atomic operators at a
given time was found. The analysis of the present

paper consists of an extension of the methods of Ref.
4 appropriate to the evaluation of the correlation
function representing the product of the atomic dipole

moment at two different times. The Fourier transform
of this atomic correlation function is, apart from some

simple factors, the power spectrum of the scattered
field.

In the next section of this paper, the basic model is

introduced, and the power spectrum of the scattered
field is related to the atomic dipole moment correlation
function. In Sec. III explicit solutions are presented
for the time evolution of the reduced density operator
for the atom, and the relative magnitudes of the elastic
and inelastic scattering intensities are evaluated. In

'HE purpose of this paper is to evaluate the power
spectrum of the radiation scattered by an atomic

system driven by a strong incident field, which is as-
sumed to oscillate harmonically near one of the atomic
resonance frequencies. The atom is assumed to be
isolated and fixed in position, and to come into equi-
librium with the driving field through the effect of
radiation damping. Other relaxation processes, notably
collisional' ' ones, are omitted from our analysis, as is
the effect of the Doppler shifts associated with thermal
motion.

In the model we consider, the scattered radiation
possesses, in addition to a monochromatic, elastic com-

ponent, inelastic components that are the result of the
alteration of the atomic states by the time-dependent
driving field. In the limit of weak driving fields, the
scattering is almost entirely elastic, and its intensity
is given (as it must be) by the usual atomic cross-
section formula. As the intensity of the driving field
is increased, however, inelastic scattering begins to
contribute, becoming appreciable when the frequency
0 of induced atomic transitions becomes comparable to
the natural relaxation rate ~. In the limit of strong
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Sec. IV the power spectrum of the scattered field is where
found, and various limiting cases are discussed.

and
X=—(ti eo)/Av2 (2.9)

and

d= J1)..(0[,

o). .(o

(2.1b)

(2.1c)

(2.1d)

The atom (assumed to lie at the origin of coordinates)
is coupled to the electromagnetic field, in the dipole
approximation, by the expression

H, (t) = —d(t) E(o,t), (2.2)

where E(r, t) is the electric field at position r and time
t, and d(t) is the dipole moment operator for the atoin,
which may be expressed in terms of the dipole matrix
element p = (1

~

d
~
0), as

d(t) = pa" (t)+@*a(t). (2.3)

In the resonant approximation, we may express the
electric field as the sum of positive- and negative-
frequency parts

E(r, t) = (1/v2)LE&+'(r, t)+E' '(r, t)j, (2.4)

II. DRIVEN TWO-LEVEL ATOM IN
RESONANT APPROXIMATION

We take as our basic model a fixed atom with two
energy eigenstates ~0) and ~1), with energies 0 and
Acro, respectively. An arbitrary atomic operator may
then be expressed as a linear combination of the four
basis operators

(2.1a)

(E'+'(r, t))= ~(r)(~(t—«/c)), (2.13)

gi =—(p ei) ((oi,/2AV)"'. (2.10)

The Heisenberg field operator E(r, t) may be solved
for in terms of its initial value (at a time before the
driving field is turned on) and the time-dependent
atomic dipole moment operator by formally integrating
the equations of motion for the operators bi(t) and
and bit(t) and substituting the resulting expressions
into Eq. (2.7). The result is, of course, the familiar
retarded field generated by a point dipole' plus a
freely propagating component Et(r, t). If we make use
of the fact that the time dependence of the atomic
lowering operator a(t) is specified by a rapid oscillation
near the resonant frequency coo times a relatively slowly
varying function of time, we find that the positive-
frequency part of the field in the scattering region
(where the incident field vanishes) may be approxi-
mated by the expression

E&+& (r, t) = q (r)a(t r/c)+E—~&+& (r,t), (2.11)
where

rp(r) = (—~ &o2/4n. rc') (p&& r) && r, (2.12)

and the freely propagating field operator Er&+&(r, t)
consists of a sum of (initial) field annihilation operators
b& times harmonically time-varying factors. Since we
are assuming the field to be unexcited initially, it
follows that the freely propagating term in Eq. (2.11)
will not contribute to the mormally ordered field correla-
tion functions. The mean value of the scattered field is
thus

and approximate the interaction Hamiltonian as

Hr (t) = —(1/v2) put(t) 1It
Ei+& (O, t)

+a(t)p* E' (O, t)j. (2.5)

and the first-order field correlation function' is

G. "'(r', t'; r, t) =(E &(r', t'—)E &+&(r,t)) (2.14)

We are interested in finding the radiated field in the
case in which the atom is driven by a prescribed classical
electric field E,i(r, t), with positive- and negative-fre-
quency parts $(r, t) and 8*(r,t) and polarization speci-
fied by the unit vector eo.'

E,i(r, t) = (1/v2) Lh(r, t)j$*(r,t) jeo (2.6).
We therefore express the total electric field as the sum
of this classical expression and a quantum-mechanical
field expanded in a region of volume V. Denoting by
co&, e&, and bl, the frequency, polarization vector, and
annihilation operator, respectively, for the field mode
specified by the index k, we have

Ei+'(r, t) = 8(r, t)co+i(A/V)'~' Q coi,'I'eibi, (t)e'~' (2.7)

G;, &'&(r,t'; r, t) = g;(r) p~(r)g(t —t').

The power spectrum of the scattered field

(2.17)

=.,(")"()
X (at (t' r'/c) a (t r/c)) . —(2.15)—

We will be interested in cases in which the atomic
system is in equilibrium with the driving field, so that
the atomic correlation function (at(t')g(t)) depends
only on the time difference t—t',

(a'(t')a(t)) = g(t—t') . (2 16)

In this case, the function G&'& also depends only on
t—t'. At I'= r, for example, we have

I(i; r)= dr e'"'Q G "&'&(r,o; r, r) (2.18)
The interaction Hamiltonian thus takes the form

Hi(t) = —Aa~(t)+S(o, t)+i Q gl, bl, (t)j+H.c. , (2.8)

5 See, e.g., L. Landau and E. Lifshitz, The Classical TheorY of
Fields (Addison-Wesley Publishing Co, , Inc. , Reading, Mass. ,
1951), Eq. (9-20).' R. J. Glauber, Phys. Rev. 130, 2529 (1963).
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at any point in space is thus equal to a simple factor
times the Fourier transform of the atomic correlation
function g (r):

t is thus given in terms of its value at t' by the relation

p, (t) =trv(U(t&t') Io)v v(ol p, (t')U '(t, t )}. (3 8)

I(v; r) =
I v (r) I'g(v), (2.19)

It was shown in Ref. 4 that the solution to Eq. (3.8)
obeys the differential equation

g(v) —= dr e'"'g(r) .
p.(t—) =~up. (t)at ', ega—'a—p.(t)+p. (t)a&aj(2.2O

The mean intensity of the scattered field is +iL( —~ ata+atXB(o, t)+ah*I*(o,t) },p, (t)j, (3.9)

where

1
(E& &(r,t) E&+&(r,t))=—dvI(v; r)

2'
=

I ~(r) I'g(o)

=
I ( (r) I'n. ,

n„= lim (at(t)—a(t))

where z is the natural decay rate of the atom,

~= lt I'~0'/3~he'. (3.10)

The density operator p, (t) may be expressed in terms

(2 21) of the basis operators defined by Eqs. (2.1) as

p, (t) =n(t)ata+n(t)at+n*(t)a+m(t)aat, (3.11)

where
is the equilibrium probability of finding the atom in
its excited state.

III. SINGLE-TIME EXPECTATION VALUES

n(t) =.(1 I p (t) I
1).= «(p(t)u'u},

n(t) =.(1 I p-(t) I
o).= tr(p(t)a},

n*(t) =,(Ol p, (t) I ».= «(p(t)a },

(3.12R)

(3.12b)

(3.12c)

In Ref. 4 it was shown how the time-dependent
reduced density operator for the atom, and thus the
mean values of atomic operators at a given time, may
be evaluated. The method is based on a Markoff or
factorization assumption, which represents the full
Schrodinger density operator p(t) for the joint system
of field modes and atom as the product of the vacuum
state lo)v for the field, which is defined by the condition

b,
l
0)v= o (3 1)

times the reduced density operator for the atom, which
is defined as

p.(t)= «p(t), — (3.2)

where tr~ means trace with respect to the fixed states
of the field. The density operator for the system is thus
approximated by the expression

p (t) =
I
0)»(0 I p. (t) . (3.3)

The unitary time-evolution operator U(t, t') for the
system is defined by the relations

and

m(t)=, (olp, (t) Io),=tr(p(t)aut}. (3.12d)

I
The relation tr,p, (t) =1 implies m(t) =1—n(t). It will

prove convenient for the purpose of later analysis,
however, if we do not make explicit use of this relation,
nor of the fact that n*(t) is the complex conjugate of

n(t), but develop our analysis as if p, (t) were a general
operator in the state space of the atom. $

By substituting Eq. (3.11) into Eq. (3.9) and making
use of the definitions (2.1), we find that the parameters
given by Eqs. (3.12) obey the differential equations

—n(t) = —gn(t)+iXB(o, t)n*(t) —g,*6*(o,t)n(t), (3.13a)
dt

—n(t) = —(~~+i~o)n(t) —ihh(o, t)Ln(t) —m(t) j, (3.13b)
dt

—n*(t) = (—i2~+io)0)n*(t)

iit—U(t, t') =IIs(t) U(t, t')
dt

U (t', t') = 1,

(3.4)

(3.5)

—m, (t) =—rs (t) .
dt dt

+ik*h*(o,t)Ln(t) —m(t) j, (3.13c)

(3.13d)

We note that by virtue of Eq. (3.13d) the trace of

p, (t) is preserved:
where IIB(t) is the Harniltonian IIO+IIr(t) evaluated
in the Schrodinger picture. The density operator for
the system at time t is trp„(t) =n(t)+m(t) = const. (3.14)

p(t)= U(t, t')p(t')U i(t, t')' (36) The general form of the solution to the first-order

U (t t ) I 0) (0 I (t )U i (t t/) (3 f) linear coupled equations (3.13) for each of the func-
tions n, n, n*, and m, at an arbitrary time t'+r (where

and the reduced density operator for the atom at time r)0), is a linear combination. of all four functions at
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time t'. The coefFicients in these solutions depend, in
the general case, both on the time difference 7- and on
the initial time t', since the driving field is allowed to
be an arbitrary function of time. The solution for
n.(t'+r), for example, takes the form

n(t'+r)= &..(r; t')n(t')+~. .(, ; t')~(t')
+'tt.. (r, t')n*(t')+W. „(r;t')m(t'), (3.15)

where the functions 'tt(r, ' t') depend upon the incident
or driving field between t' and t'+r

We shall be interested in the case in which the
driving field oscillates harmonically at a frequency ~
which is assumed to lie near the atomic resonance
frequency cop, so that

in which the function f(s) is the third-degree polynomial

f(s) = (s+~) (s+ s) (s+s*)+Q'(s+-', ~) (3.23a)

=s'+ 2gs'+ [Q'P (ga&)'+ (5/4) ~']s
+~[-',0'+ (h(v)'+-,'K'] (3.23b)

It is useful to compare the mean intensity of the
scattered field as given by Eq. (2.21) with the square
of the mean field as given by Eq. (2.13), which is just
the coherent monochromatic field obtained by replacing
the atomic dipole moment operator by its mean value.
The ratio of the intensity of the coherently scattered
light to the total scattering intensity, when the atom
is in equilibrium, is, by virtue of Eqs. (3.18) and (3.19),

h(0, t) = Soe
—' ', (3.16)

where Sp is a complex constant. In that case the coupled
equations (3.13) can be solved directly by the method
of Laplace transforms. Let us introduce the parameters

I... &E&-» «&.» &t)&)

&E(
—) .E(+)) &aiba)

(3.24)

s= 2 K+1AM .

(3.17a)

(3.17b)

(3.17c)

We find that the functions n(t) and n(t) approach
equilibrium values that are independent of initial con-
ditions as t —+ ~:

40'
n„=n(t —+ ~) =

Q2+ (g~)2+ ~2

iP SpS
n„(t)=—o. (t —+ ~) =e '"

-'fl'+ (A(u)'+-'»'

(3.18)

(3.19)

W. (r; t') =W.„'(r)e—*.". (3.20)

We find that the Laplace transform functions of 'h
and 'll ' are given by

a..(s) == dr e
—"e..(r)

(s+1M+K) (s+zco+s) +2 0
(3.21)

f(s+icu)

W. '(s)=— dr e '"lt „,'(r)

(s+io)+~) (s+icv+s)
=it bp

(s+i(o)f(s+i(u)
(3.22)

The only time-dependent solutions we shall need to
consider are those for the functions 'll (r, t') and
'tt (r; t'), the former of which is independent of the
initial time t' and the latter of which depends on t'

only through the harmonic factor e '"":

where a, 0, and her are given by Eqs. (3.10), (3.17a),
and (3.17b), respectively. In the limit of weak incident
fields (Q&(~ s

~ ), the scattered field is almost completely
coherent, and its intensity is given by the usual atomic
cross-section formula, evaluated in the dipole approxi-
mation. For very strong incident fields, on the other
hand, the coherent part of the scattered field is only a
very small part of the total scattered field. The remain-

ing radiation is incoherent, in the sense that its contribu-
tion to the total scattering intensity must be added, if

many atoms are present, to similar expressions for
each driven atom. The intensity of the incoherently
scattered light becomes appreciable when saturation
effects becomes important, i.e., when the incident field

is strong enough to keep the atom in its excited state
an appreciable fraction of the time.

IV. POWER SPECTRUM OF SCATTERED FIELD

In order to describe more precisely the character-
istics of the scattered field, it is necessary to evaluate
the first-order field correlation function (2.14), which,
we have seen, is determined by the two-time atomic
correlation function &at(t')a(t)). It is not difTicult to
show that this function may be expressed in terms of
the Schrodinger density operator at time t' and the
time-independent Schrodinger operators u and e~ as

(at(t')a(t))=tr{p(t')atU '(t, t')aU(t, t')}
= tr{

~
0) (0

~ p, (t')atU (t,t')aU(t, t') },(4.1)

where U(t, t') is the time-development operator defined

by Eqs. (3.4) and (3.5), and in reaching the final step
we have made use of the Markoff approximation (3.3).

The right-hand side of Eq. (4.1) may be evaluated

by an entirely straightforward method, which is analo-

gous to that used to obtain the mean values of atomic
operators at a given time. Let us recall that the expecta-
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tion value
n(t) = trLp(t)a] (4.2)

is given, according to Eq. (3.7), by the relation

n(t) = tr{
I o)„(olp (t') U '(t, t')aU(t, t') }. (4.3)

Comparison of the right-hand sides of Eqs. (4.1) and
(4.3) shows that the former may be obtained from the
latter simply by making the substitution

p, (t') ~ p. (t')a . (4.4)

The evaluation of the two-time correlation function
&at(t')a(t)& is thus formally identical to the evaluation
of the single-time mean value n(t)=(a(t)), the only
difference being that the non-Hermitian operator
p, (t')at must be used in place of the density operator
p, (t'). This means that we must make the substitutions,
on the right-hand side of Eq. (3.15),

~(t')= &1lp (t')l». ~ &1lp.(t')a'I» =o

n(t') =.&1 I p. (t')
I 0&.~.&1 I p. (t')a'I 0&.=n(t'), (4 5b)

n*(t') =.&Ol p-(t') ll&.~.&OI p. (t')a'll&. = O, (4.5c)

m(t') =.&ol p. (t') Io&.~ &ol p. (t')atl0&. =n*(t'). (4.5d)

We have then

g(r; t') —=&a (t')a(t'+r))
= W..(r; t')n(t')+ W.„(r;t')n*(t'), (4.6)

where the quantities il, (r; t') are l:he same functions'
that appear in the solution for the atomic mean value
n(t).

Let us now consider the case in which the driving
field is the harmonic function given by Eq. (3.16), so
that tt, (r,' t') is independent of t', and tt (r,' t') has
the form given by Eq. (3.20). Let us also assume that
the atom is in equilibrium with the field, so that
n(t') and n(t') are given by the asymptotic expressions
(3.18) and (3.19), with the latter evaluated at time t'.
The atomic correlation function in Eq. (4.6) is then
independent of the initial time t', and is given by the
relation

where the Laplace transform functions on the right-
hand side are given by Eqs. (3.21) and (3.22).

In order to evaluate the spectral correlation function

g(v) defined by Eq. (2.20), it is first necessary to find

the asymptotic form of g(r) in the limit r ~ zo, which

originates from the poles of g(s) on the ima, ginary axis
of the s plane. Since it is readily shown that the real
parts of the roots of the polynomial f(s) defined by
Eq. (3.23) are all negative (in fact, they all lie between
—» and ——',»), it is clear that the only contribution to
g(r ~ oo ) comes from the pole at s= izo on t—he right-
hand side of Eq. (3.22). The residue of the pole is, by
virtue of Eqs. (4.9), (3.22), (3.17), (3.19), and (3.23),

g-h(r)= ln-I" '"'

=n„*(t')n„(t'+r),

(411)

(4.12)

which may thus be obtained by replacing the atomic
operators at(t') and a(t'+r) by their equilibrium ex-

pectation values. The Laplace transform of the remain-

ing, incoherent part of the atomic correlation function is

g'-()=—g() —
I

-I'&(+
By making use of Eqs. (3.19), (3.21)—(3.23), and (4 9),
after a lengthy reduction we find that g; .(s) mav be
expressed in the form

t'(s+io))'+2»(s+izo)+ (-', 0'+»'))
xI (4.14)

f(s+ia))

=

sing'I

s I'/(sf''+ I
sl')'= In- I',

where ln„l is the modulus of the right-hand side of

Eq. (3.19).The contribution of this term to the correla-
tion function g(r) is the coherent, harmonically varying
expression

g(s) —= dr e "g(r)

thus satisfies the relation

g(r) = tt.-(r)~.+&. '(r)
—',0'+ (Azo)'+re»'

The Laplace transform of g(r)

The spectral correlation function g(v) defined by
Eq. (2.20) may be obtained from the Laplace transform

g(s) defined by Eq. (4.8) simply by noting that g( —r)
=g*(r), and hence g(v) = 2 Rel g( —iv)]. Applying this
relation to the incoherent part of g, and adding the
result to the Fourier transform of the coherent ex-

pression (4.11), after some work we find, with the aid of
Eq. (3.23b),

g() =2 ln-I'~(v —~)

g (s) = tt (s)n„+'lt. '(s), (4.9)
—,
' 0'+ (t)izo)'+sr»'

This result is a special case of a qzzantzzzn regression tIzoerezn
derived by M. Lax. See, e.g., M. Lax, Phys. Rev. 129, 2342 (1963),
and related references. hence, by virtue of Eq. (2.19), the power spectrum of
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the scattered field, is thus expressed in terms of the
parameters defined by Eqs. (3.10) and (3.17)—(3.19)
and the function f(s) defined by Eq. (3.23).

Before discussing the limiting forms of the function
g(v), it is convenient to express it in terms of the three
roots of the polynomial f(s). If the parameter

sp ——o.+iQ', (4.22)

density falls to zero as (v —(p) ', rather than as (v —(p) ',
as it would for positive Lorentzian functions.

When the parameter 1 defined by Eq. (4.16) is
positive, the roots s~ and s of f(s) are the complex-
conjugate quantities

l —=LQ2+ (h(p)' '—K']—'+ 4K'$ '-Q2 -(~5(—(p) 2—K2/36]' (4.16)
where 0. and 0' are real. In this case it is convenient

is positive, then there will be one real root sp and two to express the function g(v) in the form
complex-conjugate roots s+ and s =s+*, while if f(0,
all three roots sp, s+, and s will be real. In either case g(v) =2~1(2~I'~(v ~)+@~KQ'

(v —p))2+ (-', Q2+K2)

or

we have

If('")I =("+ ')("+ +)("+—) 5 (4 ) kI ( —p))2+s 2jI (v —p) —Q')2+(rpj[(v —(p+Q')2+(r2j/

and the function g(v) may be expressed in the form (4.23)

g(v) =2~Io-I2&(v —~)+&-KQ2

(v —(d)'+ (-',Q'+K')
xI

~I:(v—~)'+sp'jL(v —~)'+s+'r(v —~)'+s-'3/
(4 1g)

or

Dp
g(r ) = 25r I(2„I'()(v—p))+

(v —(s)) +Sp

( )
(4 24)

(v —(p+ Q')2+a'(v —cs) —Q ) +0

M —(v —p) —Q')N M+ v —(p+Q' N

Dp in which the real quantities M and E are dehned as
g(v)=2 I~-I'~(v ~)+

(v —(s)) +Sp M= ,'(r(D„/s~+-D /s ), (4.25a)

N= ,'2(D„/s~ —D—/s ). — (4.25b)
(4.19)

v —
Go s+ v —(d s

—,
' Q'+K' —sp'

D, =N„KQ'I
((s '—ss')(s, '—s '))

(4.26a)

(4.26b)

(4.26c)

Sp= —gK)
1

(4.2Oa)
s+= ——,'K+ (—,', K' —Q')'(',

S—= 4K (ipK Q )—',Q'+K' —s+'

k(S~2 —sp') (S~2—s 2))
(4.20b)

These roots are all real for Q(~K, while for 0)&K the
roots s+. and s have the form given by Eq. (4.22),

(4.2Oc)
k(s '—sp2)(s '—s+2)) 0= K)

3
4 (4.27a)

(4.27b)Q( (Q2 1 K2)1/2We may note that the time-dependent atomic correla-
tion function g(r), which is the Fourier transform of
g(v), is given by

The parameters Dp, M, and N in Eq. (4.24) are then
given by

As an illustration of these results, let us consider the
case in which the incident field is exactly on resonance

in which the Parameters DP, D+, and D are defined as (15,p) 0). The roots of the polynomial f(s) are then'

(,) = I~ l2g i~r (D /2—S )g iur+spl rl-
(D+/2s+)(s

—i~r+s+I rl (D /2S )(s i~r+s Irl (4 2—])- Dp 2 KVE(ri
1 (4.28)

When the parameter |' defined by Eq. (4.16) is
negative, Eq. (4.19) expresses the incoherent part of
g(v) as the sum of three Lorentzian functions centered
at V=A, with widths —sp, —s+, and —s, respectively.
It is important to note, however, that one of the
parameters Dp, D+, or D (the one associated with the
root of intermediate magnitude) is negative, and hence
the Lorentzian in which it appears has negative weight.
It is an interesting feature of the model we are con-
sidering that, in the limit

I
v —(pI —& ~, the spectral

I
Q' —

—2,K2q

M = p'K22„I
(5 Q2+L22K21

(4.29a)

,'si (50' ,'s')-„—
N=

Q( ( Q2+1K2
(4.29b)

We have plotted the function g(v) for representative
values of Q (and A(p=o) in Fig. 1.

For A(p&0, the function g(v) takes on a relatively
simple form in two limiting cases of interest: that of
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very low and that of very high incident field intensity.
If the incident field is weak enough so that the pa-
rameter Q defined by Eq. (3.17a) is very small com-
pared to the natural decay rate If. , the three roots of

f(s) are (approximately) —~, s, and 2*. By making
use of expressions (3.18) and (3.19) for 8„and !n„!,
we see that in this limit relation (4.23) for g(v) reduces
to

and s~ ——0-+iQ', where

--,' Q'+-,' (Ace)'

Q'+ (dpi)'
(Q».) (4.31b)

Q'= EQ2+ (S~)2pip (Q&&.) . (4.31c)

and 0' is the Rabi' frequency of population inversion
in the absence of damping,

—,'Q'
g(v) =

! 22rb(v pi)—
(Aai)'+-', a2 k

Since Q ))o., sp in this limit, the function g(v) as given

by Eq. (4.23) may be approximated in the domain in
which it is appreciable by a superposition of Lorentzian
functions at each of its maxima at v= p~, 2= pijQ', and
v=co —0

I~:Q'

E(v —pi —&pi) +is ]E(v—pi+&pi) +g~K g) H„I~:Q'

g(v) =27r!oi„!26(v pi)+-
for Q«~. (4.30) Q (v —M) +sp

Q'+2 (happ)'-

sp = —~K
1

Q'+ (ha&)'
(Q».) (4.3 la)

The integrated spectral intensity of the incoherent
part of the scattered field in this limit is only
a very small fraction E~Q2/(~ic2+(kp~)2)j of the in-

tensity of the coherently scattered field. For !Dpi!))2,
the incoherent part of the power spectrum is sharply
peaked at the two displaced frequencies co —Aco= cop and
a)+ Dpi =M p+ 2Dpi.

If the incident field is intense enough so that 0 is
much greater than ~, we find that the roots of the
polynomial f(s) are well approximated by the expressions

+Es Q'+-'(~~)'3
(v —pp —Q')2+~2

(v —pi+ Q')2+(r2
for Q))a. (4.32)

K
3

16 16&

(v ~ Q)2+ P s2 (v pp+Q)2+ P K2

Q))~, !Api! . (4.33)

The maxima at v=co~Q in this limit are one-third
of the maximum at v=~, and the integrated spectral
intensity at each of the displaced frequencies is one-half
of that at the central frequency. The intensity of the
coherent, elastically scattered light in this limit is
inversely proportional to the incident field intensity,
and is only a very small fraction of the total scattering
intensity.

In the limit of very intense incident fields, 0 is much
greater than both !5ai! and a, and we find, with the
aid of the relations (3.18) and (3.19), that Eqs. (4.32)
and (4.31) reduce to the relation

((~~)'+-'") gK

g(v) =2~! !b(v—pp)+
Q' ) GP glC

Fro. 1. Spectral density g(v) for a two-level atom
driven exactly on resonance.
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