
PHYSICAL REVIEW VOLUME 188, NUMBER 1 5 DECEMBER 1969

Photoionization of Lithium by the Method
of Polarized Orbitals*

J. J. Matese and R. %. LaBahn

DePartment of Physics and Astronomy, Louisiana State University, Baton Bouge, Louisiana 70803
(Received July 28 1969)

The method of polarized orbitals is used to calculate the photoionization cross section of
lithium for photon energies from threshold to 15 eV. Initial-state corrections are obtained

by representing the lithium atom as a perturbed Li+ core plus an electron in the 2s state.
Final-state corrections are similarly obtained by including perturbations of the Li+ core by
the continuum electron. Results are obtained using the length and velocity forms of the ma-
trix elements, and are in good agreement with one another as well as with existing calculations
using many-body perturbation theory. The theoretical results compare favorably with experi-
mental data near threshold, but disagree slightly for higher energies.

I. INTRODUCTION

The method of polarized orbitals, which takes
into account the effect of target polarization by an
external charge, has been extensively applied to
the problem of the scattering of low-energy charged
particles by an isolated atom. ' ' Callaway et al.'
have extended the analysis and have demonstrated
that the ordinary polarization potential which is
induced by the scattering particle should be modi-
fied by an additional term, which they call the
distortion potential. These techniques have been
applied to obtain phase shifts for electron and posi-
tron scattering on one- and two-electron atoms. '

Application of the polarized orbital method to
tPe problem of photoionization has to date been
made for only a few systems; He, C, N, and 0 .
Bell and Kingston' have calculated photoionization
cross sections near threshold for helium using the
Bates formalism' in both the length and velocity
approximations. The results are in good agree-
ment with one another and with the experimental
data.

Photodetachment cross sections using the method
of polarized orbitals have been performed for 0
by Garrett and Jackson' and for 0,C, and N by
Henry. ' In general, the dipole-velocity results
are in good agreement with experiment but are
substantially larger than the dipo1.e-length results.

The essential feature of these calculations is
that the effect of target polarization on the process
is included only by taking into account its influence
on the continuum electron. In forming the matrix
elements, all bound states are represented by
either undistorted Hartree- Fock or variational
wave functions. This is equivalent to neglecting
first-order final-state corrections, but including
second-order effects. Further, any perturbation
corrections to the initial state are neglected.

In addition to these investigations, several other

photoionization and photodetachment calculations
have been performed using a semiempirical poten-
tial which takes into account target polarization. '
The essence of these calculations is similar to the
method of polarized orbitals as used by others
(Refs. 5, 6, and 8).

Chang and McDowell'4 have shown, explicitly,
the relative sizes of the various initig- and final-
state corrections in a many-body perturbation-
theory (MBPT) approach to the problem of photo-
ionization of lithium. Their results indicate that
in the dipole-length approximation, the second-
order final-state correction does indeed dominate.
However, in the dipole-velocity approximation,
first-order initial-state and first-order final-state
corrections are comparable in magnitude to sec-
ond-order final-state corrections.

This implies that discrepancies between calcu-
lated photoionization cross sections using the
length and velocity approximations, which take
into account only the corrections to the continuum
wave function, may be due to the neglect of first-
order effects. These first-order effects can be
included, in part, by extending the core wave
function to include perturbed orbitals in the matrix
elements.

In Sec. II, we discuss various ways that the
initial and final states can be represented in the
polarized orbital method. Section III includes the
formalism for computing photoionization cross
sections in the dipole-length and dipole-velocity
approximations. A comparison with the MBPT
approach of Chang and McDowell'4 is made in
Sec. IV. Results are given in Sec. V, and con-
clusions are presented in Sec. VI.

II. REPRESENTATION OF INITIAL
AND FINAL STATES

The form we take for the initial- and final-state
wave functions (Li and Li++ e) is given by the
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ansatz

4(1, 2, 3) = 3 ~~2 Q [u(1)u(2) + (o(1, 3)u(2)

+u(I)(v(2, 3)](f&(3)S(1,2, 3)

where u is the unperturbed Li+ Is orbital, &u(r, R)
is the perturbed 1s orbital at the point r due to a
stationary point charge located at R, Q is the 2s
orbital for the initial state or the continuum wave
function for the final state, and S is the spin func-
tion
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S(1,2, 3) =2-~12(a,P, —n, P, )a, , (2)

where n, P are the one-electron spin-up and spin-
down functions, respectively. The summation is
over cyclic permutations of the indices.

Various procedures were investigated for deter-
mining the one-electron orbitals. Hartree-Fock
theory was used to determine the unperturbed Li+
core orbital u. The continuum state Q& was ob-
tained in three different approximations; (i) the
fixed core Hartree-Fock method (FCHF}," (ii} the
adiabatic-exchange-dipole method (AED), 'i' (iii) the
extended polarization potential method (EP). ' The
2s orbital of the initial state $2~ was also deter-
mined using these three approximations. "

%'e now give a brief discussion of the AED and
EP methods as applied to the problem of obtaining

In either case, the relevant
Schrodinger equation is of the form

[h,(i)+il(i) ~] 4 (i—) = 0, (3)

where h (i) = —&.'- (2&/r. )
0 i g

+ 2(u(j )) (r..) '(2 —&..)iu(j)), (4)
U U

and p f(i,j)=f(j, i.). .
U

In the AED method, g is taken as the Bethe dipole-
polarization potential, ' which is asymptotic to
—0. 191/r'. In the EP method, g is given by the
sum of a polarization potential V~ and a distortion
potential VD. ' The explicit form of 'U for the AED
and EP methods is shown in Fig. 1.

Equation (3}then represents a scattering equa-
tion for (It) = (II)g, and an eigenvalue problem for

Table I lists the eigenvalues obtained,
as well as the experimental ionization energy.
The results given are for the case of nonorthogo-
nality between $2~ and u." Imposing orthogonality
changes the energies by about 1 part in 4000 with
a similar small change in the wave function. How-

ever, the wave functions (t)2g, obtained using 'UEP
and 'OAED do differ noticeably (the wave function

FIG. 1. Distortion potentials UAED and UEp.

obtained using the AED method differs from that
obtained using the FCHF method by I-3%%uo in the
region of importance, whereas the EP 2s function
differs from the FCHF function by less than 1'%%uo).

The non-Coulomb p-wave phase shifts [p, of Eq.
(9)] as obtained from the asymptotic form of the
continuum-state solutions of Eq. (3) are given in
Table II. The three columns of data refer to
calculations with the FCHF (&=0), AED ('U='UAED),
and EP ('0 ='U@P) approximations usedinthis work.
The FCHF and AED phase shifts are in good
agreement with the corresponding calculations of
McDowell. '6

The ansatz [Eq. (1)] is not properly normalized.
The error introduced by ignoring the initial-state
normalization factor (0; I @i) is negligibly small. '4

The final state is properly normalized if we re-
place

y (3) Q (3)/[1+2 f~2(I 3)d„]~&&

TABLE I. Calculated 2s binding energies and ex-
perimental ionization energy for lithium.

Approximation

FCHF
AED
EP
Experiment (I& }2s

—0.39362
—0.40008
—0.39349

0.39632

in Eq. (I). This was done in the calculations.
In the succeeding discussions, we refer to cal-

culations using FCHF wave functions and neglecting
the perturbed orbitals in Eq. (1) as zeroth-order
calculations. Then, constructing matrix elements
using initial and final states of the form Eq. (1),
with the one-electron wave functions obtained from
the FCHF method, will be referred to as the first-
order corrections. Second- order corrections
can be obtained by using the continuum states and
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TABLE II. Non-Coulomb p-wave phase shifts for electron scattering from Li+ in the fixed-core Hartree-Fock
(FCHF), adiabatic-exchange dipole (AED), and extended-polarization potential (EP) approximations (in rad) .

0.0
0.05
0.10
0.15
0.20

0.25

0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85

FCHF

0.1100
0.1102
0.1107
0.1116
0.1128
0.1143
0.1162
0,1183
0.1207
0.1234
0.1263
0.1294
0.1326
0.1360
0.1395
0.1430
0.1467
0.1503

AED

0 ~ 1670
0.1672
0.1677
0.1687
0.1700
0.1717
0.1738
0.1762
0.1789
0.1818
0.1851
0.1885
0.1921
0.1958
0.1996
0.2034
0.2073
0.2111

0.1463
0.1465
0.1470
0.1478
0.1489
0.1504
0.1522
0.1543
0.1566
0.1592
0.1619
0.1649
0.1680
0.1711
0.1744
0.1777
0.1810
0.1843

2s orbitals of the AED or EP methods.

III. THEORY

The formalism necessary to obtain photoioniza-
tion cross sections is well known. " In the dipole
approximation, the electron ejected from the
ground state of the lithium atom is in a p-wave
state, and the cross sections in the length and
velocity forms are

o =&waa '(I+a)glM .
- (I),

-(I) -(Y)-
and 0 =r, 0 = V . The summation is over
final- state orbital- projection quantum numbers.

The matrix elements are evaluated after insert-
ing Q = $2s into Eq. (1) for 0 i, and Q = pk into Eq.
(1) for 4f using Eq. (5). The continuum state is
normalized to

Qk=r 'R (r}Y (f),1m

R (r) — k "'sin(kr- —,
'

w+ql al k 'ln2kr) .

o =& ~~a '. [4/(I+~)]DM .
- (Y),

where I is the first ionization potential in lithium,
e = k'/2m is the energy of the ejected electron,

M . ' = f4' (1 2 3) ZO. ' 4(1 23)d~
(3)

I

In the above formulas, &3 mo. ao = 8. 56X10 "cm,
and the remaining quantities are taken in the sys-
tem of atomic units ii = 1, e = 1/m = 2. g, is the
non-Coulomb phase shift, and o, =argF(2+i/k}.

The matrix element can be readily reduced.
Keeping terms linear in co, we obtain

M . = f RdQ*(R)O(R)[P (R) —Xu(R)]+ f fdRdrg~ (R)(2ur*(r; R)P (R)O(r)u(r)+2u*(r)P (R)fi k 2s 2s 2s

x O(r)&o(r, R) —m*(r; R)[O(R)+O(r)]Q (r)u(R) —u~(r)[O(R)+O(r)]P (r)&o(R, r))

where ~=(uly2s) .
The interpretation of the various terms in Mfi is as follows: The first integrand contains the zeroth-

order effect as well as the effect of nonorthogonality between the 2s orbital and the 1s orbital. If the
continuum state and the 2s orbital are obtained from the AED or EP methods, it also contains second-order
direct interactions in the final and initial states. The second and third terms contain first-order direct
effects in the final and initial states, respectively, while the fourth and fifth terms are interpretable as
first-order exchange effects in the final and initial states, respectively. We make a small error by
neglecting terms containing products of X and (d. Section IV contains a justification of these comments.
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IV. COMPARISON WITH MSPT

The direct terms of the matrix element [Eq. (10)]
are readily derived from MBPT. We illustrate the

procedure by discussing the first-order direct
final- state term:

2 ffdRdr Q~ (R)&u*(r; R)g (R)O(r)u(r) . (11)

The perturbed orbital ~ can be expressed in first
order as

u*.(r)
&u*(r; R) = Z fdr' u* (r')v(r', R)u. (r') .

jmls Is j
(12)

Then Eq. (11) becomes

2 Q fdr u*. (r)O(r)u(r) ffdRdr'
j ls

u*(r')d&*(R)n(r', R)u. (r')0 (R)'k ' j 2s

ls j

Equation (11')differs from the corresponding ma-
trix element of Chang and McDowell only in the
form of the energy denominator. The correct de-
nominator should be mls —e2s k' —«j, which dif-
fers only slightly from ~Is —~j for energies of
interest. The diagram corresponding to this first-
order final-state effect is shown in Fig. 2.

However, we emphasize that in the present cal-
culation we do not use Eq. (12) to evaluate the
perturbed orbital but instead we compute (d using
an approximation to Hartree-Fock perturbation
theory in analogy to earlier electron-helium
scattering calculations. " In this calculation, an
available parameter is adjusted to yield the ex-
perimental dipole polarizability (0. 191a,'). The
implications of this procedure will be discussed
in Sec. V.

FIG. 2. First-order direct final-state diagram from
M BPT.

The first-order direct initial-state correction can
similarly be shown to agree with the MBPT result.
Further, Callaway" has demonstrated that second-
order direct corrections to the continuum wave
function and the 2s orbital as obtained in the AED
or EP methods can be obtained from MBPT using
certain reasonable approximations.

Finally, we note that our exchange terms cannot
be directly related to the exchange terms of MBPT.
In particular, first-order corrections in MBPT
only include contributions from p-wave intermedi-
ate states, whereas our exchange terms involve
both s- and p-wave components of ~. However,
even though the s-wave component of (d should not
arise in the perturbed matrix elements, we in-
clude it in this calculation for consistency. The
problem with the exchange interactions appears to
be intrinsic to the polarized orbital method.

V. RESULTS

The perturbed orbital (d is decomposed into
partial waves. Angular integrations in Eq. (10)
are then readily performed after which only the
monopole and dipole components of cu remain. If
the radial parts of $2s and Qk are obtained from
the FCHF method, then Eq. (10) yields the photo-
ionization matrix element, corrected to first
order. The separate contributions from the
zeroth-order matrix elements as well as the first-
order initial- and final-state corrections are listed
in Table IG for both the length and velocity ap-
proximations.

Our zeroth-order matrix elements agree with the
results of Chang and McDowell" to within 0. 5% for
all energies considered. Our first- order correc-
tions, however, differ in several respects from
the results of MBPT. " First, our initial-state
correction in the length approximation, although
small, is of opposite sign to the MBPT result.
This results from the anomalous first-order ex-
change contribution from the monopole component
of (d as mentioned in Sec. IV. In addition, both
initial- and final-state first-order corrections in
the velocity form decrease in magnitude with in-
creasing energy, contrary to the conclusions of
Chang and McDowell. Somewhat better agreement
with the MBPT first-order corrections are ob-
tained in all cases if the contributions from the
monopole component of (d are neglected.

Photoionization cross sections in the length and
velocity approximations, corrected to first-order,
are shown in Fig. 3. The results of Chang and
McDowell, also correct to first order, are given
for comparison. The length and velocity cross
sections are seen to be in better agreement with
one another when first-order corrections are in-
cluded.

We have considered two different potentials in
obtaining second- order corrections. Both 'UAED
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TABLE III. Zeroth-order matrix elements and first-order corrections in the length (L) and velocity (V) forms for
initial (i) and final (P states.

0.00
0.05
0.10
0.15
0.20
0.25

0.30
0.35
0.40
0.45
0.50
0.55
0,60
0.65
0.70
0.75
0.80
0.85

Lo

1.960
1.962
1.966
1.968
1.961
1.939
1.898
1.837
1.758
1.666
1.566
1.462
1.357
1.253
1.150
1.053
0.963
0.879

Ll.
—0,014
—0.014
—0.014
—0.014
—0.014
—0.015
—0.015
—0.015
—0.015
—0.016
—0.016
—0.016
—0.016
—0.016
—0.016
—0.015
—0.015
—0,015

L]~

0.018
0.018
0.018
0.018
0.017
0.017
0.016
0.016
0.015
0.014
0.013
0.013
0.012
0.011
0.010
0.009
0.008
0.008

VO

—0.3640
—0.3667
—0.3746
-0.3867
—0.4017
—0.4180
—0.4343
—0.4495
—0.4626
—0.4731
—0.4808
—0.4858
—0.4881
—0.4879
—0.4855
—0.4813
—0.4755
—0.4684

Vl,

0.0767
0.0765
0.0758
0.0748
0.0733
0.0716
0.0694
0.0670
0.0644
0.0616
0.0587
0.0556
0.0523
0.0491
0.0458
0.0425
0,0391
0.0358

Vly

—0.0937
—0.0935
—0.0931
—0.0924
—0.0913
—0.0901
—0.0885
-0.0869
-0.0851
—0.0833
—0.0814
—0.0795
—0.0774
—0.0755
—0.0735
—0.0718
—0,0699
—0.0681

and VEp have the same asymptotic behavior
—0. 191/r' at large distances, but differ markedly
in their short-range behavior. Figure 1 illus-
trates the repulsive core of 'UEp. The wave func-
tions $2s and |It) k were obtained using the potentials
'UAED and VEp as discussed in Sec. III, and there-
fore contain second-order direct interactions.
Second-order exchange contributions are presumed
to be small.

-.ev-Li

CJ

'0
b

l.2

0 O.I 0.2 0.3 0.4 0.5 0.6
k ta-.')

FIG. 3. Photoionization cross sections of lithium.
I 0 and VO are the Hartree-I ock calculations in the
length and velocity forms, respectively. L1 and Vl in-
clude first-order corrections as computed in this work,
and CM-L1, CM-Vl indicates the first-order results
of Chang and Mcoowell (Ref. 14).

In Table IV, we give the second-order correc-
tions to the matrix element which are obtained by
taking the difference between

Jd R p"„(R)O(R)[p2 (R) —Xu(R)]

and ldRP &'~~(R)O(R)g "&(R)
k 2s

where Q"' signifies the FCHF wave function. The
entries in Table IV are separated according to
whether the initial or final state was corrected and
according to whether 'U = 'UAED or V = VEp.

We observe that second-order final-state correc-
tions are substantial, being roughly 50-10(Flp
larger in the AED method than in the EP method.
However, we note that second-order initial-state
corrections effectively cancel second- order final-
state corrections in the AED method, whereas no
such cancellation occurs in the EP method. The
large differences in second-order initial-state ef-
fects in the AED and EP methods are due to the
distinctive short-range behaviors of 'UAED and
VEp. Small changes in the AED 2s wave function
(1-3%)give rise to large second-order initial-
state effects. The repulsive core of the EP poten-
tial partially compensates for the attractive tail
and leads to a 2s wave function which differs only
slightly from the FCHF 2s orbital.

Chang and McDowell approximate the second-
order MBPT diagrams and obtain corrections in a
manner essentially equivalent to the AED method.
There are small differences in that they use the
calculated value of 0. 174a,' for the polarizability
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of Li and neglect the nonorthogonality of $2~ and
u. Their second-order initial-state corrections
contained a numerical error which has subsequently
been corrected. " These corrected results along
with their second-order final-state corrections
are in good agreement with our corresponding AED
calculations.

Total photoionization cross sections as calculated
using the AED and EP methods in the length and
velocity approximation" are given in Fig. 4 and
are compared with the experimental results of
Hudson and Carter22 and the corrected20 MBPT
calculations of Chang and McDowell. '4 The ex-
perimental data are quoted as accurate to within
+10 /p. The agreement between the length and
velocity cross sections is better than 5% in both
the AED and EP methods. %e note that the AED
calculations are lower than the EP calculations
and lie outside the experimental error for all
energies considered.

The EP cross sections, however, are in good
agreement with experimental data near threshold.
As energy increases the calculated cross sections
all decrease more rapidly than the experimental
data.

VI. CONCLUSIONS

C4

C
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X L» CD

L» 0 Qh

C 0 C C C

The purpose of the present investigation is two-
fold. %'e have demonstrated that the polarized
orbital method can readily be extended in photo-
ionization calculations to give first-order correc-
tions to the cross section. However, the first-
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FIG. 4. Photoionization cross sections of lithium,
corrected to second order. L and V indicate the length
and velocity forms of the matrix elements. The dis-
tortion potentials used were AED (adiabatic-exchange
dipole) and EP (extended polarization potential). Ex-
perimental results of Hudson and Carter (Ref. 22) are
given by the circles. The region indicated CM repre-
sents the extent of the length and velocity MBPT re-
sults of Chang and McDowell (Refs. 14 and 20) .
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order exchange corrections, although small, are
not properly treated in the polarized orbital
method. 'We have further shown that the neglect
of first-order corrections may, in part, explain
discrepancies in calculated photoionization cross
sections using the dipole-length and dipole-
velocity approximations.

In addition, we have shown that the extended
polarization potential method, which takes into
account nonadiabatic effects, gives cross sections

which are in better agreement with experimental
data than calculations using the AED method.
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