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where the factor (—) '+' arises from the easily derived
relation

&p&(
—k*, «) = (—) '+'pq (k, «) . (A19)

Substituting (A18) and (A19) into (A7") gives the
desired result

&i,.(«, «') =
v s(k-, «) v i*( k-*—, «') IC2k-l~, «-f «I 3.

(A20)

We have obtained (A2) in terms of rp~(k, «), how-

ever the result is obviously independent of the normal-
ization of the Gamow-state wave function. It is well-
known tha. t (A2) holds at bound-state momenta and
the results of this appendix indicate that the definition
(2.18) provides a method for extending (A2) to con-
sider a wider class of Gamow states. Rorno' has derived
the same result for his definition of the Gamow-state
inner product.
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The angular distributions of spin-zero even-parity particles emerging from a compound nucleus formed
by a 1+ and 0+ pair are displayed in a simple form which facilitates parametrizing the differential cross sec-
tion in terms of partial waves. The method is applied to the '60(d, n1) "X*data of Jobst et al. to display the
resonant partial waves corresponding to "F states. intrinsically ambiguous solutions of number 2™xare
found empirically. The problem of selecting the correct solution is discussed. Data with polarized deuterons
are of no help since the analyzing powers are energy-independent (cf. Jacobsohn and Ryndin, who hrst noted
that the reaction is an absolute detector of deuteron alignment).

INTRODUCTION

~

~

~

S pointed out by Jobst, Messelt, and Richards, '

L angular momentum and parity conservation re-
sult in simple and unique angular distributions for a
pair of spin-zero even-parity particles emerging from
a single state J of a compound nucleus formed ini-
tially by a, 1+ and 0+ pair. (For other interesting
properties of such spin and parity combinations, see
Bohr, ' and Peshkin, ' and Jacobsohn and Ryndin. 4)

By use of Z coef%cients, the theoretical angular dis-
tributiorls can be evaluated in a straightforward but
tedious manner. The resultant angular distributions
are so simple, however, that even qualitative con-
siderations give unambiguous J assignments to rela-
tively isolated resonances. Jobst et al used these .con-
siderations to assign J to a. number of "F states
which appear as resonances in the "O(d, a~)'4'* re-
action where the '4X residual nucleus is left in a
J =0" excited state. However, sizable asymmetries

f Work supported in part by the U.S. Atomic Energy Com-
mission.

' J. Jobst, S. Messelt, and H. T. Richards, Phys. Rev. 178,
1663 (1969).

~ A. Bohr, Nucl. Phys. 10, 486 (1959).' M. Peshkin, Phys. Rev. 133, B428 {1964).'B. A. Jacobsohn and R. M. Ryndin, Nucl. Phys. 24, 505
{1961).

about 90' in the c.m. system in the data also imply
various amounts of interference with neighboring states.
The next step of qua, ntitatively evaluating the am-
plitudes of the interfering partial waves becomes a
much more difFicult operation. Since the angular dis-
tributions computed for each isolated state turn out
to be so simple, we sought a,iso a simple analytic
expression that exhibited the interference effects in a,

form more convenient for analysis and for physical
understanding.

RESULTS

This simple analytic form turns out to be as fol-
low s:

do. M " 21+1 dP~(cos8)
dQ 12 (=g D (1+1)]"' do

where Sl is the complex amplitude of the lth partial
wave, a,nd 0 is measured in the c.m. system. An
isolated resonance of the compound system involves
only a single SI and corresponds to a J =/( )' level
of the compound nucleus. The above formula can be
obtained by a tedious reduction (for our special sys-
tem) of the general equations 3.13-3.16 of Ref. 5. Its

' J. M. Blatt and L. C. Biedenharn, Rev. Mod. Phys. 24, 258
(1952).
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Pro. 1. Representative samples
of the fit obtained for Figs. 2,
4, and 5 of Ref. 1. P is the index
for Pearson's X2 test (Ref. 7}.
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simple character can, however, be directly understood
as follows: For a reaction (0+)+(1+)—+(0+)+(0+),
J=/f. Parity conservation requires /;=/f(= /) and —ex-
cludes l=O. For the s axis along the incident-particle
direction, /, =0 so that J,=s, and s,=0, ~1. But
1;+s=j=1 means that 1; is perpendicular to s and
the plane of the s,=0 substate is not perpendicular
to 1;. This statement corresponds to the Clebsch-
Gordan coefficient (/100

~
/0) =0. Thus the only out-

going waves for a given / are those with /, = ~1, both
of whose amplitudes are proportional to Vl&+'). But

(2/+1) (/ 1)! "'-' dPi(cosO)—
4~(/+ 1)! dO

The trajectory of the complex amplitude, 5&=8&/
exp(i@~), corresponding to a resonance is a circle
traced in the counterclockwise direction. The radius
of the resonance circle is (I'yi', )'~'/F, and the center
is determined by the nonresonant background in the
manner discussed in detail by McVoy.

Interference eGects can then be visualized in terms
of adding of these 5& vectors: a. resonant one rapidly
rotating, plus one or more slowly varying partial-
wave vectors.

APPLICATION TO 'SF STATES

The above expression is particularly suitable when
programming a computer to do a least-squares fit to

6 K. %. McUoy, in Fundamentals in Nuclear Theory, edited by
C. Villi and A. DeShalit {International Atomic Energy Agency,
Vienna, 1967},p. 478.

the experimental da/dQ in terms of the complex
S-matrix elements. Each experimental "O(d, ai) "N"
point of Jobst e/ a/ (Figs. .2, 4, and 5 of Ref. 1) was
weighted inversely by its assigned error, and a CDC-
3600 computer then sea,rched for a minimum in g~

for each angular distribution. The resulting fits were
generally quite good (e.g., see samples shown in
Fig. 1), and gave values P (from the Pearson x~ test7)
of 0.1&/&0.9. The number of permitted parameters
(one less than twice the number of partial waves)
was, of course, kept less than the number of data
points being fitted (usually between 9 and 23). In
most cases, good fits could be obtained with only a
relatively few partial waves interfering, e.g. , Fig.
and Table I.

In fitting the data, the summation over l ran from
1 to an /, „required for an acceptable x' (/=0 is
forbidden). The /, „required was sometimes greater
than expected from hard-sphere particles of radius
4.3 fm for the deuteron and 1.5 A'" fm for '0. If,
after fitting the distribution, /„„was reduced by one,
then the new fit was generally not acceptable. If l ~
was increased by 1, the approximation of independent
fitting parameters usually broke down almost com-
pletely and the least-squares matrix became very ill-
conditioned, indicating too many free parameters. As
the over-all phase of the system is arbitrary, we set
the phase of the highest partial wave at zero. The
uncertainties in the 5~'s, which are a few parts in
the last digits in the tables, we estimated from the

~ R. D. Evans, The Atomic nucleus (McGraw-Hill Book Co.,
New York, 1955},p. 775.
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TABLE I. The eight solutions at E~ =5.76 MeV for l,= 5. S& =Rf exp (i&~) . Note that R& and Re (S4) are the same for all solu-
tions. Since the over-all phase is arbitrary, we set p& =0. The solution numbers correspond to Fig. 2. Uncertainties are a few parts
in the last place for R and a few tenths of a radian for

Solution No. R1 R. R4 Re (S4)

0.01 2.0 0.135 2.3 0.055
0.03 4.4 0.115 2. 7 0.075
0.06 3.5 0.110 4. 1 0.065
0.06 2 ~ 8 0 ~ 080 3.6 0.095
0.08 2.2 0.075 3.8 O. 040
0.10 2 ~ 0 0.110 3 ~ 8 0.040
0.10 1.8 0.040 3.2 0.075
0.23 1 .7 0.080 3.4 0.065

5 ~ 8
5.4
0.9
1 . 1
1 .2
O. 3
1.2
O. 8

0.005
0.020
0.035
0.020
0.080
O. 045
O. 060
O. 025

3 ~ 7
4.6
4.6
4.5
4.7
4.6
4.7
4.6

0.003
0.003
0.003
0.003
0.003
0.003
0.003
0.003

0.100 0.0
0.100 0.0
0.100 0.0
0.100 0.0
O. 100 0.0
0.100 0.0
0.100 0.0
0.100 0.0

likelihood function' 2 (which describes the probability
of getting the experimentally observed results as a
function of the free parameters) for each variable
(assumed independent) . In general, the /= 1 param-
eter had the largest error and l,„had the smallest.

In a few cases (not shown), in terms of P, satis-
factory fits were not obtained. The poor fit may result
from an underestimation of the data uncertainties,
especially at forward angles, where dead-time correc-
tions and background subtractions were relatively
more important. A more likely cause may be un-
detected shifts in deuteron energy. The small cross
sections for the reaction of interest required that the
slits defining the deuteron energy be set further open
than normal. The beam homogeneity v as, however,
much better than the energy thus defined by the
slits. As a result, changes in tandem operating con-
ditions (but with no changes in analyzing magnet)
sometimes shift the average beam energy by as much
as 15—20 keV. Since many of the angular distribu-
tions required long runniiig periods, such shifts cannot
be ruled out, although the general goodness of the
fits even for narrow resonances suggests that the energy
shifts were usually not important. For one angular
distribution where a 16-keV shift was discovered, it
was impossible to fit the data with a, reasonable

1
g (=2 o II ) x II 4—~

tI
a 5~+

inelastic scattering and reaction problem has never
been discussed, but we would conjecture that there
are least an equivalent number of intrinsic ambigui-
ties in the determination of the S-matrix elements.

In our least-squares fitting of the angular distribu-
tions by the computer, these intrinsically ambiguous
solutions were found empirically by starting with
random input parameters and letting the program
vary the parameters until a minimum in y' was found.
If l partial waves were permitted in fitting an angular
distribution, we found empirically a set of 2 diferent
solutions which gave identically the same cross sec-
tion at all angles. In two cases, l =3 and l =5,
a concerted but unsuccessful eGort was made to find
more solution than 2'~~ .

Of the 2 ' solutions, only 2 ' ' had diGerent ampli-
tudes. The other solutions represented (1) reflections
about the real axis (only cosines of the angle with
respect to the real axis enter the cross-section formula),
and (2) rotation of 180'. The latter operation is
equivalent to a change in sign of all amplitudes, which,
of course, yield s the same cross section.

In order to discuss in more detail the properties of
the ambiguous sets of solutions, we note that for our

AMBIGUITIES IN SOLUTIONS

It is well known that phase-shift analyses of scat-
tering cross sections at a fixed energy usually have
intrinsic ambiguities (e.g. , Minami and Fermi-Yang
equivalent solutions for spin-0-spin- —., scattering) . In
fact, Klepikove shows that for spin-0-spin- ~ scattering
(with unknown polarization), there are 2" solutions,
where n is the number of partial waves. More recently,
Van %ageningen~o treated some of the ambiguities for
elastic-scattering experiments. To our knowledge, the

J. Orear, University of California Radiation Laboratory Re-
port No. UCRL 8417, 1958, p. 8 (unpublished) .Available through
Superintendent of Documents, U.S. Dept. of Commerce.

X. P. Klepikov, Zh. Eksperim. i Teor. Fiz. 41, 1187 (1961)
I English transl. :Soviet Phys. —JKTP 14, 846 (1962)j.

R. Van Wageningen, Ann. Phys. (N.Y.) 31, 148 (1965)
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FIG. 2. Energy dependence of the S-matrix elements at the
Ez =5.78-MeV resonance. The quantity plotted, 0'z =
3m% (21+1) I 5& ~, is the total cross section for each partial wave.
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TA&LE II. Splitting at ~=4.98 MeV of the two ambiguous solutions for lm, =3 as l„„,=4 is permitted. The number pairs are
amplitude and phase (in radians) of Sc=R~ exp(&~). Uncertainties for the L,=3 solutions are a few parts in the last place for R
and a few tenths of a radian for qb. They are larger for the L „=4solution; in fact S4 is not inconsistent with zero.

Sll,=3 t ' I11$x

S2
~max =4 l,=3

S3
I„, „=4

S4
tntax 3 ~max

Set I

0.06(2.5)

Set II

0.13(5.0)

0.04(3.7)

0.10(1.3)

0.14(3.0)

0.12(6.1)

0.100(1.7)

0.039(4.3')

0.085(3.4}

0. 100(,0.1)

0.015{2.1)

0.075(0.6)

0.063 (0)
0.080(1.7}

0.025{4.3)

0.060(1.7)
0.063 (0}

0.040(4.5}

0(0)

0{0)

0.016(0)

0.016(0)

0.016(0)

0.016(0)

case, Biedenharn's Eq. 102 (Ref. 11) becomes

dv/dQ= (M/12) g A„E„(cosO),

.IO

E.*5.79 Mey

F Oe cay

(r, r;)"'
F '077

R-5 .78

FIG. 3. Fit to S5 of Fig. 2 with a single-level Breit-Wigner
formula with no background contribution.

"L. C. Biedenharn, in Xicclear Spectroscopy, edited by F.
Ajzenberg-Selove (Academic Press Inc. , New' York, 1960), Part
B, p. 787.

where

A.= —g Z(l&,l&q, 1v) Z(lJ,le , 'Ov) R. e[Sg."Sg,).
JgJy

But the A„can be found empirically by a least-squares
fj.t to the angular distribution. And since v =2l, ,
we see that the empirical A„give us 2l +1 equa-
tions in 2l —1 unknowns. The number of unknowns
is less because one phase may be arbitrarily picked
and because S~=0, since l=0 violates parity conser-
vation. The symmetry properties of the Z coeScients
reduce the 2l +1 relations to 2/ —1 independent
equations. The last two are

A„„&=—Z(lJl J; 1v~~ q)Z(lJl J
&

Ovmsx —a)

&&S&,Re[S& ..-.3,

A„=Z(lJLJ;1v )Z(lJlJ'Ov ) I Sg ..I'

where /=7=-', v and l'=J'=l —1, and the arbitrary
phase has been set at zero for the l th partial wave.
The above relations show that S~ and Re[sg .. .j
should be the same for all solution sets. The empirical
results (Table I) also exhibit these characteristics.

The above set of coupled quadratic equations allows
for at most 2l —1 choices of sign for square roots.

However, as we sa.w earlier, not all of these need be
made. In fact, only /, „are necessary; hence we have
2' ~ diGerent sets of answers.

When a higher partial wave 6rst appears, its S-ma.-

trix element is small; therefore, as seen from the
above, there are two solutions for S~ . , with the
same magnitude and with imaginary parts of opposite
sign. As the partial wave becomes more importa, nt,
two slightly split solutions grow out of each of the
solutions that existed before this higher partial wave
was introduced. See, for example, Table II, where at
Eq=4.98 MeV there are two l=4 partial-wave solu-
tions identified with each l = 3 solution.

REMOVAL OF AMBIGUITIES

A complete" experiment should of course remove
the ambiguities. In the better-studied spin-0 —spin-~
elastic-scattering case, polarization data usually serve
this purpose. For charged-particle elastic scattering,
interference with Coulomb scattering can usually dis-
tinguish solutions, or the known low-energy depend-
ence of the partial waves may sufBce. In the present
case of spinless outgoing particles, polarization data.
is of no help (see below). If we follow individual
solutions as a function of energy, perhaps we can
exclude certain solutions as being physically unreason-
able. In general, we expect that data from other
reaction channels will be needed before we can iden-
tify a unique solution.

One might hope that use of polarized incident deu-
terons would help remove ambiguities. Such is not
the case. Jacobsohn and Ryndin' have shown that
the relevant quantities, the analyzing powers, are for
this reaction independent of energy. This result is
here easily demonstrated by noting that the channel-
spin state

~
m, =O) does not contribute. The analyzing

powers" are then (in terms of the spin operators S,)
T„=——,'v3 (S+)=0,
T p

———,'V2(3S.2—2) =-',v2,

T,= —-', v3(S„S,+S.S+)= 0,

T,.= -', &3(S~')= —,'W3,
'2 W. Lakin, Phys. Rev. 98, 139 (1955).
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as the raising operator S+ sends both
~

—1) and
~
+1)

into nonexistent states, while S+-' and S, can have
nonzero eigenvalues.

We made an unsuccessful attempt to reduce the
ambiguities by determining the energy dependence of
the matrix elements of each solutions and eliminating
those which appear unphysical. The only resonance
for which sufficient data are available is the 5 level
at Ee 5 78——M. ev (see Fig. 5 of Ref. 1). Here we
followed the eight different sets of amplitudes (Table
I) across the resonance by using the solutions at one

energy as starting values for a neighboring energy.
We checked for consistency by using these results as
starting values for the first energy again. Figure 2

displays the energy dependence of the resulting
~

S~ ~'

near the resonance for all eight solutions, but no
solution displays really unphysical behavior. A further
difFiculty arises since the relative phase between en-
ergies is unknown. For the resonant

~
S~ ~2, we may

use a single-level Breit-Wigner formula to fix the
relative phase (Fig. 5) . These l= 5 phases should then
fix the relative phases of the other partial waves.
However, there are several di%culties with this pro-
cedure. For one we need more data just above the
resona, nce to preclude the possibility of another l=5
peak whose presence would complicate the analysis.
Also, the possible 20-keV energy shifts discussed earlier
could be of considerable importance since the reso-
nance is only 50-keV. Therefore, we cannot yet
identify the proper set of solutions.

' F Spins and Parities

%hen the multiple solutions to an angular distribu-
tion are similar (as, for example, in Fig. 2) we can
often identify the resonating partial wave. These con-
ditions are most likely to occur at low energy when
I „„ is small or where there is a. strong relatively
isolated level. Also, a resonance in S~ .. is more ap-
parent since the magnitude is the same in all solu-
tions. The determinations below are made entirely
from numerical solutions where all ambiguous solu-
tions were studied and are thus independent of those
of 7obst et al. In the following discussion, we refer
to the data given in Fig. 2 of Ref. 1.

Ed ——3.64 MeV: / = 3. The two solutions are nearly

identical and indicate J =2+ as the resonating partial
wave.

Ed=3.85 MeV:1,„=3,J =2 . However, one solu-

tion has comparable amplitudes for l=1 and 3=2 and
also a fair amount of l=3 amplitude. If Si and S3
have about the same phase, the center maximum can
disappear and the result looks very much like

~
S2 ~2.

We consider this unlikely here, since the S is large
for both solutions.

Ed, =4.00 MeV: L„„=3,but l=2 is very dominant
and hence J =2+.

E~=4.98 MeV: I, =3. The solutions differ mark-

edly and ea,ch requires a large amount of all three
waves. The l=3 is stronger than at 4.92 MeV, but
nothing can be said accurately about level positions.

Ed=5.51 MeV: / =4. The values fluctuate greatly
between solutions with a tendency for I,= 2 to be large.

For the remaining discussion we refer to the data
given in Figs. 4 and 5 of Ref. 1.

Ed=5.60 MeV: l =4. The solutions are all simi-

lar and all partial waves except l=1 are large.
E~=5.74-5.82 MeV: / =5. Our Fig. 2 shows for

all solutions the energy dependence of the matrix
elements displayed as contributions to the total cross
section. There is clearly a J =5 resonance at Ed=
5.78 MeV, but no compelling reason to abandon any
of the solutions although we may prefer No. 1 because
of its simplicity. This solution would also imply a
J = 2+ resonance at about Eg= 5.76 MeV and a J = 3
resonance at about Ed=5.80 MeV.

Ed=7.39 MeV: / =5. The solutions are again a
mixture of all available partial waves; the mixture
changes greatly from one solution to another.

At other energies the search for all possible solu-
tions was not made and so no conclusions can be
drawn. The sixth partial wave was necessary first at
7.80 MeV, and l= 7 was not needed even at 11 MeU,
although this does not necessarily mean that it was
absent at all energies.

ACKNOWLEDGMENTS

We wish to thank Professor C. H. Blanchard for
helping us with a simple physical description of the
system.


