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be taken to ensure that the intrinsic determinant is of
su%.cient generality to include the correlations of
importance. The quasiboson prescriptions for esti-
mating ground-state densities, while simple, are un-
reliable unless the excitation energy is given correctly
in the primary equations-of-motion calculation and
unless only a few collective modes dominate the correla-
tions. But if these conditions are satisfied, they appear
to predict correlations of the correct magnitude. Further

investigations by one of us" indicate, however, that for
the ground-state correlations of vibrational nuclei,
if a straightforward shell-model calculation is too
difficult, then simple perturbation theory is probably
the next best thing.
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Mixed-parity Hartree-Fock calculations have been performed on the nitrogen and oxygen isotopes using
(1) a central Rosenfeld interaction, {2) a Rosenfeld-plus-an-appropriate-tensor interaction, and (3) bare
Kuro-Brown matrix elements. It is shown that the results for the interactions (2) and (3) are fairly close.
The gain for 0' is found to be larger than either of its isotopes A =15 or 17. This is interpreted in terms
of the energy gap between the occupied. and the unoccupied Hartree-Pock orbitals.

j.. INTRODUCTION

F iHE parity mixing in the Hartree-Fock calcula-.tions was first indicated by Bleuler. ' Since then
a number of mixed-parity Hartree-Fock calculations
have been reported in the literature. "The main pur-
pose of such calculations is to see whether a better
variational solution can be obtained by allowing parity
mixing in the expansion of the single-nucleon orbitals.
These mixed-parity solutions if they exist, are very
useful in studying the configuration interaction prob-
lem when the mixings across the major harmonic-
oscillator shells become important. This, for example,
is the case for nuclei near closed shells, where particle-
hole type of excitations are important.

Bassichis and Svenne' performed these calculations
for the 4n-type nuclei, using a model force derived
from the Hamada-Johnston potentiaL' Their main
conclusion was that it is su6icient to restrict the
single-particle wave functions to be eigenfunctions of
parity so long as the tensor part of the nuclear force
is less than twice its accepted strength.

~ Work supported by the National Research Council of Canada.
t On leave of absence from Tata Institute of Fundamental

Research, Bombay, India.' K. Bleuler, in Proceedings of the International School of Phy-
sics "Enrico Fermi" (Academic Press Inc., New York, 1960),
Course 36.

2 W. H. Bassichis and J. P. Svenne, Phys. Rev. Letters 18, 80
{1967).' J. C. Parikh and Nazakat Ullah, Nucl. Phys. A99, 529 (1967).' T. Hamada and I. D. Johnston, Nucl. Phys. 34, 382 {1962).

The mixed-parity Hartree-Fock calculations in
Ref. 3 were carried out for the nitrogen and oxygen
isotopes. A Rosenfeld central interaction was used in
these calculations. These calculations had indicated
that the mixed-parity single-particle orbitals can be
obtained in the Hartree-Fock variational calculations
provided the strength of the central potential is taken
to be larger than the accepted value.

The purpose of the present calculation is to find
the role played by the tensor force in the mixed-
parity Hartree-Fock calculations for the light nuclei
and then present the final results with realistic two-
body matrix elements like the bare Kuo-Brown matrix
elements, ~ which are derived from the Hamada-John-
ston interaction. 4

As in the earlier mixed-parity Hartree-Fock calcu-
lations, ' we first discuss the two-level problem in
Sec. 2, and then in Sec. 3 present the results for the
expanded basis set with the bare Kuo-Brown matrix
elements.

2. TWO-LEVEL HARTREE-FOCK CALCULATIONS

The two-level mixed-parity Hartree-Fock calcula-
tions are carried out by assuming the active nucleons
move in the 1P1~2 and id;~2 orbitals outside of a
(1s&~2) '(1p3/2) closed-shell core. The single-particle
energies e„~, are taken from the experimental spectrum
of the C" nucleus and are given in Table I. These

~ T. T. S. Kuo and G. E. Brown, Nucl. Phys. 85, 40 (1966).
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Fzt:. 1. Plot of the gain in binding energy AB against the single-
particle spacing ~=e1~@2—~1„~~~ for the two-level problem. R,
RHJ, and KB indicate Rosenfeld, Rosenfeld-plus-appropriate-
tensor-component, and Kuo-Brown interaction, respectively.

values are the same as those used in the earlier mixed-
parity calculations. ' To see the eGects of the tensor
force, we have performed three series of variational
calculations for the two-level problem. In the erst
series, only a central Rosenfeld interaction is used;
in the second series an appropriate tensor interaction
is added to the Rosenfeld interaction; and in the
third one we use the bare Kuo-Brown matrix elements.
All these calculations are performed as a function of
the single-particle spacing between the 1p~~2 and 1d;~2
orbits. This is done to see the eA'ects of the deforma-
tion of the C~ core. In these preliminary calculations,
simplification is introduced by assuming neutron and
proton orbitals to be alike, and the orbitals for k
and —k to be related by the time-reversal operator.
These restrictions on the single-nucleon orbitals are
relaxed in Sec. 3, where we perform the calculations
with the expanded basis set.

The parameters of the central Rosenfeld interaction
V, are given by

3VO(rl T2) (0 3+0 ia1 rr2) .exp( . I2,r)/12, r (1)—
with V0=50.0 MeV and p,, '=1.37 fm '.

To choose an appropriate tensor interaction which
should be used with potential (1), we rewrite it using
the projection operators in spin and isospin space

—1V (PT=1,$=1 1 gPT=1,S~ 3 PPTM, S=1

+5.4PT~ s~) exp( I2,r) jl2,r, (2)—
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with pz' = 1.415 fm. In all our calculations the oscil-
lator parameter b appearing in the radial wave func-
tion —expL —-,'(r-"/b') 1 is taken to be 1.63 fm.

The results of the two-level calculation for the ni-
trogen and oxygen isotopes are shown in Fig. 1, where
we have plotted the gain in binding energy LU3 due
to parity mixing as a function of the single-particle
spacing E=fg

/ Ey /
for the three interactions. The

discussion of these results shall be taken up later in
Sec. 4.

3. NUMERICAL CALCULATIONS USING
EXPANDED BASIS SET

Ke now expand our basis set to include the 2s~/2

and 1d3/2 orbitals also. As we had mentioned earlier
in Sec. 2, we shall carry out the mixed-parity Hartree-
Fock calculations in the expanded basis set without
assuming any time reversal invariance. Furthermore,
the neutron and proton orbitals will be varied inde-
pendently. The calculations are performed using the
bare Kuo-Brown matrix elements' and the single-
particle energies of Table I. In Table II we show the
gain in binding energy due to parity mixing in the
expanded basis set. Table III gives the eigenvalues
and the eigenvector components of the mixed-parity
single-particle Hartree-Fock operator.

4. DISCUSSIONS OF RESULTS

The following observations are made by looking at
the plots of gain in binding energy against the single-
particle spacing shown in Fig. 1: (a) For purely cen-
tral forces the gain in binding energy is zero for all
the nitrogen and oxygen isotopes unless the single-
particle spacing is very small. This is the same result
which we had found earlier'; it is used as a check on
the present calculations. The fact that parity mixing

TABLE I. Single-particle energies E fj.

State
nlj

Energy En]j

(MeV}

1P1/2

2$1/q

1d5/g

1A/2

—4.95
—1.86
—1.10

3.39

where I'~ ~ is the projection operator, which projects
out a wave function of definite isospin T and spin S
from an arbitrary wave function. A comparison of
the central and the tensor part of the Hamada-John-
ston force tells us that the appropriate tensor force
which should be used with interaction (2) is

Vr ——-', Vg(P -'—3P™)t L3(ag. r») (o' ru)./«i'$
—(~1~ &2) I exp ( urr)—/urr (3)

Tssz.K II. Gain in binding energy AB due to parity mixing.

Nucleus

Gain in binding

energy AB
(MeV)

N14

N15

016
017
01S

0.0
0.573
1.677
0.798
0.255

' M. K. Banerjee, C. A. Levinson, and G. J. Stephenson, Phys.
Rev. 178, 1709 (1969).

is very small if one uses purely central forces is also
in agreement with the arguments of Banerjee, Levin-
son, and Stephenson. 6 (b) The tensor component in
the two-body force increases the gain in binding energy.
The results obtained with the bare Kuo-Brown matrix
elements are fairly close to the ones given by the
force which is a combination of the central Rosenfeld
interaction and an appropriate tensor force. We there-
fore conclude that the eRects of a noncentral tensor
force can be reproduced if one adds the tensor com-
ponent given by expression (3) to the usual Rosenfeld
force. (c) The gain in binding energy is small for
normal single-particle spacing. It is maximum for 0"
and is less for either of the isotopes 3=15 or 17.
This feature remains true even when the basis set is
expanded (Table II).

The results of Table III are obtained without as-
suming any time reversal invariance or the equivalence
of neutron and proton wave functions. Ke see from
this table that for a doubly closed nucleus like 0'6,
the final solutions do converge to the ones which have
time reversal invariance and neutron and proton wave
functions alike. These symmetries are destroyed for
the open-shell nuclei like N". Since no Coulomb force
is included in the Hamiltonian, and the single-particle
energies e„~, are taken to be the same for neutron and
proton, the Hartree-Fock (HF) orbitals for 0" are
obtained from those of N" by interchanging neutron
and proton.

It should be pointed out that there is no spurious
state problem due to center-of-mass motion in our
solution for the two-level case. In the expanded basis,
spurious states can enter into the solution, but since
the trend is identical to that of the two-level case,
we believe the admixture is small.

Perhaps the most interesting result of our calcula-
tion is that the gain in binding energy for 0'" is more
than any of its isotopes 2 =15 or 17. This is true for
all three interactions which we have used and also
for the expanded basis set. To explain this, let us
suppose that we have performed two HF calculations,
one spherical with js being a good quantum number,
and the other deformed with only k being a good
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TABLE III. Eigenvalues ~&, F and the eigenvector components C &,
~ ' of the HF single-particle Hamiltonian for

the nitrogen and oxygen isotopes.

Nucleus 1d3I2

N14

15

P16

Ol?

P18

1
2
1
2

1
2

1
2

j.
2

1
2
5
2

1

1
2
1
2

1
2
1
2

1
2

I
2
1
2
1
2

1
2

1
2
1
2
1
2

—7 ~ 534
—7.534

—9.659
—9 ~ 389
—7.855

—11.209
—11.209
—11.138
—11.137

—13.301
—13 ' 092
—12.208
—12.463
—8. 170

—15.352
—15.279
—12.493
—12.490
—9.596
—9.589

1.000
1.000

0.948
0.880
0.892

0.866
0.867
0.868
0.868

0.925
0.922
0.916
0 ' 884
0.000

0.961
0.963
0.939
0.940
0.000
0.000

0.000
0.000

0.014
—0.012
—0.003

0.031
0.032

—0.025
—0.025

—0.007
0.028

—0.006
—0.011

0.000

—0.035
0.035
0.020

—0.012
0.000
0.000

0.000
0.000

—0 ~ 314
0.474
0.451

—0.494
—0.493

0.497
—0.496

—0.373
0.385
0.400

—0.466
1.000

—0.267
0.266
0.341

—0.341
1.000
1.000

0.000
0.000

0.052
—Q. 022

0.040

0.068
0.068

—0.007
—0.007

Q. 073
—0.002

0.025
0.044
0.000

0.061
—0.005

0.037
0.018
0.000
0.000

quantum number. The gain in binding energy for the
0" nucleus is defined by

where I.'(pq/2) is the energy of the four nucleons in

the pq/2 orbit, and E(l k
I

= 2)' is the energy when four
nucleons occupy qh~ ~i~2 orbits. From the Hartree-Fock
calculation of 0", we can construct the wave func-
tions for 0'5 and 0' by destroying and creating a
neutron, respectively, and calculating the correspond-
ing 68 for these two nuclei. It is easy to show that

»(O )» (O ) D4'& (5/2/ I
~=I 4'&=(5/2) )

»(o")=»(o")—I:&po/2. ~ I

h'"
I p~/~. )

(@tc o/2n) I
h '

I
4=& &&/ga))g, (Sb)

where h'&" and h" are the single-particle spherical
and deformed HF Hamiltonians for the 0" nucleus.
We see from expressions (Sa) and (Sb) that the gains
»(0") and»(O") will be smaller than»(O")
if the single-particle levels k= ~n and k= ~n in the
deformed HF calculation are pushed down and up,
respectively, relative to the spherical Pi~2 and d~~2 levels.
We have calculated these quantities from our HF
calculations and find that the above behavior of the
energy gap for the spherical and deformed Hartree-
Fock is true.

We therefore see that the gain in bindiag energy
in the mixed-parity calculations is closely related to

the energy gap between the occupied and the un-
occupied HF orbitals. It will be interesting to see
whether the above type of behavior is also observed
for isotopes of other 4&s-type nuclei.

We remark here that Bar-Touv and Levinson, v and
also recently Rowe, ' in their HF calculations on light
nuclei have observed that a single-particle HF level
starts sinking from its unoccupied position to its fully
occupied position as it becomes occupied, while the
other levels remain relatively unshifted. Let us now
consider the positions of the p&/2 and d5/2 levels in the
isotopes of 0" using this picture. The pl~2 level gets
fully occupied at 0" and this should be its lowest
position, while the position of the d~~2 level both in
A=15 and 16 should almost be the same. When we
go to A=17, then the d5~2 level starts getting filled
and therefore it should sink relative to the one in 0",
while the pj~2 levels both in A=16 and 17 should
almost remain unshifted. This means that the gap
will be bigger for A=16 than either of the nuclei
A =15 or 17. This, combined with the results of Fig. 1,
tells us that the gain in binding energy due to parity
mixing is bigger for the nucleus which has a bigger gap.
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