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Saskawa Theory of Reactions
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An iterative nonrelativistic theory of reactions is discussed. It generalizes Sasakawa's theory of elastic
scattering, published in 1963. A key feature of the theory is its use of zero-order wave functions that allow
self-consistent treatment of the asymptotic boundary conditions. This allows the theory to be applied both
for inelastic scattering and for rearrangement. The analysis of rearrangement is a special case of the work
by Efimenko, Zakhariev, and Zhigunov. The present paper emphasizes a zero-order wave function based
on the "surface-b model" of channel coupling. This wave function gives a zero-order theory (no iteration)
that has the nature of a renormalized distorted-wave Born approximation. This zero-order theory may be
adequate for most applications in nuclear physics.

1. INTRODUCTION

X 1963 Sasakawa presented a nonlinear iterative
. . theory of nonrelativistic elastic scattering. The
present paper discusses the extension of this theory to
inelastic scattering and rearrangement. Techniques of
practical calculation are discussed.

The Sasakawa method allows the development of
controlled approximations to the solutions of coupled
differential equations. These enable it to meet the
admonition of Hufner and Lemmer, '- who remark that
coupled-channel calculations in nuclear physics ought
not to be conducted to an accuracy that exceeds the
accuracy of the initial nuclear model. In fact, most
coupled-channel theories are solved exactly, ' in viola-
tion of the Hufner-Lemmer criterion. This excessive
accuracy is achieved at the expense of lengthy numerical
calculations, whose difhculty inhibits the application of
coupled-channel theories. By contrast, in zero order the
Sasakawa method generates a simple "renormalized
distorted-wave Horn approximation'" that seems quite
easy to apply. When greater accuracy is required it is
achieved systematically, bp iteration of the zero-order
solution. It may be hoped that this method will allow
the development of coupled-channel analyses for larger
classes of physical problems.

There is considerable flexibility in the construction of
trial functions with which to begin the iterative calcula-
tion. A trial function based on the surface-6 model of

* Fulbright lecturer at the University of Sydney, 1968—69.' T. Sasakawa, Progr. Theoret. Phys. (Kyoto) Suppl. 27, 1
(196~).' J. Hufner and R. H. Lemmer, Phys. Rev. 1/5, 1394 (1968'j.' For a description of coupled-channel theories and a guide to
earlier literature see T. Tamura, Rev. Mod. Phys. 37, 679 (1965);
also see J. Phys. Soc. Japan Suppl. 24, 288 ('1967).

'Other interesting renormalized DKBA theories are found in
Ref. 2 and in the paper by %. F. Ford, Phys. Rev. 157, 1226
(1967).

channel coupling' is proposed in this paper. This trial
function may well be of sufficient accuracy so that most
applications of the Sasakawa method in nuclear physics
can be performed in zero order.

Section 2 discusses elastic scattering of spinless par-
ticles by a central potential, to introduce the Sasakawa
method. The trial function based on 6-function coupling
is described. Section 3 discusses inelastic scattering.
Section 4 discusses a two-channel stripping reaction, to
illustrate how the Sasakawa method can be applied for
rearrangement. Section 5 is a summary. It is noted that
the analysis in Sec. 4 is in large measure a special case
of a general theory of rearrangement reactions, given
by Kfimenko, Zakhariev, and Zhigunov, ' that success-
fully bypasses the well-known convergence difficulties. '

2. ELASTIC SCATTERING

Accurate calculations of scattering by a central poten-
tial are performed by expanding the wave function in
partial waves. If the s axis is taken along the direction
of the incident momentum k, the partial-wave expan-
sion has the form

x'+'(i) = (&~) ' Z ~'(21-+ &)fi(~)~i(«).

For convenience, the Coulomb interaction has been

"I. M. Green and S. A. Moszkowski, Phys. Rev. 139, B970
(1965}.For a review see A. Faessler, Fortschr. Physik 16, 309
(1968). Previous nuclear reaction applications of this model have
been given by S. Yoshida, Proc. Phys. Soc. (London} A69, 668
(1956};Progr. Theoret. Phys. (Kyoto) 19, 169 (1958) . Also see
K. F. Ratcliff and N. Austern, Ann. Phys. (N.Y.) 42, 185 (1967).

6 T. G. Efimenko, B. N. Zakhariev, and V. P. Zhigunov, Ann.
Phys. (N.Y.) 4V, 275 {1968).

~ For a survey of the literature see R. G. Newton, Scattering
Theory of Waves and Particles (McGraw-Hill Book Co., New York,
1966). A particularly clear discussion of the convergence dif-
ficulties is given by R. Aaron, R. D. Amado, and B.W. Lee, Phys.
Rev. 121, 319 (1961).
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ignored. In partial-wave expansion, the Schrodinger
equation for z&+)(r) reduces to a set of ordinary differ-
ential equations for the radial wave functions fr, (r),

shift 8& by the equation

Cc ——exp(i(')i, ) sin&)k. . (2.10)

& (d'/dr') )L(—L+1)/r'7+k'Ifi, (r) = Uf~(r) k (2.2)

where

L'(r) = (2~/f& ) U(r) . (2 3)

To solve Eq. (2.2), we introduce Fr, (kr) a,nd Gr. (kr),
the usual regular and irregular functions governed by
the left-hand side of Eq. (2.2). The regular function
obeys

I (d'/dr') —{L(L+1)/r '7+O'I-Fr, (kr) =0 (2.4)

with a corresponding equation for Gi, (kr) . At the origin,
Fi, (kr) satisfies the boundary condition

Fr. (0) =0. (2.5)

Additional boundary conditions are imposed asymptot-
ically, by adjusting the normalization and relative phase
of FI. and GL, so that these functions satisfy

where
FI.~ sin8L, , Gl,—+ costIL, , (2.6)

Hk.
——kr —(-,'Lkr) . (2.7)

Of course, the functions FI. and Gl. de6ned here are just
kr times the familiar spherical Bessel and Xeumann
functions. They are real standing-wave solutions of
Eq. (2.4). An outgoing-wave solution is obtained by
constructing the linear combination

The amplitude CL, is computed by means of the well-
known integral formula

Cl ———k' FI

kryo.

r I rdr, 211
0

which may be verified, say, by requiring that Eq. (2.9)
fulfill the boundary condition fr. (0) =0.

Equation (2.9) does not possess the form of the more
usual integral equations derived from the radial
Schrodinger equation. We obtain Eq. (2.9) by re-

arranging the Green's function of one of the standard
integral equations, to display the scattered-wave term
Cr,Hr. (kr). By this step, and by proper choice of Cr. , the
first two terms of Eq. (2.9) are made to give an exact
and explicit representation of the eigenfunction f&(r),
everywhere outside the range of the potential 4'(r).
These two terms thereby isolate all those parts of fz. (r)
that are asymptotically nonvanishing. The third term
of Eq. (2.9) generates only short-ranged parts of fL (r),
effective in the region U(r) WO. The third term makes
no contribution asymptotically.

Ke note at this point that for partial waves with
L)0, the second and third terms of Eq. (2.9) have
poles at the origin. Hence in the neighborhood of the
origin there is strong cancellation between these two
terms.

Sasakawa' advocates the iterative solution of Eq.
(2.9), using as a zero-order form for fi, (r) the expression

HI. =Gg+ iFI.. (2.8)
fi, (0)=Fk, (kr)+Ci.Hi. (kr). (2.12)

+k ' Hk, (kr) Fi, (kr') Fi,(kr)—Hi, (kr')

This is ikr times the spherical Hankel function.
To derive Sasakawa's solution of Eq. (2.2), we con-

struct a corresponding integral equation'

fz (r) =Fz (kr) +Ci Hr, (kr)

In the iteration based on Eq. (2.12), the coefficient Ci,
is carried as an undetermined parameter; in effect, the
two terms of Eq. (2.12) are iterated independently.
After the iteration is terminated, CI. then is computed
self-consistently (this is the nonlinear step in the
theory) by substituting the k'th iterate into Eq. (2.11):

X Ci'(r') f~(r') dr', (2.9)

using the auxiliary functions defined in the preceding
paragraph. The coefFicient CL, is the scattered amplitude
for the partial wave of order L. It is related to the phase

CL, ')= —k ' FI. kr U r L,
(" r dr. 2.13

0

Equation (2.13) determines an appropriate linear com-
bination of the two independently iterated parts of
fz«) (r). Even in. zero order, Eq. (2.13) gives

C (o) k-i P '(k )L ( )E I+i ' k (k )kk*(k )U( ) i),
0 0

(2.14)

a result that goes beyond the Born approximation.
Because the trial function is designed to be accurate
outside the range of 6'(r), the principal benefit of the
iteration procedure evidently is the generation of suc-
cessive short-ranged improvements to the wave func-
tion. The Sasakawa iteration procedure converges' for

all short-ranged potentials U(r) no matter what their
strength.

The basic idea of the Sasakawa procedure is that
fz(r) is computed by iteration of a trial wave function
that contains Cl. , so that subsequent self-consistent
calculation of Ci, using Eq. (2.11),controls the accuracy
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of the asymptotic parts of the trial wave function. The
particular technique used for the iteration, e.g. , sub-
stitution in Eq. (2.9), is of lesser importance. For
example, it is frequently best to discard Eq. (2.9) and
to iterate directly with the radial Schrodinger equation,
by substituting fL&'& on the right-hand side of Eq. (2.2)
and then solving for fL&'+" On. ce again CL is carried
throughout the iteration procedure as an undetermined
parameter, and is only determined self-consistently,
from Eq. (2.13), after the iteration has been terminated.

Whatever the method of iteration, it is presumably
possible to speed up the convergence by replacing Eq.
(2.12) by a zero-order form that is a better approxima-
tion to the exact fL(r). Although, any alternative zero-
order wave function must reduce asymptotically to the
same expression given by Eq. (2.12), it can depart
from Eq. (2.12) in the neighborhood of the origin. At
the very least we may use this freedom to introduce a
zero-order form that does not diverge at r=o. One
simple form that possesses this property is

0.5 1.0 1.5 2.0

0.5 Bo

gB
gS
~o~

0.096 0.243
0.079 0. 157
0. 103 0.285
0. 100 0.266

0.481 0.861.

0.233 0.307
0.654 1 ' 322
0.567 1 ' 093

1.0

1.5 ~o

gB
g S

g J

0. 155 0.351 0.587 0.845
0.136 0.266 0.388 0.499
0.164 0.399 0.717 1.079
0. 160 0.377 0.655 0.966

0. 167 0.347 0.530 0.704
0.158 0.308 0.445 0.566
0. 177 0.387 0.619 0.850
0. 173 0.369 0.576 0.778

TABLE I. Square-well (attractive) s-wave phase shift in rad.
With the well radius R and the well depth Vo, the dimensionless pa-
rameters A and B are A = (2MR'Vp/fi'), B=kR= (2MR'E/A')"'.
To calculate b~ we use rp=-,'R.

fLip&'=FL(kr)+CL exp(ieL) . (2.15)

However, the second term of Eq. (2.15) ignores cen-
trifugal repulsion. More accurate trial wave functions
are desirable.

A quite accurate zero-order wave function would
seem to be

2.0 Bp

gB
g S

g,l

0. 148 0.291 0.425 0.547
0. 148 0.289 0.419 0.536
0, 155 0.320 0.486 0.643
0. 152 0.306 0.455 0.593

fL FL(kr)+CLJL(r, rp),
where

JL(r, rp) =PL (kr), for r) rp

(2.16)

=FL(kr)pHL(krp)/FL(krp) j, for r(rp.

(2.17)

Here the function JL (r, rp) is a conveniently normalized
multiple of the Green's function for Eq. (2.4), for a
source at the point rp. This means that JL(r, rp) satisfies
the boundary conditions of the exact scattered wave,
both asymptotically and at the origin. In addition, the
function JL(r, rp) is a solution of Eq. (2.4) everywhere
except at rp. Under these conditions, if U(r) were a
zero-range potential located at the radius rp, Eq. (2.16)
would be the corresponding exact eigenfnnction governed
by this potential. It seems plausible that with potentials
of finite range Eq. (2.16) should serve as a quite
accurate starting point for iteration, provided ro is
chosen somewhere in the region U(r) WO. In typical
nuclear reaction applications, such as will be discussed
in Secs. 3 and 4, ro would be chosen at the "nuclear
surface, "where channel couplings are strongest.

Although the choice of rp in Eq. (2.17) is reasonably
arbitrary, it does seem best that any values chosen for
rp should avoid the zeros of FL(krp), where the trial
wave function has resonances. ' Fortunately, in nuclear-

physics applications the use of complex potentials
reduces the importance of this question.

Tables I—III illustrate' the extent to which Eq. (2.16)
is an improvement over Eq. (2.12).These tables present
values of s- and p-wave phase shif ts for the square-well
and Yukawa potential, as functions of the well depth
(parameter A) and bombarding energy (parameter 8).
For each pair of values of A and 8 these tables give
the exact phase shift 8, the Born approximation 6~, the
zero-order Sasakawa approximation 68 derived from Eq.
(2.14), and the zero order J approximatio-n Y based on

Eq. (2.16) and derived by replacing HL by JL in Eq.
(2.14). It is seen that the phase shifts 8~ are a consider-
able improvement over 88. The J approximation also is
greatly superior to the Born approximation, wherever
the Born approximation is significantly inaccurate. In
other cases, its accuracy is comparable with that of the
Born approximation. On the whole, Tables I—III sup-
port the view that Eq. (2.16) provides an excellent
zero-order approximation. It is interesting to note how
the phase shifts b~ fall oA at high energy. This is a
consequence of the resonance effect mentioned in the
preceding paragraph.

3. INELASTIC SCATTERING

In this section we discuss inelastic scattering that
excites bound states of a target nucleus. The Sasakawa

' I am grateful to John Truelove for calling this question to my
at ten tion.

o Tables I—III are obtained from calculations performed by
John Truelove.
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TAsr. E II. Yukawa-well (attractive) s-wave phase shift in

rad. %ith the potential U = —E'e &"jar, the dimensionless

parameters A and B are A =E'/p2, B= (k/p). To calculate
BJ we use rp=p '.

0.5 1.0 2.0

0.5 Bp

gB
gs
t&ipJ

0.204 0.496 0.900 1.369
0.172 0.334 0.479 0.606
0.278 1.016 1.901 2.260
0.215 0.533 0.938 1.324

1.0 Bp

gB
gS
gpJ

0.218 0.475 0.764 1.072
0.199 0.383 0.543 0.678
0.271 0.734 1.297 1.704
0.216 0.449 0.676 0.876

Bp

gB
gs
g J

0.201 0.420 0.655 0.898
0.190 0.366 0.522 0.655
0.238 0.582 0.993 1.356
0.189 0.365 0.519 0.649

2.0 Bp

gB
J S

gpJ

0. 182 0.374 0.575 0.782
0. 175 0.340 0.488 0.616
0.209 0.487 0.813 1.127
0. 163 0.297 0.405 0.493

method is generalized, and is seen to provide a practical
procedure for the evaluation of the coupled-channel
theory of inelastic scattering. ' For simplicity, only
spinless projectiles are considered; these give a sufFicient
illustration of the method.

For spinless projectiles the wave function in a
coupled-channel inelastic scattering theory has the form

Asymptotically they satisfy the condition that only
radial functions RL~OL associated with the target-
nucleus ground state contain incoming parts, the radial
functions associated with excited states are purely out-

going. The additional index Lo in Eqs. (3.1) and (3.2)
is required to define unique sets of eigenfunctions; it
indicates which individual ground-state partial wave
contains a nonzero incoming part.

It is clear that the nL sum in Eq. (3.1) is needed to
construct eigensolutions of the Schrodinger equation,
and that the LQM sum is needed to construct from
these Schrodinger eigenfunctions that one linear com-
bination whose incoming part correctly matches the
incoming plane-wave part of %. Because the present
paper only concerns techniques for calculating the
Schrodinger eigenfunctions, there is no need to develop
detailed properties of the LJM sum. These indices will

shortly be dropped.
The Schrodinger equation for + is reduced to sets of

coupled equations by utilizing the orthogonality prop-
erties of the functions Ii~Yr, (r), Pr&„~)q~. The number
of coupled equations for each JM is equal to the number
of terms in the associated nL summation. We note that
this number lV(J) is determined both by the number of
bound states fr&„& incorporated in 4, and by the angular
momenta I(n) of each of these states. The number

E(J) is ordinarily much larger than the number of
bound states fr&„~.

Having disposed of the above preliminaries, we turn
to the coupled differential equations for the Rr, ,z~r, (r).

TAaxz III. Yukawa-well (attractive) p-wave phase shifts in
rad. Remainder of caption as for Table II.

4'=r P Ar, gv P Rl ~„L(r),i Yr, ()'), Pr&„~jgv,
L0JM nL

(3.1)

B
l

0.5 1.5 2.0

where the curly brackets indicate vector coupling. In
Eq. (3.1), fr&„~ is the wave function of the nth bound
state of the target nucleus, with angular momentum
I(n) .The variable r is the displacement of the projectile
from the c.m. of the target nucleus. The radial wave
functions Ri.~„l.(r) describe the relative motion of the
projectile and the target nucleus. The Schrodinger equa-
tion for 0' reduces to a set of coupled differential
equations for these radial functions (see below).

The interactions in the Schrodinger equation couple
the various terms in the nL sum in Eq. (3.1), but they,
of course, do not couple terms with difI'erent JM. Hence
each term in the J3f sum is an independent eigenfunc-
tion of the Schrodinger equation, and is governed by
an independent set of coupled equations.

At the origin, the Rr, ~„r,(r) satisfy the boundary
condition

(3.2)

0.5

1.0

2.0

gB
gs
g J

gB
gS
g J

gB
gs
g J

gB
gS
g J

0.021 0.043 0.067 0.094
0.020 0.040 0.060 0.079
0.024 0.062 0. 127 0.269
0.022 0.049 0.082 0.124

0.054 0.112 0. 174 0.243
0.052 0.103 0. 154 0.204
0.062 0. 153 0.299 0.548
0.056 0. 122 0. 199 0.291

0.070 0. 143 0.222 0.305
0.068 0.135 0.201 0.265
0.079 0. 188 0.343 0.567
0.072 0. 151 0.237 0.331

0.076 0.154 0.237 0.322
0.074 0.147 0.219 0.289
0.085 0. 195 0.341 0.532
0.076 0.156 0.239 0.325
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A typical member of this set of equations is

k '= (2p/¹) [F.—o,], (3.5)

where o is the excitation energy for the state Pr&„&.

For brevity, now that the coupled equations have
been formulated, the indices Lpj will be omitted. These
indices play no role in any process for solving the coupled
equations. Hence the radial functions, for example, will

be denoted R„l.(r).
It is next convenient to introduce sets of distorted

waves F„l.(r), G„l.(r), and H„L,(r), that generalize the
set of free radial functions FL (kr), Gr, (kr), and Hl. (kr)
defined in Sec. 2. The regular distorted waves obey

d' L(L+1)k„'+ —,—,—P[LI(n), LI(n)] F„r,(r) =0
r'- r-'

(3 6)

with corresponding equations for G„L and H L. The
functions Ii„L, G„L, and H„L satisfy the usual boundary
conditions

d' L(L+1)
k o+ 1 z[LI(n) LI(n)], RL, oznr(r).

lit' t'

P' VJ[LI(n), L'I(n, ')]Rl.~„q (r), (3.3)
nILI

where

Vg[LI(n), L'I(n, ') ]= (2p/—¹)
&(Io'VI (r), 6& &I»r I

V
I

&o"Vl. (r), 6& &j»r) (34)

with V as the projectile-nucleus interaction. This inter-
action both scatters the projectile and couples different
states of the target nucleus. The prime on the summa-
tion in Eq. (3.3) merely means that the diagonal term
of the interaction has been transferred to the other side
of the equation, where it will be treated as a distorting
potential. We also note that a distinct wave number k„
is associated with each nuclear state &jr&„& through the
relation

In attempting the iterative solution of Eq. (3.3) it is

as well to begin with our best available trial wave

function. Hence we define the distorted-wave equiva-
lents of the free scattered waves Jr, (r, ro) of Eq. (2.17):

J„q(r, ro) =H„z (r), for r) ro

=F„ l(r) [H„(Lr )o/F„(Lr )o], for r(ro.

(3.12)

The functions J„l.(r, ro) are subject to the same inter-
pretations as the free waves Jl.(r, ro). We use these
functions to construct zero-order radial functions from
which to begin the iterative calculation:

Rq,„r&o&(r) =ho.hrp' L(r)+CL, , rJ~I. (r, ro) (3 13)

In defining these trial functions the index Lp has been
restored, to select a unique solution of the coupled
equations. Only the trial radial function for the one
ground-state channel n =0, L=Lp contains a regular
distorted wave, and this is defined, arbitrarily, to have
unit amplitude. We note that this step, by implication,
completes the definition of the coeScients AL0g.~l of
Eq. (3.1).

The scattered amplitudes C«„L, in Eq. (3.13) are to
be determined self-consistently, as in the discussion of
elastic scattering. We compute these amplitudes from
the integral formula

Cl. ,„,.= —k„—' F„L,(r) Q' V[LI(n), L'I(n')]
CHILI

XR&,„.& (r) dr, (3.14)

that is derived from the standard Green's-function
solution of each of Eq. (3.2) . Equation (3.14) expresses
the amplitude for channel nL in terms of the radial
functions in all other channels. Self-consistent approx-
imate solutions of the set of Eq. (3.14) are obtained by
substituting the ith iterates of the RL,„L(",giving

F„i(0)=0,
I' L—+ sinH„L, G)tL~ cosO„L)

H L=G L+iI'"„L.

(3.7)

(3.8)

(3 9)

C«nL"= —&n ' F„l.(r) Q' P[LI(n), L'I(n') ]
p nILI

&(RI.,„.L,.&'& (r) dr. (3.15)

In the present case the argument O„L takes the form

e„q= k„r (-', L&r)+»„ ink„r+6„I—., (3.10)

with the phase shift 8„L produced by the diagonal
potential V[LI(n), LI(n)], and with»„ the usual
Coulomb parameter

(3.11)

Here Z and Z& are the charge numbers of the projectile
and the target nucleus, respectively. Of course, the
Coulomb phase shift in the radial wave ssL has been
incorporated in 6„L.

Because the functions Rl.„,.l..&'&(r) contain the CLo„l. as
parameters, Eq. (3.15) is a set of linear equations from
which the ith approximants C«„L("may be determined.

The lowest-order set of amplitudes CL,„L is obtained
by substituting Eqs. (3.13) in Eq. (3.15), and solving
the resulting linear algebraic equations. %'e note that
this procedure involves effects that go far beyond the
distorted-wave Born approximation (DBWA), but it
does not involve any integrals of greater difFiculty than
in the usual DWBA calculations. Moreover, we recall
(see Sec. 2) that this lowest-order application of the
Sasawaka method gives an exact solution for the surface-
6-function model of channel coupling, in agreement with
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early work by Yoshida. ' Because this model often gives
good descriptions of nuclear properties, it is plausible
that many applications of the Sasakawa method in
nuclear physics can be kept in zero order.

Improved accuracy is obtained by using Eq. (3.3) to
develop higher iterates of Eq. (3.13). In practical calcu-
lations the iteration must be done numerically, and it
is probably best performed by the numerical integra-
tion of Eq. (3.3), equation by equation, with the trial
forms of the right-hand sides carried as known inhomo-
geneities. Integral-equation equivalents of this proce-
dure are not as suitable for numerical calculation.
However, we must recall that each time a differential
equation is solved a suitable multiple of the homoge-
neous function F„r,(r) must be added to the solution,
to ensure that the appropriate asymptotic boundary
conditions are fulfilled.

In principle, the right-hand side of Eq. (3.3) contains
the amplitudes CL, ,„L, as unknown parameters, and it is
necessary to iterate separately on each term of each
right-hand side, so that the Cl,„l. may be determined
self-consistently, after iteration. However, this proce-
dure would require the computer to carry an X&(X
matrix of functions, at each stage of iteration. To reduce
this complication it probably is best to iterate in the
following sequence of steps: (a) Solve for the Cr, ,„r. in
zero order. (b) Insert these zero-order amplitudes in the
right-hand sides of Eqs. (3.3), to reduce the right-hand
sides to single-term explicit functions, that contain no
unknown parameters. (c) Solve the inhomogeneous
differential equations. (d) Use the solutions so obtained
to define an improved set. of scattered waves, to replace
the J„r.(r, ro). (e) Repeat steps (a)—(d), using the
improved scattered waves.

Iteration according to the explicit procedure just
described undoubtedly converges more slowly than
iteration according to the self-consistent Sasakawa pro-
cedure, because in the explicit procedure the Cl. p I. used
in the wave functions of order (i) are determined only
in order (i—1). In return for this slight disadvantage,
at any given step of iteration the explicit procedure
never requires the computer to store more functions
than (a) the best set of solution functions Rr, ,„r.~o(r)
and (b) the set of homogeneous functions F„r,(r). (The
latter set of functions must always be retained, so that
boundary conditions may be fulfilled. )

The above-described iteration procedure, of course, is
complicated. However, it must be compared with
standard coupled-channel calculations. ' The standard
technique for solving &V coupled differential equations
requires that the differential equations be solved simul-
taneously X separate times, and if wave functions are
needed it requires that all X'-' solution functions so
generated be stored in the computer until the boundary
conditions are imposed. By contrast, the iteration proce-
dure never requires the computer to solve simultaneous
diA'erential equations, and it never requires the corn-
puter to store more than 2~7 functions.

One further practical question may be mentioned. In
principle, the distorting potentials in Eq. (3.6) depend
on L and J, and this complicates the determination of
the distorted waves. To alleviate this complication we
should retain on the left-hand side of Eq. (3.3) only
the average diagonal terms of the projectile-nucleus
interaction. The state-dependent diagonal interactions
can be transferred to the right-hand side and carried in
the iteration procedure. We also note that there is no
need to treat all X coupled equations in every stage of
iteration.

4. REARRANGEMENT

The method of the preceding sections may be ex-
tended to rearrangement reactions simply by intro-
ducing a self-consistent treatment of the amplitudes in
all open channels, irrespective of arrangement. Just
such a theory has been presented already by Efimenko
et a/. ' An independent discussion of rearrangement will
nevertheless be given here for completeness and because
there will be several differences of physical emphasis.

The Sasakawa method is most easily applied to re-
arrangement theories that contain only a limited number
of two-body channels. Such theories are frequently of
interest. For example, for a (d, p) stripping reaction it
is sometimes considered sufficient to treat just the d-A

and p-8 channels, where A and 8 are the target and
residual nuclei. ""To illustrate this application of the
Sasakawa method, let us consider a two-channel (d, p)
theory, in which the "nucleons" are assumed spinless,
and in which nuclei A and 8 each have zero angular
momentum. Hence an s-wave neutron is transferred.
We also assume that nucleus A has infinite mass.

The complete model wave function for this (d, p)
theory is

4'(r„, r„)=@(r)](R)+P(r„)y(r„), (4.1)

where r„and r„are the displacements of the proton and
neutron from the c.m. of nucleus A, r=r„—r„and
R = -', (r„+r„) are the relative coordinates for the
deuteron channel, and p(r) and f(r„) are the deuteron
bound state and neutron bound state, respectively. The
relative wave functions g(R) and y(r~) must be
adjusted so that 4 fulfills scattering boundary condi-
tions and so that 0' is as nearly as possible an eigen-
function of the three-body Hamiltonian

H = T„+T„+U„(r„)+U„(r„)+ V (r), (4.2)

in which T~ and T„are the proton and neutron kinetic-
energy operators. Of course, 4 cannot be an exact eigen-

' T. Ohmura, B. Imanishi, M. Ichimura, and M. Kawai,
J. Phys. Soc. Japan Suppl. 24, 683 (1968); Progr. Theoret.
Phys. (Kyoto) (to be published)."A. P. Stamp, Nucl. Phys. 83, 232 (1966); G. H. Rawitscher,
Phys. Letters 21, 444 (1966); Phys. Rev. 163, 1223 (1967);
G. H. Rawitscher and S. N. Mukherjee, ibid. 181, 1118 (1969);
B. De Facio, R. K. Umerjee, and J. L. Gammel, ibid. 151, 819
(1966).
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p(r.) —= f04k d'r. ,

I (R) —=f~x (Pr,

(4.7)

(4.8)

function of Eq. (4.2), because H couples 4 to parts of

Hilbert space that are not described by functions of the
form of Eq. (4.1). It is usual to avoid this problem by
projecting (E—H)%' on to the bound. states Q and P,
obtaining the pair of coupled equations

[E .„—T„—U, —V]x—(r,) = fyVyg d'r.

—[E,—(„—T„U„]Q—(k] d'r„, (4.3)

[E es —T(( —U](—(R) = f(k[U +U„+x d'R

[E —eg T—g]f—(t((f(x d'r, (4.4)

where Tg is the kinetic-energy operator associated with

R, and, where

V(r.) —=fV(r) I 4(r-) I2d'r-, (43)

U(R) —=f[U-(r-)+U~(r )] I 4(r) I'd'r (4.6)

Here we have utilized the information that (f( and f are
eigenfunctions of parts of H, with ~~ and e„ the respec-
tive eigenenergies. The relative wave functions ( and x
may now be computed by solution of Eqs. (4.3) and

(4.4). These two equations, in a sense, complete the
deinition of the model problem for which Eq. (4.1) is
the solution.

The nonorthogonality of the deuteron and proton
channels causes the coupling terms in Eqs. (4.3) and
(4.4) to be considerably more complicated than the
corresponding terms in the theory of inelastic scattering.
Some clarification of these complications is obtained if
we define the overlap functions

expansion of the complete wave function%' has the form

O'= Q P[4x(2L+I)]"' " f(r„)YL'(r~). f( (r )

I k„r„

(p
P"+

drp

L(L+1) 2M
(U +V) (f(.+p(, )

= IV~~x(. , (4.12)

d' L(L+1) 4M
kj+ — ——U (x(,+I'(.) = N'g„'fL, .

dE' E'-' jP

(4.13)
The coupling terms in these equations are

IV~~x(. ——(2M/f(') (k„/kd) ffY~'(r ) Y(.'(8)~[V f']—
X [r„/R]xL, (R)d'r„dQ„, (4.14)

IVg,~fL (4M/5, ') (k,/——k,)ffY(.'(r„) YL,'(8)
X+[U +U —C][R/r„]f(,(r„)d'r dQ((. (4.15)

+ p(r) Yl.'(8) . (4.11)
kdR

Here the s axis is taken along the direction of the
incident beam. Radial functions fL, and xL, of different
multipole orders are not coupled, hence the coe%cient
i~[4vr(2L+I)]'" plays no role in the solution of Eqs.
(4.9) and (4.10). This coe%cient has been chosen so

that a unit-normalized deuteron or proton plane wave
is associated, as usual, with a unit-normalized deuteron
or proton regular radial wave function. This normaliza-
tion has significance when cross sections are computed.

Insertion of Eq. (4.11) in Eqs. (4.9) and (4.10)
yields coupled equations for the radial functions f(.(r~)
and xr. (R):

and if we utilize these functions to arrange Eqs. (4.3)
and (4.4) in the form

[E ~ T, U, —V](x+p)—=f4—LV—V]45 d"., (4 9)

[E cd Tg U]($—+I'—) = f(—k[U„+U„U+x d'r—
(4.10)

In this form of the coupled equations we see that the
principal effect caused by nonorthogonality is the intro-
duction of short-range corrections to the relative wave
functions x and k. We see that Eqs. (4.9) and (4.10)
may be regarded as coupled equations for the linear
combinations (x+p) and ((+f), with comparatively
simple coupling terms standing on the right-hand sides
of these equations. In an iterative solution of Eqs. (4.9)
and (4.10), it is straightforward to treat the corrections
p and g.

To solve Eqs. (4.9) and (4.10) the relative wave
functions g and g must be expanded in partial waves.
Because (I( and (I( are assumed to be scalars, the angular
momenta associated with g and x are conserved, and the

Of course, these coupling terms involve complicated
nonlocal operations on the functions xl, (R) and fq(r(, ).
However, these complications are in no way new in the
coupled-channel theory. The same complications are
found in the finite-range distorted-wave theory, and a
variety of methods for the treatment of these com-
plications has already been developed. " There is no
need to discuss these methods here.

The two terms that correct Eqs. (4.12) and (4.13)
for nonorthogonality are

pi. ——(kp/kg) ffY(.0(r'„) Yr,o(8)~[r„/R]xL, (R)d'r (IQ„,

(4.16)

f.= (4/4) jfY"(r.) Y'(&') A[R/r. ]f.(r.)d'«Ifl'

(4.17)

These short-range correction terms possess much the

"N. Austern, R. M. Drisko, E. C. Halbert, and G. R. Satchler,
Phys. Rev. 133, B3 (1964};P. J. A. Buttle and L. J.B.Goldfarb,
Proc. Phys. Soc. (London} 83, 701 (1964};Gy. Bencze and J.
Zimknyi, Phys. Letters 9, 246 (1964).
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s. ~4.14,same complications as the coupling terms of Eq . ~ .

Equations (4.12) and (4.13) now are to be solved by
iteration, accor ing od t the Sasakawa method. We may
use the same distorted-wave trial functions as in ec.
Hence the zero-order radial wave functions, assuming
incident waves in the deuteron channel, are

$fg+ pr. 7&o' =C,rJ„r.(r„, ro), (4.18)

fxr.+t r. j&+=Fdl. (R)+Cgj J+r. (R, Ro). (4.19)

H the nonorthogonality correction terms are in-ere
1 d d

'
the trial wave functions, as s own,

~rounds that these trial functions are intended o
ood-quality zero-order solutions of qs.f E s. (4.12) andgoo -q

(4.13). The amplitudes C~r. and Cdr. as usuausual are to be
determined self-consistently. Ke co pm ute these ampli-
tudes from the internal formulas

F~L (r~) ll ~~xr. dry, (4.20)

Cdi. = —&d
' Fdr(R), Wg„if' dR, (4.21)

0

that are erive romd
'

d f the Green's-function solutions of
Eqs. (4.12) and (4.13).

It is interesting o at'
g t a~&1&. the Sasakawa method in zero

order, to see w a inh t kinds of corrections to the distorte-
1 and 4.19wave eorytheory are implied. Hence Eqs. (4.18 an

4.21are substituted directly into Eqs. (4.20) and (4. ),
without any iteration. Ke obtain

(0) P
—i F ~ L (F +Cd~&o)Jd~ l &o))dr

(4.22)

Cdi. = —4 Fdr. l'I'dp Cpi, Jpl.—Pl. dR. 4.23
0

Because the nonorthogonality corrections do not lend
themselves to simple algebraic manipulation, we now
omit them from the present preliminary discussion an
obtain

00
7 T

00

Fdi.H'dp Jpr. dR Fpi.8 pd Jdr. drpC L, ~ FpLH'pd FdLdrp + p d dL 'dp p (4.24)

(0) ~ C (0)P„—1 Fdr. t't dp~Jpg dR. (4.25)

fn DWBA, only the numerator of Eq. (4.24) sur»ves;
th denomina, tor of Eq. (4.24) reduces to unity, and the
amplitude Czz, & ' vanishes. Evidently Eqs. (4.24) a
(4.25) indicate the corrections that arise, because
coupling to the proton channel modifies the radial wave
functions in e euth d teron channel. These corrections
m i . be re~arded as "radiation reaction" effects caused
by the channel coupling.

Other studies of "radiation reaction" effects in deu-

equations. Large short-range effects are found. On the
other hand, the coupled equations used in these studies
differ from Eqs. (4.12) and (4.13) by the omission of
all short-range nonorthogonality terms. It is not clear
that calculations of such a nature can give satisfactory
understanding of reaction effects in rearrangement
collisions. The method given in the present paper allows
t e eve opmh d 1 pment of less accurate calculations t at
treat a wider range of physical effects. Presuma y t e
simplest calculation of physical interest would need to
be based on Eqs. (4.22) and (4.23), which carry the
nonorthogonality corrections.

5. CONCLUSIONS

Ke have seen that the Sasakawa method gives simple
approximate solutions of coupled-channel problems,

both for inelastic scattering and for rearrangement. It
thereby allows the treatment of multiple-excitation
effects and radiation-reaction effects. It may be used
for preliminary treatment of these effects in zero order,
or it may be iterated if greater accuracy is required.

The basic aspect of the Sasakawa method would seem
to be its use of trial wave functions that contain param-
eters that ai.e handled self-consistently. Throughout the
presen pa ert paper the parameters treated in this fashion are
the scattering amplitudes in the open channels. The se-
consistent treatment of these parameters maximizes the
accuracy with which the asymptotic boundary condi-
tions are handled.

Because the Sasakawa treatment of rearrangement
reactions starts with a trial wave function that contains
amplitudes in every open channel, it does not impose on
the iteration process the burden of generating asymp-
totic wave functions in exit channels in terms of in-
coming waves in rearranged entrance channels. Hence
it may well be immune from the convergence difFiculties
genenerally associated with rearrangement theories. '

It is even more apparent in the work of Kfimenko
et al.' that use of a trial wave function with amplitudes
in all the open channels should solve the convergence
problems of rearrangement reactions. In Ref. 6, a term
4 that contains the asymptotic parts of the full wave-
function 0', in all arrangements except one, is sub-
tracted from 0', as in the Sasakawa method. Then the
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remainder (4—4') is expanded in channel eigenstates
for the one remaining arrangement, and is computed by
usual coupled-channel methods. Then self-consistency
is imposed. This theory of rearrangement seems to be
more general and more orderly than the one given in

Sec. 4.
Other simple generalizations of the present paper are

developed (a) by the introduction of antisymmetriza-
tion, using the methods developed for rearrangement'
and (b) by the use of trial wave functions that contain
bound-state terms, for the construction of "unified"
reaction theories.
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The effect of a tensor component in the A.V force on the binding Bg of a A particle in g'He is investigated
using the Hartree-Fock and rigid-a models. Second-order effects of the AX tensor force are taken into ac-
count in an approximate way. Kith a variety of AX noncentral forces that fit the low-energy Ap scattering
data, overbinding of g He persists. For BA calculations in this hypernucleus, the rigid-o. model is found to be
as good as the more elaborate Hartree-Fock scheme.

1. INTRODUCTION

" "N the past two years, there has been a significant.. increase in the data on Ap scattering, ' ' and the
iow-energy parameters (scattering length and e8ective
range) for the singlet and triplet Ap force have been
extracted from the scattering data by several au-
thors. ' ' No experimental information on the non-
central part of the lambda-nucleon (AÃ) force is as
yet available. It has been consistently found~' that

t Work supported by the National Research Council of Canada.
*On leave of absence from Tata Institute of Fundamental Re-

search, Bombay 5, India.
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R. Engelmann, H. Filthuth, and B. Schiby, Phys. Letters 19, 715
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if the experimental low-energy data are fitted hy
purely central (one-channel) potentials, then &~He is
overbound by about 2 MeU or more, although the
calculated binding energies of the other s-shell hyper-
nuclei are compatible with their experimental values.
Various plausible reasons for this overbinding have
been suggested, ~" which we will not repeat here.
One of the mechanisms which might reduce the cal-
culated BJ, in q'He could be an appreciable tensor
force in the triplet component of the AX potential,
whose contribution to the binding of A. would be
suppressed in a spherically symmetric system like 'He.
The purpose of this paper is to consider this effect
alone, in detail, on the binding Bq of q'He. The dis-
advantage is, of course, that no experimental data
from scattering are available about the tensor force.
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