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The Hartree-Fock (HF) equations are generalized to take correlation into account, without replacing
the exchange potential by a local approximation as Slater originally did. The nonlocal generalized HF equa-

tions are then obtained from a variational principle, that an energy functionaj. be stationary at the true
ground-state energy with respect to variations of the orbitals from orthogonality. The single-particle
Hamiltonian is Hermitian, and there are no o6-diagonal Lagrangian multipliers, in contrast to the multi-

configuration variational approaches. The best local approximation to the nonlocal equation gives essentially
Slater's original equation, in which the average potential due to the other particles is given in terms of an

integral over the product of the two-body potential and the true pair correlation function divided by the
local density.

I. INTRODUCTION

HORTLY after Hartree' on intuitive grounds pro-
posed his famous self-consistent equations, they

were derived from the Rayleigh-Ritz energy varia-
tional principle by Fock' and Slater. ' An exchange
term in the self-consistent potential was shown to be
necessary because the particles were fermions. The
Hartree-Fock (HF) equations remain the paradigm
of the independent-particle model and the foundation
of atomic structure.

In nuclear physics the time-independent HF equa-
tions have had only limited success, in spite of the
existence of shell structure in nuclei. The primary
reason why the HF equations have not. provided a
theoretical justification for the phenomenological nu-
clear-shell model is that most realistic velocity-inde-
pendent nucleon-nucleon potentials' contain a repulsive
hard core which gives an infinite self-consistent po-
tential in the HF equations. Recently, some progress
has been made in fitting soft-core potentials' and
velocity-dependent potentials' to the two-nucleon scat-
tering data. With these potentials the HF equations
can then be used to obtain a theoretical basis for
shell structure in nuclei. ~

There have been numerous attempts to generalize
the HF equations to take correlations into account.

' D. R. Hartree, Proc. Cambridge Phil. Soc. 24, 89 (1928).' V. Fock, Z. Physik 61, 126 (1930).' J. C. Slater, Phys. Rev. 35, 210 (1930).' T. Harnada and I. D. Johnston, Nucl. Phys. 34, 382 (1962);
K. E. Lassila, M. H. Hull, Jr. , H. M. Rappel, F. A. McDonald,
and G. Breit, Phys. Rev. 126, 881 (1962).

~ E. Rochleder and K. Erkelenz, Phys. Rev. 172, 1013 (1968);
G. Saunier and J. M. Pearson, ibid. 160, 740 {1967).' F. Tabakin, Ann. Phys. (N.Y.) 30, 51 (1964).' R. Muthukrishnan and M. Baranger, Phys. Letters 18, 160
(1965); K. T. R. Davies, S. J. Krieger, and M. Baranger, Nucl.
Phys. 84, 545 (1966);A. K. Kerman, J. P. Svenne, and F. M. H.
Villars, Phys. Rev. 147, 710 (1966), W. H. Bassichis, A. K.
Kerman, and J. P. Svenne, ibid. 160, 746 (1967'j.

s For electronic systems see, e.g. , W. Kohn and L. J. Sham,
Phys. Rev. 140, A1133 (1965); L. J. Sham and W. Kohn, ibid.
145, 561 (1966);B.Y. Tong and L. J. Sham, ibid. 144, 1 (1966);
J. E. Robinson, F. Bassani, R. S. Knox, and J. R. Schrieffer,
Phys. Rev. Letters 9, 215 (1962); S. Olszewski, Phys. Rev. 121,
42 (1961);S. Lundqvist and C. W. UGord, ibid. 139, A1 (1965).
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The usual justification for the nuclear shell model is
based on the Brueckner reaction-operator theory. ' The
argument is made that the HF equations should be
solved with the two-body reaction operator instead
of the two-body potential. " The reaction operator is
finite and describes an "effective interaction" between
nucleons. In spite of the hard-core two-body poten-
tial, the average effective interaction that a nucleon
experiences is thus a "smooth" function. The reaction
operator is calculated from the Lippmann-Schwinger
equation, which must be solved self-consistently with
the modified HF equations. The complication intro-
duced by the additional self-consistency requirement
is considerable, and this program has not yet been
completely carried through. " There is little doubt of
the general correctness of this procedure, but the
underlying variational principle on which it is based
has been clouded with confusion. "

An alternative suggestion for determining the shell-
model potential is given by Migdal" on the basis of
a Green's-function theory for determining the natural
orbitals. He proposes that the frequency-dependent
self-energy be used as the effective potential. Then

9 K. A. Brueckner and J. L. Gamrnel, Phys. Rev. 109, 1023
(1958); H. A. Bethe, ibid. 103, 1353 (1956).' K. A. Brueckner, J. L. Gammel, and H. Weitzner, Phys.
Rev. 110, 431 (1958); K. A. Brueckner, A. M. Lockett, and M.
Rotenberg, ibid. 121, 255 (1961); B. H. Brandow, ibid. 152,
863 (1966); M. %. Kirson, Nucl. Phys. A115, 49 (1968); B. H.
Brandow, in Lectures in Theoretica/ Physics, edited by K. T.
Mahanthappa (Gordon and Breach, Science Publishers, Inc. ,
New York, to be published), Vol ~ XI."M. K. Pal and A. P. Stamp, Phys. Rev. 158, 924 (1967);
T. T. S. Kuo and G. E. Brown, Nucl. Phys. 85, 40 (1966)."Some previous energy variational attempts are H. S. Kohler,
Nucl. Phys. 38, 661 (1962);K. A. Brueckner and D. T. Goldman,
Phys. Rev. 116, 424 (1959); B. H. Brandow, Phys. Letters 4,
8 (1963);4, 152 {1963).For a critique of these methods and a
discussion of the shell-model potentials see B. H. Brandow, Rev.
Mod. Phys. 39, 771 (1967), Sec. X. For a discussion of a mass-
operator variational principle, see B. H. Brandow, Ref. 10. An
alternative to energy variational methods has been given by W.
Brenig, Nucl. Phys. 4, 363 (1957). See also, P.-O. Lowdin, J.
Math. Phys. 3, 1171 (1962) .' A. B. Migdal, Nucl. Phys. 57, 29 (1964); A. B. Migdal and
A. I. Larkin, ibid. 51, 561 (1964); A. B. Migdal, Theory of Finite
Fermi Systems and App/locations to Atomic Euc/ei (Wiley-Inter-
science, Inc. , New York, 1967).
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the eigenvalue problem is to be solved for frequency-
dependent orbitals, which are not the natural orbitals,
and energies. The frequency dependence is removed

by making a "pole" approximation. However, the
resulting orbitals are no longer orthogonal, as they
were originally assumed to be, and their connection
with the natural orbitals is obscure.

A unitary-operator method" has also been proposed
as a justification for the shell model. This model does
give a procedure for obtaining an eRective two-body
potential from the true one, but in the process, three-
body and higher effective interactions are also created.
These latter terms must be shown to be small. The
effective interaction is used in a HF calculation, " but
it is not clear what the underlying variation principle
is. A similar approach has been used by Coester and
Kummel. " Clark and %esthaus'~ have been investi-
gating the method of correlated basis functions.

An earlier attempt to take correlations into account
in HF theory was made by Slater in 1953." He had
previously noticed that the nonlocal exchange potential
could be simplified by replacing it with an average
local one. '~ In the local HF equation, the self-con-
sistent potential is calculated from. the pair correla-
tion function obtained from a Slater determinant. If
strong correlations are present, he argued that this
pair correlation function should be replaced by the
true one. Slater's generalized HF theory is thus ap-
plicable to hard-core potentials, since the true pair
correlation function vanishes inside the hard core. The
average potential felt by a nucleon is consequently
finite and smooth. The local approximation to the
exchange potential is not necessary to Slater's argu-
ment, and the full HF equations can also be general-
ized in the same way.

Slater's generalized HF equations were thus pro-
posed on intuitive grounds, and Slater himself said
that they could probably not be obtained from an
energy variational principle. However, two years later
Lowdin, "- following an early suggestion by Frenkel, "
used a finite superposition of configurations for the
"F.Villars, in Proceedings of the International School of Physics,

"Enrico Fermi, " Course Z3, 1961 {Academic Press Inc. , New
York, 1963); J. S. Bell, in The 3fany-Body Problem, edited by
C. Fronsdal (W. A. Benjamin, Inc. , New York, 1962), p. 214 6;
J. Da Providencia and C. M. Shakin, Ann. Phys. (N. Y.) 30,
95 (1964); C. M. Shakin, Y. R. Waghmere, and M. H. Hull, Jr.,
Phys. Rev. 161, 1006 (1967).

I~ C. M. Shakin, Y. R. Waghmere, M. Tomaselli, and M. H.
Hull, Jr. , Phys. Rev. 161, 1015 (1967}."F. Coester, Nucl. Phys. 7, 421 (1958); F. Coester and H.
Kiimmel, ibid. 17, 477 (1960); H. Kummel, in Lectures on the
Many-Body Problem, edited by E. R. Caianiello (Academic
Press Inc. , New York, 1962), p. 265 ff; F. Coester, in Lectures in
Theoretical Physics, edited by K. T. Mahanthappa (Gordon and
Breach, Science Publishers, Inc. , New York, to be published),
Vol. XI."J. W. Clark and P. Westhaus, Phys. Rev. 141, 833 (1966)."J.C. Slater, Phys. Rev. 91, 528 (1953).

'9 J. C. Slater, Phys. Rev. 81, 385 (1951).
0 P.-O. Lowdin, Phys. Rev. 97, 1474 (1955)."J. Frenkel, IVave 3Eechani cs, Advanced General Theory

{Clarendon Press, Oxford, England, 1934), pp. 460-462.

trial wave function in the Rayleigh-Ritz principle to
obtain a set of nonlocal orbital equations with a non-
Hermitian single-particle Hamiltonian. The best local
approximation was only Slater's generalized HF the-
ory' with an approximate pair correlation function.
In the limit as the number of configurations increased
to infinity, his pair correlation function approached
the true one. However, the variational principle broke
down in this limit because the true ground-state energy
cannot be varied. In the orbital equations the number
of Lagrangian multipliers approached infinity in this
limit, and thus no constraint was placed on the or-
bitals. The same approach was used by McKeeny, ~
and more recently by Adams. -"' Similar methods have
been used by other authors. '4

In this paper another type of variational principle
is used to obtain a set of nonlocal orbital equations,
to which the best local approximation is Slater's gen-
eralized HF theory. "An energy functional of a com-
plete set of orbitals, which gives the true ground-state
energy when the orbitals become orthonormal, is used.
The orbitals for which this functional is stationary
with respect to variations from orthogonality are shown
to satisfy the nonlocal generalized HF equations.
A calculation of the ground-state energy is thus in-
sensitive to rounding-off errors which cause the or-
bitals to deviate from orthogonality. The single-par-
ticle Hamiltonian in this theory is automatically
Hermitian, so that the orbital energies are real. There
is no arbitrariness in the orbitals due to nondiagonal
Lagrangian multipliers, in contrast to previous the-
ories.~ ~ "

In Sec. II, the HF equations are generalized without
first making a local approximation. In Sec. III the
variational principle is developed. The variation is
performed in Sec. IV to give the eigenvalue problem
for the nonlocal generalized HF orbitals and energies.
The best local approximation to the nonlocal operators
is made in Sec. V to obtain Slater's original gener-
alized HF theory. Finally, the conclusion discusses
various aspects of the variational principle, applica-
bility of the theory, and a justification of the nuclear
shell model.

II. NONLOCAL GENERALIZED HF EQUATIONS

The generalization of the HF equations was origi-
nally made by Slater" after making a local approxi-
mation for the exchange potential. ' The local ap-
proximation is not at all necessary, and the original
HF equations can be generalized in the same intuitive
way as Slater used. The best local approximation to

"R.McWeeny, Proc. Roy. Soc. (London) A232, 114 (1955}.
'3 W. H. Adams, Phys. Rev. 156, 109 (1967}.
~4 T. L. Gilbert, J. Chem. Phys. 43, S248 (1965);A. P. Yutsis,

Zh. Kksperim. i Teor. Fiz. 23, 129 (1952); A. P. Yutsis, Ya. I.
Vizbaraite, T. D. Strotskite, and A. A. Bandzaites, Opt. i Spec-
troskopiya 12, 157 (1962) t English transl. :Opt. Spectry. (USSR}
12, 83 (1962)g.
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the nonlocal generalized equations is then essentially
Slater's generalized theory. The method used by Slater
to take correlation into account is to replace the pair
correlation function calculated from a Slater deter-
minant by the true one. In the nonlocal equations,
the determinantal one- and two-particle density
matrices are replaced by the true ones.

Because of the presence of exchange forces in the
nucleon-nucleon potential, the HF equations are given
here in terms of a general nonlocal two-body inter-
action v(x, y; y', x'), where each coordinate is position,
spin, and isospin. If the operator T is the sum of the
kinetic-energy operator E and an external potential U,
the HF equation for the spin orbital P„(x) with orbital
energy c„ is"

T(x)y„(x)+ fff dydsdw(v(x, s; w, y) —v(x, v; y, w) 7

X po(&, w)44(y) =ok (x) (2 1)

when the Lagrangian multipliers are put in diagonal
form. The Fock-Dirac density matrix is defined as

po(xoy) = (4"
I 0'(x)4(y) I

C'o)= Ze''(x)4'(y), (2 2)

where the sum is only over i&FS, the HF Fermi sea
(FS) of occupied states, which are those present in
the ground-state Slater determinant 40.

The density matrix in Eq. (2.2) is expressed in
second-quantized notation in terms of the field cre-
ation operator Pt(x) and annihilation operator f(y)
which satisfy the usual fermion anticommutation rela-
tions. ~ The integral in Eq. (2.1) includes a sum over
spin and isospin as well as the spatial integral.

Equation (2.1) may be rewritten in a more com-
pact form for vQ FS as

f dy go(x») 4.(y) =oA. (x). (2 3)

The HF single-particle Hamiltonian is

go(x, y) = T(x) po(y, x)+ fff dldwds v(x, s; w, u)

X (C'o
I

4' (y)4'(s)4(w)4(ro) I

C' ), (2.4)

where 40 is the ground-state Slater determinant. Equa-
tions (2.3) and (2.4) reduce exactly to Eq. (2.1) if
use is made of the well-known factorization of the
determinantal two-particle density matrix in terms of
products of two Fock-Dirac density matrices. ~

Slater's method for generalizing the HF equations
to take correlation into account can be used directly
on Eqs. (2.3) and (2.4) without first making a local
approximation for go. The determinantal one- and two-
particle density matrices in Eq. (2.4) are replaced by

"See, e.g. , J. G. Valatin, in Lectfcres in Theoretica/ Physics,
edited by W. E. Brittin, B. W. Downs, and J. Downs (Wiley-
Interscience, Inc. , New York, 1962), Vol. IV, p. 15. Some slight
changes in notation for v and po have been made here."For a discussion of second quantization, see, e.g. , D. H. Kobe,
Am. J. Phys. 34, 1150 (1966).

'7 Reference 25, p. 10.

f dy &(x, y)4. (y) =oA. (*).
The Hermitian single-particle Hamiltonian,

~(x, y) =lI g(x, y)+g'(y *)7

(2.7)

(2.8)

is just the Hermitian part of Eq. (2.6).
In the absence of any variational principle, either

approach is valid. The multiconfiguration variational
principle would suggest the former, but it breaks
down for an infinite number of configurations. Ease
of physical interpretation would favor the latter,
Hermitian, approach. It is shown in Sec. IV that the
variational principle developed in Sec. III gives only
Eqs. (2.7) and (2.8).

"For nuclear matter this point of view is adopted by D. J.
Thouless, Phys. Rev. 114, 1383 (1959') .

the true ones, so that Eq. (2.3) becomes

f dy g(x, y)4. (y) =oA, (x) (2 5)

for all v. The nonlocal single-particle Hamiltonian g
is of the same form as go,

g(x, y) = T(x)p(y, x)+ fff dldwdv v(x, s; w, I)
X (+

I
4'(y)4'(v)4(w)4(~) I +), (26)

but 40 has been replaced everywhere by 0, the nor-
malized true ground-state wave function. The true
one-particle density matrix is p(x, y). Since the equa-
tions now involve the true wave function 0, it is
clear why Slater" was skeptical that this procedure
could ever be justified by a variational principle.
Using a multiconfiguration trial wave function instead
of 0, Lowdin~ and Mc%eeny~ obtained equations
similar to Eqs. (2.5) and (2.6) from the Rayleigh-
Ritz variational principle. However, in their theory
+ is replaced by the trial function, and nondiagonal
Lagrangian multipliers appear. In the limit as the
number of configurations approaches infinity, their
trial wave function approaches the true one. There
is thus nothing left to vary, and the variational prin-
ciple collapses. In their orbital equations, the number
of Lagrangian multipliers approaches infinity, and the
equations provide no restriction on the orbitals. Of
course, the Lagrangian multipliers can be arbitrarily
put in diagonal form, and Eqs. (2.5) and (2.6) are
formally obtained. This procedure is followed by
Adams. "

There is a serious criticism to the single-particle
Hamiltonian in Eq. (2.6)—it is not Hermitian. The
eigenvalues in Eq. (2.5) can therefore be complex.
One point of view is that this is the price which must
be paid for building correlation into the theory. The
resulting complications are accepted and a physical
interpretation is attempted. " On the other hand, it
can be argued that the anti-Hermitian part of the
single-particle Hamiltonian in Eq. (2.6) should be
discarded because excitation energies should be real.
Then Eq. (2.5) is replaced by
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III. VARIATIONAL PRINCIPL

In this section, a variational principle different from
the traditional Rayleigh-Ritz energy variational prin-

ciple is developed. Instead of using a trial wave func-
tion which is varied, this variational principle focuses
attention on the matrix expression for the true ground-
state energy. This expression is made stationary with

respect to variations of the complete set of orbitals
from orthogonality. For the orbitals satisfying this
variational principle, first-order variations from or-

thogonality cause, at most, a second-order variation
from the true ground-state energy.

The true ground-state energy Eo of the system of
fermions considered in Sec. II is

Eo= f dx &+ I
0'(x) T(x) t(x) I +)

+ ', ff dx-dydx'dy' v(x, y; y', x')

x &e
I
4'(x)4'(y)4(y')4(x') I +&. (3.1)

This energy can be expressed in matrix form if any
complete set of orthonormal functions is used. If the
set is complete, but not orthonormal, the same matrix
expression may be used to define a functional of the
orbitals. Thus, the energy functional

E[@3=2 &+- I
T

I @e) &+
I
o'(@-)o'(@e)

I
+&

The optimum orbitals for the calculation of the ground-
state energy are those for which the deviation in Eq.
(3.5) is as small as possible. In particular, the devia-
tion can be made zero. Thus, the optimum orbitals
would be given by the variational principle

8E[@j=Q, for P6 t' (3.6)

with the stipulation that the set qP which satisfies
Eq. (3.6) be orthonormal, i.e., &0& 0, so that the
stationary point occurs at Eo.

Equation (3.6) states that first-order variations
from orthogonality in calculating the true ground-
state energy cause at most a second-order variation
from the true value. In Sec. IV this variational prin-
ciple is applied to determine an eigenvalue problem
for the orbitals.

representation @'P 8, the true ground-state energy can
be calculated by virtue of Eq. (3.4). Suppose, how-

ever, that the set of functions is not exactly ortho-
normal due, e.g. , to rounding-ofI' errors. Then the
ground-state energy is actually being calculated in the
representation p'=p'+&g 6 because of the rounding-

o6 errors bg. The deviation of the calculated ground-
state energy E[@'j from the true ground-state energy
E[@'j=EO is

(3 5)

and the creation operator is its Hermitian conjugate.
When the orbitals in Eq. (3.2) are orthogonal as

well as normalized, the functional reduces to the true
ground-state energy Eo. Let 8 be the set of all com-
plete orthonormal sets of functions p= {@„},so that
8 is a subset of C. The completeness relation for
complete orthonormal functions can be used, so that
Eq. (3.2) becomes

Eggj=EO for all @P 8. (3.4)

The functional Egpj cannot be varied if the con-
straint of orthonormality is imposed.

What is the purpose of defining the functional in
Eq. (3.2)? After all, if the matrix elements of the
operator T, v and of the one- and two-particle density
matrices are known in some complete orthonormal

can be defined for all pg e, where the set e is com-
posed of all complete sets of functions @={p„}which
are normalized, but not necessarily orthogonal. The
matrix elements of the single-particle operator T and
of the two-particle operator e in Eq. (3.2) are defined
in the usual way. The annihilation operator for a
particle in the orbital p is defined as

o(@-)= f dx4-'(x)4(*) (3.3)

g (vs v& (4.1)

where $„„ is an arbitrary coe%cient. An arbitrary var-
iation of p„* can likewise be expanded to

(4 2)

'The set of coefficients p„„ is not completely arbitrary,
but must satisfy the constraint that the orbitals be
normalized, (p„, @„)=1. Variation of the normaliza-
tion condition gives the restriction on the coefhcient

n..= —4.—Z (n"~"+4 ~~ ) (4.3)

where the sum is over v~p, for fixed p, . The overlap

IV. EIGENVALUE PROBLEM

The variational principle for the functional E(@]
in Eq. (3.6) determines an eigenvalue problem for
the orbitals. The eigenvalue problem is complicated
by the fact that the single-particle Hamiltonian is
nonlocal as in HF theory, and depends on the true
wave function. However, it is Hermitian, so that the
orbital energies are real.

Since the function p„ is complex, it and its complex
conjugate @„* can be varied independently, subject
only to the constraint of normalization. The set @=
{@„}Q 6 is complete, so that an arbitrary variation of
@„can be expanded in terms of it:



VARIATIONAL P RINCIPLE AND HARTREE-FOCK THEORY 1587

between the orbitals p„and p„ is defined as

5'».= (4i» 4"). (4 4)

The normalization condition gives $»=1.
The variational principle in Eq. (3.6) for the func-

tional EL@7 gives

~~I 47=2 Z (4.+~")&" 0=

The matrix h is a single-particle Hamiltonian with
matrix elements defined as

(4 5)

k»v 2 (g»v+gv» ) (4.6)

which is explicitly Hermitian. The matrix element g„.
is defined as

+2 g i)„»(h»,—5».h„.) =0 (4.8)

js obtained. The coefficients j»„and i)»„ for pW» are
now all arbitrary and independent. The only way
that Eq. (4.8) can be satisfied is for the coefficients
of both $„„and g„, to vanish. The vanishing of the
codFicient of („„gives

~fxv $py~») P W & (4.9)

and the vanishing of the coefhcient of q„„gives

k~q = S~)k~q) PQ V» (4.10)

However, the diagonal elements of h are not in gen-
eral equal:

h„„/h„„p,/ v. (4.11)

The only way Eqs. (4.9) and (4.10) can both be
satisfied in general is to have

(4.12)

Equations (4.12) and (4.4) show that at the sta-
tionary point of EL@7 the orbitals are orthonormal,
and thus from Eq. (3.4) the value of EQ7 at the

a,P, y

&& &+ I
o'(4.)o'(4-)o(A)o(@.) I +) (4 7)

The sum over states in Eq. (4.7) cannot in general
be performed because the orbitals are not necessarily
orthogonal. Thus, this matrix g is in general diferent
from the ma, trix form of Eq. (2.6), but reduces to
it when the orbitals are orthogonal. The matrix h in

Eq. (4.6) becomes the matrix form of the operator
in Eq. (2.8).

The coefficients in Eq. (4.5) are not all independ-
ent, due to the normalization constraint. If the con-
dition in Kq. (4.3) is substituted into Eq. (4.5),
the equation

&EL47= 2 P [„„(7i„„—S„„h„„)

stationary point is E0. Therefore, the additional re-
quirement of the variational principle in Eq. (3.6) is
satisfied. Because of Eq. (4.12), Eq. (4.7) for g„„
reduces to the matrix form of g in Eq. (2.6), when
the sum over states is performed.

If Eq. (4.12) is used in Eqs. (4.9) and (4.10),
both equations state that the oft-diagonal elements
of the matrix h must vanish. The matrix is then in
diagonal form,

kfsv Cy~pv) (4.13)

where the eigenvalue e„ is real. Thus, the variational
principle gives an eigenvalue problem for the deter-
mination of the orbitals. There is no arbitrariness in
choosing the representation, since there are no off-
diagonal Lagrangian multipliers in this theory. If Kq.
(4.13) is multiplied by P»(x) and summed over all p,
the result is Eq. (2.7) with the Hermitian single-
particle Hamiltonian given in Kq. (2.8). Therefore,
the variational principle used here gives the same
equation as obtained intuitively.

Equation (2.7) can be rewritten as

h4 „=(K+ t+l'.) )y„«„y„=, (4.14)

which shows the nonlocal kinetic energy E, external
potential V, and average potential due to all the
other particles V. The eigenvalue problem in Kq. (4.14)
is complicated by the fact that the single-particle
Hamiltonian in Eq. (2.8) is not a local operator.
If the true ground-state wave function is known, the
equation is linear, however. If a perturbation expan-
sion is used for 4', a highly nonlinear set of equations
is obtained. Because only the Hermitian part of g(x, y)
is used in Eq. (2.7), it does not reduce to the HF
equation if + is replaced by 4«, in contrast to Eq. (2.5).

V. BEST LOCAL APPROXIMATION

The generalized HF equation obtained in Sec. IV
from the variational principle is nonlocal, and is thus
diferent from Slater's generalized theory. ' However,
the best local approximation to the nonlocal equations
can be sought, and gives essentially Slater's theory.
It is expected that the orbitals satisfying the best
local equations will be approximately the same as the
orbitals satisfying the nonlocal equations.

The local form of Eqs. (2.7) and (4.14) is

I

—(f'i'/2m*) V'+U(x)+ V(x)74„(x)=~y„(x), (5.1)

where m* is an effective mass, C'(x) is an "effective"
external potential, and V(x) is the average local po-
tential due to all the particles. Because of the presence
of the true single-particle density matrix p in E and V,
the orbital @„(x) in Kq. (4.14) is multiplied by its
occupation number

(5.2)

In order to give the same weight to each equation in
Eq. (4.14) as in Kq. (5.1), Kq. (4.14) can be divided
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by»„/0. The orbital energy in Kq. (5.1) is then

~,=e„ln„.
The effective mass in Kq. (5.1) is chosen such that

the local-kinetic-energy operator is the best approxi-
mation to the nonlocal one in the sense that the
function of m/m*,

g» '}» '6@ —(mlm*) K4„j}'=niin. (5.3)
V

The kinetic-energy operator is E, and the nonlocal
operator K is defined as in Eq. (4.14). The weighted
sum over the states weights each orbital according
to its occupation number n„&0. without the sum, the
effective mass would be state-dependent. It is as-
sumed that the number of orbitals with occupation
number identically zero is small, so that the set }@„}
with e„/0 is still complete to a very good approxi-
mation.

The eRective-mass ratio obtained from Eq. (5.3) is

mlm*= j dx 7,'V'. .'p(x', x)/f dy V'„'V'„'r(y', y), (5.4)

where the prime is dropped after differentiation and
before integration. The function r is defined as

(x, y) = g»„4„*(x)4„(y) (5.5)

»
j ~

»'/ @„—'U@„}~'-'=min. (5.6)

If this expression is functionally varied with respect
to U, the result is

L'(x) = U(x)p(x, x)(r(x, x). (5.7)

Thus, the best approximation to the nonlocal external
potential term is the external potential multiplied by
the "renormalization" factor pjr, which measures the
deviation of the orbitals from natural orbitals.

The average potential due to all the other particles
is of most interest. The average local interaction 1' (x)
can be defined such that the difference between it
and the nonlocal interaction V is a minimum in the

If the orbitals @, are natural orbitals, ~ then 7- and p
are the same function and the effective-mass ratio is
unity. The effective-mass ratio measures the devia-
tion of the orbitals from the natural ones.

In his multiconfigurational variational principle,
Lo*wdin20 restricts the orbitals to be natural ones.
He then obtains Eq. (5.1) as an approximate equa-
tion for the natural orbitals by putting the Lagrangian
multipliers in diagonal form. However, the natural
orbitals are not invariant under a unitary transfor-
mation, and the role played by the diagonalization
of the Lagrangian multipliers is unclear.

The local effective single-particle potential L (x)
can be defined in a manner simila, r to Eq. (5.3). The
norm squared of the difference between the eAective
local and nonlocal single-particle potential can be
minimized with respect to Q . In other words, the
functional of 4

sense that the functional-"' of V

Z»„ Ij»„- & @„—V4„ il"-=min.

If Eq. (5.8) is functionally varied, the result is

(5.8)

V(*) = L2r(x, x) 7 ' jfj dududy o(x, y; w, u)

If Eq. (5.10) is substituted into Eq. (5.9) the average
local potential is

l (x) = f dy} v(x, y) I'(x, y)/r(x, x) 7. (5.11)

The true pair correlation function F is defined as

r (x, y) = (+ } 4'(x) 4'(y) k(y) ti (x) i +) (5 12)

and is Ã(Ã —1) times the probability density of
finding a particle at x and another one at y. If the
orbitals which satisfy the generalized HF equations
are natural orbitals, then r(x, x) is the density, and
Eq. (5.11) is Slater's generalized local self-consistent
potential.

Even though the particles interact with a potential
o(x, y), which has a hard core, the integral in Eq.
(5.11) is still finite, since the true pair correlation
function F vanishes if the particles are within the
hard-core radius. An average potential due to the
other particles exists in Slater's generalized HF theory,
but does not, in ordinary HF theory, when the par-
ticles interact with hard cores. Equation (5.1) is of
the same form as the nuclear-shell-model equation,
if the external potential U is zero and the effective
mass is unity. The shell-model potential could thus
be calculated from the known two-body potential, the
observed density, and a calculated pair correlation
function.

Slater originally proposed that a local HF self-con-
sistent potential be vritten in the form"

Vo(x) = f dyL&'o(x, y)I'o(x, y) jpo(x, x)7, (5.13)

where I'o is defined as in Eq. (5.12) using a Slater
determinant, po is defined in Eq. (2.2), and oo(x, y)

' This expression with norm replaced by absolute value was
used in Ref. 20, with a result similar to Eq. (5.11) obtained.

where c.c. denotes the complex conjugate and v is
defined in Eq. (5.5). Thus, the best local approxi-
mation of the average potential due to all the other
particles involves the full two-particle density matrix
when the potential is a general velocity-dependent
potential.

In order to understand better the significance of
the true two-particle density matrix in Eq. (5.9), it
is helpful to specialize it to the case of a local two-

body potential. Coulomb and signer forces, for
example, have the form

r(x, y; iv, u) =r(x, y)b(y rv)f(x —u ). (5—.10')
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is the two-body interaction. Equation (5.11) can ap-
proximately be equated to Eq. (5.13) if ro(x, y) is taken
to be a Hermitian eGective two-body potential

ro(x, y) = s(x, y) I'(x, y) /I'0(x, y). (5.14)

The density can still be approximated by po(x, x),
and so we have po(x, x)=r(x, x). This effective po-
tential vanishes inside the hard-core region since
I'(x, y) vanishes there. For large separations

~
x—y ~

the eGective potential vo would be essentially the same
as the potential v, if long-range correlations are not
present. Just outside the hard core, the potential vo

would not be as attractive as v(x, y), because we have
I'(I'0 due to the short-range correlations.

A good approximation to the eGective potential
would thus be solely the long-range part of the true
two-body potential v(x, y) cut off somewhere between
the hard-core radius and the distance at which ~0

begins to approach v. The conclusion that the eGective
nuclear potential is solely the long-range part was
reached by Moszkowski and Scott.~ They obtain a
velocity-dependent eGective interaction by discarding
the hard core and just enough of the attractive part
to give a zero free-scattering phase shift. They find,
however, that a constant separation distance of 1.062 f
is a good approximation. It is difIicult to use Eq.
(5.14) to define a precise separation distance, but it
does define a unique nonsingular effective interaction.

VI. CONCLUSION

The variational principle developed in this paper
states that the optimum representation is that for
which the matrix expression for the ground-state
energy is stationary at the true ground-state energy
with respect to variations of the orbitals from or-
thogonality. 1f the true one- and two-particle density
matrices are known, then the true ground-state energy,
as well as the expectation value of other operators,
can be calculated directly. However, it is convenient
to use a matrix representation for the operators. Since
the basis functions cannot be exactly orthogonal in
practice, it is desirable that the ground-state energy
is not sensitive to these deviations.

The stationary point of the functional E$P j in
Eq. (3.2) is not a simple maximum or minimum.
The functional EL@j is constant in the set of all sets
of complete orthonormal functions. A erst-order var-
iation from orthogonality about any other set of or-
thonormal orbitals would cause a first-order variation
in the energy. The stationary point thus corresponds
to a point of inflection. Therefore, the functional ELpj
does not provide a bound to the true energy, but

~ S. A. Moszkowski and B. L. Scott, Ann. Phys. (X. Y,) 11,
65 (1960).

this is not as essential as knowing that it is stationary
at the true ground-state energy.

The single-particle Hamiltonian obtained in Eq.
(2.8) involves the true one- and two-particle density
matrices. In order to calculate it exactly, the true
wave function must be known, but then the problem
is solved. A natural expansion of the true single-
particle density matrix could then be made to obtain
an orbital picture, but occupation numbers instead
of energy eigenvalues would be obtained. In order to
obtain energies, the single-particle Hamiltonian ob-
tained here could be diagonalized instead of the den-
sity matrix. In general, the two matrices do not
commute and the choice as to which matrix to diago-
nalize must be made. "

The local approximation in Eq. (5.1) is a more
practical set of equations to solve than Eq. (2.8),
and provides a justification for the nuclear shell
model. The nuclear pair correlation function may soon
be known experimentally" and can be used together
with the observed nuclear density~ in Eq. (5.11).
Instead of calculating the pair correlation function
from the true wave function, the pair correlation
function for the corresponding homogeneous system
could be used. The short-range correlations would
then be built into the function, and the function
could be cut oG at the surface of the system. Thus,
the pair correlation function for nuclear matter could
be used for nuclei, or the one for the electron gas
could be used for atoms. Unfortunately, nuclear cal-
culations have been concentrated on the pair wave
function'4 instead of the pair correlation function. "
The pair correlation function may also be estimated
crudely by using the free Fermi gas value where the
function is not zero."
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