
PAIRING FORCE AND ENERGY GAP IN FINITE NUCLEI

polarization calculations using the Yale-Shakin inter-
action at a later stage. As has been shown by Bertsch, "
core polarization mainly eSects the pairing matrix
elements.

In Table III, we present the 5 values of neutron
single-particle levels for some nuclei to compare the gap
function 6 obtained for the Yale-Shakin interaction
with that for the state-dependent and constant-6 solu-

tions using the 5-function interaction. It is clearly seen
that the 5-function interaction justifies a constant-6
solution, whereas the Yale-Shakin interaction, though
normally giving results similar to the 5-function force,
sometimes gives notable differences. These differences

"G. F. Bertsch, Xucl. Phys. 74, 234 (1965).

in 6 values, it seems, will not cause any substantial
change in predicting other properties, e.g., binding
energies, spectra, etc.

Thus, the conclusion of this work is that the results
of the Yale-Shakin and the 5-function forces agree
quite closely, showing that the results are practically
independent of the detailed form of the interaction.
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The broken-pair-approximation (BPA) formalism is presented in this paper in complete form for the
description of the nuclear properties of medium and heavy spherical nuclei. Starting from an approximate
ground state of even nuclei having BCS-type pair distribution in the valence shells, the model Hilbert space
is constructed by replacing one, two, . . . pairs in the assumed approximate ground state by arbitrary two,
four, . . . particle configurations. The BPA states for odd-mass nuclei are obtained by coupling the odd
nucleon to zero-, one-, . . . broken-pair states. It is shown that the Hilbert spaces spanned in the pro-
jected quasiparticle theories and in the BPA are the same in a certain limit, and that in practice these two
formalisms are physically equivalent. The BPA is an improvement on the quasiparticle theories and is an
approximation to the seniority shell model. All the relevant expressions for calculating energy matrices,
transition rates, inelastic electron-scattering form factors, and spectroscopic factors for one- and two-
nucleon transfer reactions are presented in a coherent form. The corresponding expressions for the case
of first BPA are further elaborated and presented in a form suitable for numerical computation.

I. INTRODUCTION

1OR an accurate description of the nuclear proper-
ties in the framework of the shell model one should

diagonalize the shell-model Hamiltonian in the Hilbert
space containing at least all possible configurations of
the nucleons in the partially filled major shell. An
orthonormal basis set in this model space is con-
structed by the well-known shell-model techniques
using seniority (w) as quantum number. Defining a

*Work supported in part by Istituto Nazionale di Fisica
Nucleare.

pair as two identical nucleons coupled to J=0, seniority
is then the number of unpaired nucleons or the residue
after all pairs have been removed. These configuration-
mixing calculations, which are commonly known as
exact shell-model (ESM) calculations, are indeed
intractable due to the prohibitively large dimensions
of energy matrices when the nucleon number exceeds
four in valence shells. If one still insists on doing
ESiVf calculations, one is permanently limited to three
or four particles in three or four levels. Obviously, a
truncation of the basis is obligatory for carrying out
such calculations in practice. The simplest one is the
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seniority truncation which has proved quite successful
(cf. Ref. 1). In this approximation the Hilbert space is
generally limited in such a way that it contains the
basis up to seniority four or less for even nuclei and
up to seniority three for odd-mass nuclei. Due to the
strong pairing part of the interaction, the states with a
large number of pairs are energetically favored, so
that this is generally a good approximation for low-

lying nuclear states. Unfortunately, this approximation
is also handicapped by similar problems of large
dimensions. For example, let us consider the case of
Sn'" containing 16 neutrons in five (2d5/2 1g7/2 3$1/2,

2/f3/2 1hn/2) valence shells, outside the assumed (Z =
)V=50) core. The number of seniority-zero states in
this case is 110 and that of seniority-two (J =2+)
states approaches a thousand. Clearly, such calcu-
lations, referred to as lowest-seniorit& (r//&4) shell-
model (LSSM) calculations, are in practice limited
to specific cases.

To preserve the basic concept of the shell model with
configuration mixing and to make it more practicable,
further approximate methods were developed. The
foremost is the quasiparticle or BCS method, ' which
neatly takes into account the pairing interaction be-
tween the nucleons by the Bogolubov-Valatin canonical
transformation. The quasiparticle vacuum, or BCS
state, contains correlated pairs of nucleons. For de-
scribing low-lying states it is a reasonably good ap-
proximation to diagonalize the Hamiltonian in the
Hilbert space containing the zero-, two-, and four-
quasiparticle subspaces for even nuclei and the one-
and three-quasiparticle subspaces for odd-mass nuclei.
This procedure, known by various names such as
quasiparticle second Tamm-Danco6, modified Tamm-
Dancoft approximation, etc., has been successfully
applied' " to describe many nuclear properties in
various nuclear regions.

M. H. Macfarlane, Lectlres in Theoretical Physics (University
of Colorado Press, Boulder, Colorado 1966), p. 583.' M. Baranger, Phys. Rev. 120, 957 (1960};this work lists all
other earlier publications.

3 R. Arvieu, Ann. Phys. (Paris) 8, 407 (1963'); R. Arvieu, E.
Baranger, M. Baranger, M. V6neroni, and V. Gillet, Phys.
Letters 4, 119 (1963};R. Arvieu, E. Salusti, and M. Veneroni,
ibid. 8, 334 (1964).

P. L. Ottaviani, M. Savoia, J. Sawicki, and A. Tomasini,
Phys. Rev. 153, 1138 (1967};P. L. Ottaviani, M. Savoia, and
J. Sawicki, Phys. Letters 24B, 353 (1967}.

A. Rirruni, J. Sawicki, and T. Weber, Phys. Rev. 168, 1401
(1968).' M. Gmitro, J.Hendekovic, and J. Sawicki, Phys. Letters 26B,
252 (1968); Phys. Rev. 159, 983 (1968).' M. Gmitro and J. Sawicki, Phys. Letters 26B, 493 (1968).

A. Rimini, J. Sawicki, and T. Weber, Phys. Rev. Letters 20,
676 (1968).' B. Gyarmati and J. Sawicki, Nucl. Phys. A111, 609 {1968)."T.T. S. Kuo, E. Baranger, and M. Baranger, Nucl. Phys. 79,
513 (1966).

"M. K. Pal, Y. K. Gambhir, and Ram Raj, Phys. Rev. 155,
1144 (1967); 153, 1004 (1967}.

'~ Y. K. Gambhir, Ram Raj, and M. K. Pal, Phys. Rev. 162f
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The most disturbing feature of the quasiparticle
theory is the nonconservation of nucleon number.
The Hamiltonian in the truncated space containing a
limited number of quasiparticles no longer commutes
with the particle number, so that its eigenstates are
superpositions of states with difFerent numbers of
particles. The fact that the quasiparticle theory de-
scribes a specific nucleus is reflected only in the im-
posed condition that the expectation value of the
particle number operator in the BCS state coincides
with the actual number of valence nucleons. As a
result the solutions of the quasiparticle theory describe
only average properties of neighboring nuclei and do
not pretend to describe the individual nuclear proper-
ties, for which one needs a fixed value of the nucleon
number. Furthermore, some of the solutions are
spurious and do not correspond to any physical state
of a single nucleus and must be projected out before
energy matrices can be diagonalized.

It has been shown' ""that the part corresponding
to the actual nucleon number e, projected out from the
BCS state, when normalized has ~99% overlap with
the ESM ground state of a specific nucleus, which is
almost a seniority-zero state. Clearly, this fact supports
the use of the projected zero- and two-quasiparticle
wave functions in calculating the nuclear properties
of low-lying states. This procedure is referred to as
projected Tamm-Dancoff approximation (PTDA) .
The PTDA results' of Xi" show that the obtained wave
functions for 0 &, 2+„4+i, states have about 99%
overlaps with the corresponding wave functions of the
LSSM (r//& 2) calculations. Ottaviani and Savoia"
have recently performed PTDA calculations for Sn'".
The PTDA results indicate, however, that for an
accurate description of the low-lying excited states,
the second states of each J in particular, the cor-
responding second approximation is highly desirable.
Unfortunately, in practice, these calculations are
very involved.

These facts and the success achieved by the quasi-
particle theory indicate the necessity of developing a
systematic number-conserving formalism utilizing the
essential physical contents (inclusion of pairing cor-
relations) of the quasiparticle theory. In this paper, we
develop an approximation to the LSSM based on an
assumption which takes into account the strong pairing
correlation e6ects. %"e truncate the LSS34 Hilbert
space by assuming as a first approximation that the
ground state for 2p nucleons is built up by the re-
peated (P times) application on the particle vacuum
of the operator S+ creating a pair distributed among
the various levels. This form of the ground state was

"A. K. Kerman, R. D. Lawson, and M. H. Macfarlane, Phys.
Rev. 124, 162 (1961);Y. K. Gambhir and Ram Raj, ibid. 161,
1125 (1967)."R. Arvieu, Cargese Summer School Lectures, 1968 (un-
published); B.Lorazo, thesis, Orsay, 1968 (unpublished).' P. L. Ottaviani and M. Savoia, Phys. Rev. 187, 1306
(1969).
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first proposed by Mottelson. " The coefFicients of the
distribution in S+ are determined by minimizing the
total Hamiltonian with respect to the ground state.
Clearly, this approximate ground state is a special
seniority-zero state. The state vectors defining the
first and second successive approximations are con-
structed by replacing one and two S+ operators, re-
spectively, in the ground state by two- and four-
particle creation operators. Similarly, the Hilbert
space for odd-m. ass nuclei is obtained by coupling the
odd nucleon to the states of zeroth and first approxi-
mation for the corresponding even nuclei. The present
formalism, which will be referred to as the broken-pair
approximation (BPA), is clearly an approximate
version of the I.SSM. The BPA theory fits directly into
the frame of the shell model, avoiding any quasi-
particle transformation. It turns out that, in a certain
limit, the BPA is equivalent to the projected quasi-
particle theory (Sec. II B). The success of the first
approximation (PTDA or first BPA) for the first
state of a given J has already been mentioned. The
assumption of the BPA model space is also supported
by the study of the breaking of the generalized seniority
scheme. ""The coherent presentation of the BPA,
given here, is a useful simplification over the pro-
jected quasiparticle theories both from the conceptual
and practical points of view.

All the relevant expressions for calculating energy
matrices, electromagnetic transition rates and static
moments, form factors for inelastic electron scattering
and spectroscopic factors for one- and two-nucleon
transfer reactions are given. The formalism presented
in this paper holds both for identical and nonidentical
nucleon systems. In the latter case, the pairing cor-
relations between neutrons and protons are neglected
in the approximate ground state.

coupling coeKcients, will make it obvious wherever
such a practice is being followed. a~ and a are the
single-particle creation and annihilation operators, re-
spectively, and obey the usual fermion anticommuta-
tion rules. e, is the single-particle energy, V is the two-
body eR'ective potential, and the label A denotes
matrix elements with respect to normalized antisym-
metric states. %e introduce the operators

a b J
(ab) = (a @lag ) ziz=

mama ~ p

A (ab) =fAz '(ab) j',

a~ ap

(2.2)

H, (a) = pa a.',
ma

H2(a'b'abI) = P Azv(a'b') Azzzi(ab), (2 &)

h, (a) = —fe,+a ' g bF(aabb0) g, (2.5)

h (aba'b'I) = (1+5 p) '(1+k;b ) 'G(aba'b'I),

where

a b I a' b' I

where the brackets denote the Clebsch-Gordan coef-
ficient. The Hamiltonian H can then be written in the
coupled form

H= ho+ P hi(a) H, (a)+ g h&( aba'b'I)
a&b, aI&bI, l

XH2(a'b'abI) . (2.4)

The quantities ho, hi, and h2 are defined by

ho
——Q fa'e. +~ia Q bF(aabb0)],

II. HAMILTONIAN

The shell-model Hamiltonian H for spherical nuclei
in the second quantized form is given by

H= g ~,a.'a +-', P (nP
I

V
I yb)~a "atziaia~. (2.1)

The greek subscripts denote all the quantum numbers
required to specify the single-particle shell-model
states, while the latin subscripts denote all the quantum
numbers designated by the corresponding Greek sub-
scripts except the angular momentum projection
quantum number. Very frequently we shall also use
a, b, . . . to denote only the angular momentum quan-
tum numbers and the corresponding Greek letters
a, P, . . . to denote the respective projection quantum
numbers. The occurrence of these symbols in phase
factors, weight factors, or in the angular momentum

"B.R. Mottelson, Probleme 0, N Corps, Les Houches, 1958
(unpublished) ."0, Bohigas, C. Quesne, and R. Arvieu, Phys. Letters 20B,
562 (~968).

a P V n' P' V

XG(aba'b'I),

F(ab'a'bI) = —g I'G(aba'b'I) ~

a b I
a' b' J

(2.fi)

The symbols stands for (2j+1)'".lt is to be noted that
our t" and Ii quantities are —2 times the corresponding
ones of Baranger. ' The form (2.4) of H is valid only if
j value, parity and charge are enough to identify the
single-particle levels. It is the most convenient form
to evaluate the Hamiltonian matrix in the BPA
formalism.

III. BPA

A. Basis States

As remarked in the Introduction, the ground state
of even nuclei is practically a seniority-zero state. This
is due to the strong pairing part fG(aabb0) j of the



1576 6AM BHIR, RIM INI, AND WEB ER

effective interaction. In oraer to truncate the pro-
hibitively large dimensions of the lowest seniority
(w&4) Hilbert space we construct our model space
starting from a particular seniority-zero state which
approximately takes into account the pairing part of
the interaction.

Ke introduce the operator

8+ Z p&2aAop (aa), (3.1)

&Pa
= '4/Na) u, '+z '=1, (3.3)

and the operator

(3 4)

The coefficients I and e are to be determined by
minimizing H, i.e., by

b(0 ) ~~a„&
) o)/(o ( ap, &

( o)= o. (3.5)

~e note that 3„~
~
0) is an exact solution of the pairing

part of the interaction in the case when p= 1. Further-
more, in the general case, 3„i

~
0) has exactly the same

structure as the projected BCS state. In fact, these two
states coincide when I, and z are replaced by the cor-
responding quantities U, and V, of the quasiparticle
theory defined later through Kqs. (3.19) and (3.20').
The results of earlier calculations"'" show that the
projected BCS state has ~99% overlap with the
seniority-zero ground-state wave function. This in-
dicates that our assumed approximate ground state
is very near to the true ground state and, moreover,
that the replacement of I, and zl, by U and V„re-
spectively, is a good approximation.

The remaining state vectors in our model space are
constructed by utilizing the idea that the replacement
of one operator S+ by an arbitrary two-particle creation
operator requires a large amount of energy, so that the
states containing a large number of operators S+ are
energetically favored. This argument is analogous to
that which is used to justify the seniority truncations,
with the difference that in place of a pair LA00t(aa)g
we have now a pair distributed among the levels in a
definite way ($+). In fact, this difference is responsible
for the larger reduction of the dimensions of the shell-
model Hilbert space obtained in the BPA. The states
defining the first approximation, which are analogous

in which the coefhcients q give the weight distribution
of a pair in the various levels. The approximate ground
state for 2P nucleons

(3.2)

is then assumed,
~
0) being the particle vacuum. In

practice, it is more convenient to use, instead of the
coefFicients p and the operator S+&, the quantities u
and v defined by

to the seniority two states, are

3 i A»r (rs) ~ 0). (3.6)

~,&a t)0),
a, 'La, tcaA„t(r, s,)j,„~o).

(3.8)

(3.9)

The states (3.9) are linear combinations of seniority-
one and seniority-three states. For seniority-one the
states (3.8) are linear combinations of states (3.9).

%e shall indicate, in general, the BPA states for 2P
particles (even nuclei) or 2p+1 particles (odd-mass
nuclei) by

3~'Xiii'(d, E)
~ 0), (3.10)

where b is the number of broken pairs, X»r" (d, E) is
a vector-coupled product of 2b or 2b+1 creation oper-
ators for particles in the levels indicated on the whole
by d, E being the set of the intermediate angular
momenta. The states

X„,t (d, E)
l
0) (3.11)

will be called few-particle states, in contrast to the
BPA states (3.10) . The BPA states for different values
of d and E are, in general, not orthogonal, even if the
corresponding few-particle states are. Therefore an
orthonormal basis must be constructed before setting
up the Hamiltonian matrix. The orthonormalization
procedure requires the knowledge of the scalar products
of the BPA states.

An explicit expression for the scalar products can
easily be obtained by making use of the seniority
representation. %e first expand the few-particle states
(3.11) in terms of the orthonormal few-particle states

These states were first used in Ref. 15 in the J=0 case.
Clearly, the states (3.6) for JWO are particular seni-
ority two states, in which the distribution of (p —1)
zero-coupled pairs is bounded by our assumption of the
approximate ground state. For J=o, the states (3.6)
are + =0 states; they are not orthogonal and, further-
more, the approximate ground state G„i

~
0) is just a

linear combination of these states.
For the successive approximations the states are con-

structed by replacing more S+ operators by an equal
number of At operators. For example, for the two-
broken-pair approximation the states are

~ 2'LAs '(r»i) As. '(r2s2)3»r
I
o). (3 &)

These states are linear combinations of seniority-zero,
-two, and -four states for 2p nucleons. For seniorities
zero and two, the states (3.6) are linear combinations
of the states (3.7). It is to be mentioned that, by
breaking all pairs, the ESM Hilbert space is obtained.

The BPA states for (2p+1) particles, corresponding
to odd-mass nuclei, are similarly obtained by coupling
tke odd nucleon to zero- and one-broken-pair states.
They are
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KJ1f (»;, &&&;, &r)
~
0) with definite occupation numbers

&s; and seniorities z;; n is an additional quantum number
which may be necessary to specify the state uniquely.
The total seniority is

The expansion coefficients are

ax ' (d, J) =(0
~

&JillL» (d), «&', ~]XJll (d, E)
l
o).

(3.12)

The evaluation of (3.12) requires the operators Kt
in the second quantized form. The operators X~ for

the seniorities zero, one, and two can be written down

uniquely in terms of X~ operators with specific values
of E. The Xt operators corresponding to the subse-

quent higher-seniority states can then be obtained by
taking only those linear combinations of Xt operators
which are orthogonal among themselves as well as to
the lower-seniority states. This can easily be carried out
because only few particles are involved. The procedure
is explicitly shown in Refs. 1 and 11. The states
3~ Xq~t(»;, n&, , u)

~
0) can then be expanded in terms

of 2p- or (2p+1)-particle states in the seniority repre-
sentation and their scalar products can be evaluated.
One gets

where

(0 (
X~qq(d', E')3~3~ XJ&1&(d, E)

(
0)= g ax (d, J)ax * (d', J)5)& ~&L», (d), », (d'), w;], (3.13)

w, a

v g 2O; rv+$&n,—+n, r)~~ r,~&n, +nv'v)

~ . . ... '=&H(r* —»)] I:2 r*—»'')]'

Lk(r* —a*)]' Cfi' —2(»*+~')] tel* —2(»''+~)]' "'
Lfi;—2 (r'+~') ]' L2(»' —~') ]'L2(»*'—~') ]. (3.14)

Here v is the number of valence levels and 0;=j,+2. The summation runs over all integer values of r&, ~ ~ ~, r„such
that

u' f r;»s, r;&21I; w;, —and g r;=2(p —b)+ g»;.

The derivation of Eqs. (3.13) and (3.14) is given in Appendix B. Using the facts that the states Kgb~(»;, w;, vx)
~
0)

form a complete orthonormal set and that the quantities S are independent of a, Eq. (3.13) can be put in the form

(0
~
Xg&I(d, E ) 3 ~~ Xg~ (d, E)

~

0)=B,. &g&„,.&d &(0
~

Xg&y(d, E ) Xg&r (d, E)
~
0)S L»;(d)» (d), » (d)]'

+ P ax ' (d, J)ax n" (d', J) IS&~'&[».(d)» (d'), w;]—b„,&d&„, &d
&X)'~' Ln;(d), », (d), », (d)]I, (3.15)

tcirx& ' i+9

where p is 2b 2(eve—n nuclei) or 2b 1(odd-mass—
nuclei) . Equation (3.15) is much more convenient than
Eq. (3.13) for practical calculations. In fact, it allows
one to compute the scalar products between states
(3.10), avoiding the expansion on the states of maxi-
mum seniority 2b or 2b+1. = ZI„ I o), (3.19)

In terms of the particle operators, the normalized state
~
BCS) is given by

I
BCS)= II LZ.+(—) --V.a.„.'a. .'] lO)

B. Relation between BPA and Quasiparticle
Taxnm-Banco' Theory

In the quasiparticle theory, the Bogolubov-Valatin
canonical transformation is introduced:

with
n &=Z~a & —( —) V,a, (3.16)

(3.17)

which is devised to take into account the pairing cor-
relation effects. The quasiparticle vacuum

~
BCS)

is defined, with respect to the new operators which
create and destroy quasiparticles, by

where I,t has the same form as 3„& LEq. (3.4)] with
the coeKcients I, replaced by U, . It is apparent from
(3.19) that

~

BCS) contains components corresponding
to the difI'erent numbers of nucleons which can exist in
the valence shells.

The transformation coefficients IJ (and V) are de-
termined by minimizing H with respect to the state

~

BCS) with the constraint that the expectation value
of the number operator coincides with the actual
number e of nucleons present in the valence shells.
This is accomplished in practice by replacing H with
the Hamiltonian

a
~
BCS)=0, for all a. (3.18) 3C = II Xg a.'a., —
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) being a Lagrangian multiplier. Thus, the quantities
U and X are determined through the equations

(8)8?.',) (BCS
I
K

I BCS)=0, for all a (3.20)

and

tions and for odd-mass nuclei. Therefore, the use of an
orthonormal basis constructed either by the projected
quasiparticle states or by the broken-pair states would
lead, in the said limit, to identical physical results.

(BCS
I g a.~a.

I
BCS)=rp. (3 21) C. Hamiltonian Matrix

These equations are equivalent to the well-known gap
and number equations.

The Hamiltonian 3C in terms of quasiparticle oper-
ators separates into two parts. The first is a diagonal
one-quasiparticle operator and the second represents
the interaction among the quasiparticles. Their explicit
expressions are given in Refs. 4 and 11. The exact
solution of the problem would be obtained by di-
agonalizing X (i.e. , H with the single-particle energies
counted from the Fermi level X) over all the quasi-
particle configurations. However, the creation of a
quasiparticle requires a fairly large energy which is
always greater than the "gap" parameter ( 1 MeV
for medium weight nuclei). Therefore, for describing
the low-lying nuclear states it is sufhcient to consider
a space containing a limited number (usually &4) of
quasiparticles. This procedure is known as the quasi-
particle Tamm-Danco8' method.

It is apparent that the states with a definite number
of quasiparticles contain components corresponding
to the diferent numbers of nucleons which can exist
in the valence shells. Therefore these states do not
correspond to a specific nucleus. In order to remedy this
defect it is desirable to project from these quasiparticle
states the part corresponding to the actual nucleon
number and use these states in determining the trans-
formation coefficients and in setting up the energy
matrices. This procedure is called the projected quasi-
particle Tamm-Dancoff method. For simplicity, the
minimization after projection is usually not performed
and the transformation coefFicients obtained through
Eqs. (3.20) and (3.21) are used in setting up the energy
matrices with projected quasiparticle basis. In fact, the
coeS.cients determined by minimizing before and after
projection are, generally, nearly equal.

The quasiparticle states can be written straight-
forwardly as a sum of components with definite particle
number by using the transformation (3.16) and the
commutation relations given in Appendix A. For
zero- and two-quasiparticle states one gets

I
BCS)»——I,'

I 0), (3.22)

L(n, Sn, )»z I BCS)),„=(U,V,) 'I„,"A»z (rs)
I
0)—

—bJpb„r(V„/I:;)I„t
I 0). (3.23)

It is clear from Eqs. (3.22) and (3.23) that the space
spanned by the projected zero- and two-quasiparticle
states and that spanned by the zero- and one-broken-
pair states are the same in the limit in which the coef-
ficients U, and V are equal to N and v, . It can easily
be shown that the same is true for higher approxima-

In this subsection the expressions for the elements of
the Hamiltonian matrix are evaluated. Let

I
P»z(h) )

denote the orthonormal BPA basis states, related to the
states (3.10) through

I
4'»z(h) )= Z vp' (I) I p JM(d E) )

d,K

P yp" x(J)3~tXz&&t(d, E)
I
0). (3.24)

d,K

Using (2.4), the Hamiltonian matrix is given by

(0'~M(h')
I
H —ho I I'M(h) )= Q Vp" x'Vp" x

d,K,dI,K~

x I Z h, (a) &p~M(d', E')
I H, (a) I v,M (d, E) )

+ g hp (aba'b'I)
a&5,0,«bI, ?

x(pJ~z(d', E')
I
H&(a'b'abI)

I A&M(d, E) )). (3.25)

The matrix elements in the square bracket in (3.25) are
easily reduced in terms of scalar products between
BPA states for the nuclei with one or two additional
nucleons. The result is

&v z-v(d'~ E')
I Hi(a) I v'JM («~ E) )

= Z7'~ '(o
I (I:a.'SXz'(d', E'))z}'

X3~'J„~tea,tSXzt(d, E)), I 0)) (3.26)

&qgM(d') E')
I
Hp(a'b'abI)

I
(pzM(d) E) )

= gJp'J-'&0
I ( I Az( ab') SXg'(d', E'))zp}"

g0

X3,~~tpA zt (ab) SXzt (d, E))J, I
0). (3.27)

The scalar products in the right-hand side of Eqs. (3.26)
and (3.27) are given by the general expression (3.15).
In a speci6c BPA the summations over j, J, and Jo can
be carried out explicitly. The resulting expressions for
the first BPA are given in Appendix C.

IV. CALCULATION OF ELECTROMAGNETIC
PROPERTIES AND SPECTROSCOPIC

FACTORS

A. Electromagnetic Transition Rates, Static Moments,
and Inelastic-Electron-Scattering Form Factors

The second quantized version of any single-particle
tensor operator Qq„of rank A. is

Qg„= g (n I Qg„j n')a. "a.
aalu

=b)pb„pea(a Ij Qp Ij a)

—Z a '&a II f1~ II a'»z" (a, a'), (4.1)



NUMBER-CONSERVING APPROXIMATION TO SHELL MODEL 1579

where

Q,"(aa') =
a p, nmm

aa' aa t (4 2)

(a I Qg„ I
n')=a'. - (a II Q~ ll a'). (4.3)

and the reduced matrix element is de6ned by

B. Spectroscopic Factors for One- and Two-Nucleon
Transfer Reactions

According to the DWBA theory, the nuclear struc-
ture factors s for a one-nucleon transfer reaction can be
expressed as the overlap integral between a state of the
heavier nucleus

I
JM) and a free state

I xqir& com-

posed of the lighter nucleus with spin Jp and the trans-
ferred neutron with angular momentum j„i.e.,

s,.(Jo, J) = (JM
I X~il (a, Jo) ) (4.6)

The electromagnetic reduced transition probabilities
and static moments are simply related to the quantity

I xz is (a,.Jo) )= Z
a Jp J

I
J,M, )a.'

I
0). (4..7)

in which
I JM) and

I

J'M') are the pertinent nuclear
states which are linear combinations of states
I y~&r(d, E) ) and

I v~ && (d. ', E')), respectively It i.s

simple to evaluate the expressions for the nuclear re-
duced matrix elements in terms of scalar products be-
tween BPA states. The result (for li/O) is

(v'(«', &')
ll Q~ II v. (d, &) &

= 2 (a II Q~ II a'&
aa~

J J'
X g ( )a~—J'—jJ2.

a' a j
x(0 I IL..'ax, '(d', ~') j,I'

X~~~'La. 'C I,'(d, ~)3, I 0). (4.5)

In the case of the first BPA, the explicit final expression
is given in Appendix C. For X=O the first term of Eq.
(4.1) must be added.

The inelastic-electron-scattering form factor in the
first Born approximation is simply related' to the
nuclear matrix elements of the Coulomb, transverse
electric, and transverse magnetic operators. Their
expressions are given in Ref. 19. These operators are
single-particle tensor operators and can be written in
the form (4.1) . Therefore, the calculation of the nuclear
reduced matrix elements will require exactly the same
steps as those followed in the case of the electromag-
netic transition rates.

It is possible to incorporate the core contributions
in the calculation of electromagnetic transition rates,
electromagnetic static moments, form factors of in-
elastic electron scattering, in an approximate manner
by replacing the nucleon charge e by a phenomeno-
logical effective charge e,~f, or, better, by replacing the
quantity (a II Qz II a') in Eq. (4.1) by the correspond-
ing calculated effective quantity (a II Qi, 'H II a'), as
shown in Ref. 20.

"T. de Forest, Jr., and J. D. Walecka, Advan. Phys. 15, 1
(1966).

'0 M. Gmitro, A. Rimini, J. Sawicki, and T. Weber, Phys. Rev.
Letters 20, 1185 (1968); 175, 1243 (1968).

In the framework of the BPA theory I JM) is a linear
combination of BPA states

I y~i&(d, K) ) for the heavier
nucleus and

I xJir) is a linear combination of those
BPA states which are obtained by coupling the j,
nucleon to the BPA states of angular momentum JpMp
of the lighter nucleus. The factor s;. then reduces to a
linear combination of the scalar products of the BPA
states evaluated earlier LEq. (3.15)].

Similarly, the spectroscopic factor 8 of Yoshida"
for the stripping reaction (A~A+2)

Ji J J2
Bg,g, (Jab) = (I+g „')—i/2

"M2

X(JgM2(A+2) I Appar~(ab) I
JrMr(A) ) (4.8)

can easily be evaluated by using (3.15) . It is to be noted
that in Eq. (3.14) the u's and v's coming from the two
states must be kept distinguished.

V. CONCLUDING REMARKS

The BPA theory has been presented as an approxi-
mate version of the LSSM for describing the low-lying
states of nuclei. It has the advantage over LSSM that
it leads to quite reasonable dimensions of the energy
matrices. The reduction in dimensions stems from the
assumption of an approximate ground state having a
particular structure. The BPA theory is an improve-
ment over the quasiparticle theories because its wave
functions correspond to a specific nucleus. Physically,
the BPA formalism is equivalent to the projected
quasiparticle theories.

All the relevant expressions for calculating energy
matrices, electromagnetic transition rates and static
moments, inelastic-electron-scattering form factors
and spectroscopic factors for one- and two-nucleon
transfer reactions are presented in a coherent form. The
formalism also holds for systems having both neutrons
and protons where the pairing effects between the two

"S. Yoshida, Nucl. Phys. 33, 685 (1962); Phys. Rev. 123,
2122 (1961).
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kinds of particles are neglected in the approximate
ground state.

The formalism is being applied to the specific cases of
Ni and Sn isotopes. The numerical results will be re-
ported in subsequent publications.

A formalism similar to ours has been applied by
Lorazo" to the 0+ states of Ni"' and Sn"'
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APPENDIX A

%e present here the most relevant commutation relations used in this paper. Some of them are given in the form
of vacuum expectation values, since their complete expressions are quite lengthy and are not involved in the
present work;

[Aj jj (a'b'), Ajij&(ab)] =P(abJ) bjj 4sij 8 4,. P(a'b—'J')b, b Q JJ'(—) j+j"+u'

JI g&& b/ J JI
X (ao'Sa") j-,jr jr, (A1)

b J J" M —u' u —M'

b c J
(o I

L~&j»(a'b'c'), C&»j'(a bc)]-
I
o)=P(b'"J')

I
&- b~ &- &jj+JJ'P(bcJ)b- b~ b-' I, (A2)

~ ~ J'.)
(0 I [B&j;j,ij(a'b'c'd'), B&j,j&j (abed)] I

0)=P( ba'J, ')P(c'd'J&')

PL(abJ&) (cdJ2) J]b„.boo.b„bpd bj j bjQjQ J&JoJ,'Jo'P(abJ&)P(cdJo)b„bo;b, o bye. ! c d Jo ~, (A3)

I a-, ~.'7-=(—)' (v./u. )& i'a. .—',

LA jor(ab) ~v ]—= ( ) &n—i PP(abJ) (v,/uo) (a, &3ao) j .ij+bu4&kvoa(v, /u, ) 7

Jg' J2'

(A4)

—( )j u(v,—vo/u uo)3 o&Aj oct(ab), (AS)

where
D a.'3ao) jv, 3„'] = —(v, /ub) J„,"Ajo,t (ab),

aama ( ) aa,—may

C&j~,„t(a, bc) =
I a, '&8&A j'(bc) 7, ,

B(jgjgi jij (abed) I
ji jg (ab) &S jfj2 (cd) ]jo&)

P(abJ) = 1—( —)'+~j(a++b), -

PL(abJi) (cdJo)J]=1+ ( )j'+j~—j(a~c) b~d, J&~Jo).

(A6)

(A7)

(A8)

(A9)

(A10)

(A11)

APPENDIX B

We outline below the derivation of Eqs. (3.13) and
(3.14). The main step involved is to express the states

3~ I siwi) ' ' , u„iv„), (B1)

22 B.Lorazo, Phys. Letters 293, 150 (1969).

which are obtained by applying the operator 3~~ on
the few-particle states in the seniority representation,
in terms of 2p- or (2p+1)-particle states in the seni-

5+(i) = (oiQ') i'oAoot(ii) (B2)

using the definition (3.4) and the algebraic identity

where the c s are commuting operators. Next, the

ority representation. The operator 3~t is first ex-
pressed in terms of the operators
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state
I

n,w;) is written as

I n;w;) =X„„,, &-tzS+o (i) I w;w, ),

where the normalization factor

&I, !(0,—w, ) !

(Q;—w, —&i;) !

=0 otherwise

&f,(Q;—w; (BS)

is derived in Ref. 1. Then the operators S+(i) coming
from 3~z are combined with the S+(i) introduced
through (84) and, using formula (84) again, the state
(81) is written as

The coeScient D turns out to be

D(n, w, , ~ ~ ~, n„w„; r, , ~ ~ ~, r„)

v N, Qi—$(r,—ni) ~ .$(r,—n;)

n'

[2 (r*—w') ]'[fl'—o (n'+w*) ]' '"
[-,'(n, —w, ) ]![0,——',(r,+w;) ]!

and the summation runs over all integer values of

ri, ~ ~, r„such that

~~z
I n,w„",n„w„&=

PI ~ Pit ~ ~zP1 and

ri = —ni n;&r;&20;—m;

Xz&; (p, !)-'x,.+„, ,'"X„.„,.-'" I 2p, +n;, w;)

D(niwi, ', n„w„; t'i, ' ' ', z'„)
I

rzwz, ' ' ', r„w„&.
rI. ..rzt

P r;=2(p —b)+ g n;.

(86) It is now straightforward to obtain (3.13) and (3.14).

APPENDIX C

Explicit expressions suitable for numerical computation in the case of first BPA for even nuclei are given in this
Appendix. The formulas, as they are presented here, are valid only if the j value is sufhcient to identify the single-
particle levels.

In the present case, we have

I v&»r(d It) ) +I ys&z(rs) &=~ z'A»r'(rs)
I 0). (C1)

The indices rs are ordered (r&s) . The scalar product between states (C1) is given by

(v&s&z(r's')
I tt&st&r(rs) )= (1—bso) (1+b„)b b„X)&t »[n, (rs), n;(rs), n;(rs)]+2bsob„b, , S&t &&[n,(r'), n, ;(r"),w=0].

(C2)
The matrix element of the second term of the Hamiltonian (2.4) is written as

(&as~("") I Z hi(a) IIz(a) I v'~(rs) &= A&+Bi,
a

Ai ——(1+b„,)b„b«g a'hi(a)$'t "[n;(ars), n;(ars), n;(ars,)]
(C3)

—P(rsJ)P (r's'J) b b««h (s) L&&& '&[tn;(rs') n; (rs'), n;(rs') ] (C4)

Bi 2g hi(a) b««mz(m——'—2b&«) '"(ztz —2b& «) ' '
{&&~"[n, (Pm), n;(l"m)

&
w = 1]

btt $&t —&&[n.;(Pm), n, (lorn), n;(Pm)]} {bsobt„,bt „,.b,„[rttz 2P(ll')b t ]+—l 'blitt P(rsJ)P(r's'J)b«. tb„.„}, (CS)
where Ai and Bi correspond to the first and second terms in Eq. (3.15), respectively. In Bi only the seniority-one
terms can occur, and therefore at least two of the indices ars(ar's') must be equal. The set of indices llm(l'l'm')
is then a rearrangement of the set ars(ar's') . Similarly, the matrix element of the third term of the Hamiltonian
(2.4) is written as

(Ijo»z(r's')
I g h, (aba'b'I) IIz(a'b'abI)

I
trts&r(rs) )=Az+Bz+Cz,

a&b, a«b~, I
Az ——(1+b„,) (1+b...)$&t »[n, (rsr's'), n;(rsr's'), n;(rsr's')]hz(rsr's'J)

+b b„(l+o„)p (1+b~)ab5)&t »[n, (abrs), n;(abrs), n f(abrs) ]kz(aabbO) [1 P(rs) P(ab) r 'b,„], (C7)—
a&b

B,=2 Q b b„„[(1+b„)l'—2(b +b „)'] '"[(1+b „)l"—2(b ~ +b „)'] 't'
a&b, aI&bI

X {53&& '&[n;(Pmn), n;(l"mn), w(mn) = 2] btt X)&t "[—n;(Pmn), n;(Pmn), n;(Pmn) ]}
X {(1—4o) butb~ o t b„b„„(1+«b„)'ll'hz(a'a'aaO) [1—2P (mn) P (ll') l' 'bt «7

+4ob .tbr" t b 4;„(1+b )oil'[abkz(aabb0) bhz(aaaa0) ][1—2—P(mn) P(ll') l' 'bt ]
+P(mn)P(ab)P(a'b')P(rsJ)P(r's'J)b, „tb, ;t bt b,„

X[bo;bo,kz(a'bab'J)+btt boob„ l 'bkz(aabbO) 2b „bM,.b„.m zhz—(a'b'abJ)]}, (C8)
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C,=4 P b„„b,„.h, (a'b'abJ)[P+bz (P—4)] '"[1"+bi. .(l"—4)] '"
c&b,aI(b~

X {Q&~'&[n,(Pm'), n;(1'zm"), w=0) —(1+b& ) '(b«4«+bi«b«z )L&&~"[n;(l'm'), n, (Pm'), n;(l'm'))}

X {bsoll'P(lm) P(l'm') b~b&b, z i b«~b, , ~ 4bs—pll'P[(abrslm) (a'b'r's'l'm') ]l' P(lm) buzb«~ba z r" z ~

+z&z &Pn' 'P(abJ)P(a'b'J)P(rsJ)P(r's'J)b„&b;;rbz, «bz ;„.}.. (C9)

Here Az corresponds to the first term in Eq. (3.15), while Bz and Cz correspond, respectively, to the total seniority-
two and the total seniority-zero parts of the second term in Eq. (3.15). Therefore, in Bz at least two of the indices
abrs(a'b'r's') must be equal. The set of indices limn(l'1'm'n') is a rearrangement of the set abrs(a'b'r's'), such that
m&n and, if m=

nial,

both l &m and l) m are present. In Cz the indices abrs(a'b'r's') must be pairwise equal. The
set of indices llmm(lVm'm') is a rearrangement of the set abrs(a'b'r's'), such that l&m. The symbols appearing
in the above expressions are dehned by

a b I
kz(a'bab'J) = —P I'hz(aba'b'I)

a' b' J
(C10)

e o ~ —$~$ ~ ~ ~

w(mn) =2~w =w =1 if mWn,

if m=n,

P(ab) = 1+(a+-4),

P[(abc ~ ~ ) (a'b'c' ~ ~ ~ )]= 1+(a~a', b~b', c~c', ~ ~ ~ ) .

(C11)

(C12)

(C13)

(C14)

The reduced matrix element of any single-particle transition operator between one-broken-pair states is given by

(ys. (r's') II fI& II v&s(rs) )=Z+Az+B, , (C15)

Z= biob» J( g &z(a II 00 II a)) {(1—bs0) (1+b„)b b„S&~'&[n;(rs), n;(rs), n, (rs) )
+2bsob«b, S&~'&[n;(r') n, ,(r") w =0)}, (C16)

A, = —p aJ'(a II Q&, II a)(1+b„,)b„bus b&p)&z '&[n;(rsa), n„(rsa), n, (rsa) ]

+JJ'P(rsJ)P'(r's'J') ' (—)"+'+"+"b- (s' ll fI& II s)
r s J

J' s'
'L&&z»[n, (rss'), n;(rss'), n;(rss') ], (C17)

B=z2JQ b &z '(a IID& II )alP( P 2b& ) '"(l"—2b&.„) '"{S'~"[n;(Pm),zz;(I"m) w =1]
ca~

—b«n ' [n;(Pm), n, (Pm), n, (Pm))} —a'b, g» y„,b. .. b .„

+(—) '+s'~aJ' 'P[(arslJ) (a'r's'l'J')]P(rsJ)l 'bisbs &Jb, b&, ;bi„

+Jg—i( )u+s-m,
a m J
J' X a'

P(rsJ)P(r's'J') bz,Pz, , b„~ . (C18)

Here Z corresponds to the first term of Eq. (4.1) while Az and Bz correspond, respectively, to the first and second
terms in Eq. (3.15). In Bz only the seniority-one terms occur and the set of indices llm(l'l'm') is a rearrangement
of the set ars(a'r's').

In the first approximation for odd-mass nuclei

I v,~(d, e) ) 3„'a,z
I 0). (C19)

The corresponding expressions for the expectation values of the Hamiltonian and the nuclear reduced matrix ele-
ments can easily be evaluated in a similar way. In the application of Eq. (3.15), at most seniority one will occur in
the summation.


