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The ordinary Kohn method also suffers from the
problem of sporadic singularities' in the estimated
amplitude, which is related to the fact that one must
work at a value of E in the spectrum of the operator
T+ V. In the new method, E is not in the spectrum of
O'T+ Vq, and we expect that no convergence problems
will arise. We believe that, for the numerical example
discussed above, it is possible to prove the convergence
of the method, but the details will not be presented
here.

The scheme proposed here may also be superior to the
method of analytic continuation from negative E
suggested by Schlessinger and Schwartz' and recently

' C. Schwartz, Ann. Phys. (N. Y.') 16, 36 (1961).
' L. Schlessinger and C. Schwartz, Phys. Rev. Letters 16, 1173

(]966) .

generalized" to include complex I . The effort required
to do the computations should be similar in these two
approaches, but no continuation with its attendant
errors is now needed. In some circumstances it might be
advantageous to combine the two methods.

Xote added in proof Dr. C. harles Schwartz has kindly
pointed out that a coordinate rotation has been pre-
viously used in the two-particle problem by T. Regge
[Nuovo Cimento 14, 951 (1959)] and R. Haymaker
[University of California Report No. UCRL-17652,
Part VIII, 1967 (unpublished) ].
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The reactions p(d, 2p) n and d (p, 2p}n were studied at a proton bombarding energy of 16.0 MeV and deu-
teron bombarding energies of 16.0 and 10.0 MeV. The protons were detected in coincidence with solid-state
detectors at angles that allow strong enhancement of the p-n final-state interaction. The coincidence re-
solving time was sharpened by using time-energy correlation techniques that utilize an on-line SDS-910
computer. The data were analyzed using the "data-simulation technique. " A simple theory, which, apart
from normalization, contained three adjustable parameters, was found to produce satisfactory fits. In this
theory, the final-state interactions are accounted for by assuming additive enhancements for each pair of
final-state particles and each spin state. The primary interaction is approximated by the sum of a constant
amplitude plus the spectator-eGect amplitude. The widths of the final-state interaction peaks are in good
agreement with Watson theory using the known singlet p-n scattering length a„„'of —23.69 F. The most
accurately determined scattering length was extracted from the 16-MeV p+d data and was a„~'=—23.8~
0.5 F. This agreement indicates that interference effects are not important in this reaction at center-of-mass
energies above a few MeV if coincidence techniques are employed. With similar methods, a comparative
study of the n+d reaction in order to measure the singlet n-n scattering length should be fruitful.

I. INTRODUCTION

A. Three-Body Exyeriments and Nucleon-Nucleon
Interaction

t 1HE nucleon-nucleon interaction plays a fundamen-
tal role in our understanding of nuclear physics.

Unfortunately, our knowledge of this interaction is
incomplete, and there are presently several theoretical
potentials that describe the existing two-body scattering

f Present address: Bell Telephone Laboratories, Murray Hill,
N. J.* This work is taken from the Ph. D. thesis submitted to Rutgers
University, 1968, and was supported in part by the National
Science Foundation.

f Present address: National Science Foundation, Washington,
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data equally well. ' The study of three-body reactions
can, in principle, contribute new information to our
knowledge of the nucleon-nucleon interaction in two
ways. The first is through investigation of the off-the-
energy-shell behavior of the nucleon-nucleon potential,
which is, for example, currently being studied in n-p and
p-p bremmstrahlung experiments. Quasifree scattering
experiments also provide knowledge of the off-the-
energy-shell behavior.

The second class of three-body experiments that give
nucleon-nucleon potential information consists of those
that investigate the neutron-neutron scattering in a
final-state interaction, using a reaction such as n+d—+

' See Rev. Mod. Phys. 39, (1967).
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p+n+rt. Since the p-p scattering length is well known
from two-body experiments, charge symmetry can be
invoked to predict the n-n scattering length. However,
the way in which the electromagnetic corrections are
applied depends sensitively on the form of the nuclear
potential used. For example, if one assumes charge
symmetry and tries to calculate the singlet n-~s scatter-
ing length u„„',by unfolding the eftects of the point
Coulomb interaction from the p-p scattering data, it
is found that the calculated n-e scattering length can
vary from —16.4 to —19.3 F, depending on whether a
hard-core potential or velocity-dependent potential is
used. ' A measurement of a ' to better than 5% would
provide valuable information about the fine details of
nucleon-nucleon interaction. It is clearly important to
obtain information on a„„'using a variety of techniques,
since the extraction of this parameter from experimental
data on systems containing three strongly interacting
particles in either the initial or the final state is neces-
sarily subject to some theoretical uncertainty.

Various forms of final-state interaction theory, as
introduced by Watson' in 1952, have enjoyed success in
nuclear physics. In addition, this theory is often used in
high-energy physics to investigate the interactions be-
tween elementary particles. However, the interpretation
of these experiments depends on the validity of the
assumptions employed in the final-state interaction
theory that is used. These assumptions can best be
tested in low-energy nuclear physics, where measure-
ments of high precision can be made, and where the
sca,ttering parameters are often known accurately from
two-body elastic scattering data.

The Watson final-state interaction theory has been
applied by many groups to extract nucleon-nucleon
scattering lengths in reactions such as d(n, p) 2n,
t(n, d)2n, He'(p, d)2p, He'(n. d)np, He'(He', He4)2p,
and others ' "However, the results have often not been
mutually consistent and are usually not in agreement
with the known scattering lengths. This seems to be due

' I. Slaus, Rev. Mod. Phys. 39, 576 (1967).
'K. M. Watson, Phys. Rev. 88, 1163 (1952).
4 K. Ilakovac, C. G. Kuo, M. Petravic, I. Slaus, and P. Tomas,

Nucl. Phys. 43, 254 (1963).
~ E. Bar-Avraham, R. Fox, Y. Porath, G. Adam, and G. Frieder,

Nucl. Phys. B1, 49 (1967}.
'W. T. H. Van Oers and I. Slaus, Phys. Rev. 160, 853 (1967}.
'A. D. Bacher, T. A. Tombrello, and Y. S. Chen, Bull. Am.

Phys. Soc. 11, 896 (1966) ~

K. Nagatani and T. A. Tombrello, Bull. Am. Phys. Soc. 12,
1139 (1967).' A. D. Bacher and T. A. Tombrello, Bull. Am. Phys. Soc. 12,
1138 (1967).' E. Gross, J. Malanify, B. Morton, and A. Zucker, Bull.
Am. Phys. Soc. 12, 465 (1967) .

~ R. J. Slobodrian, J. S. C. McKee, W. F. Tivol, D. J. Clark,
and T. A. Tombrello, Phys. Letters 25B, 19 (1967}."T. A. Tombrello and A. D. Bacher, Phys. Letters 17, 37
(1956) ."E. Baumgartner, H. E. Conzett, E. Shield, and R. J.
Slobodrian, Phys. Rev. Letters 16, 105 (1966) .

"H. T. Larson, A. D. Bacher, and T. A. Tombrello, Bull.
Am. Phys. Soc. 12, 465 (1967).

"H. T. Larson and K. Nagatini, Bull. Am. Phys. Soc. 12,
1139 (1967).
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Fio. 1. Possible single final-state interaction diagrams. A
deuteron and proton interact on the left in the large circle, @which

represents the primary interaction. The final-state interaction is
represented by the small circle on the right, and various possible
spin states are indicated.

to the inability. in experiments that measure the energy
spectrum of only one final-state particle, to allow
separation of the eEects of the primary reaction mech-
anism from those of the final-state interaction, as
explained in Sec. II A.

These difFiculties can be largely removed through
experiments that measure in coincidence the momentum
of two of the three outgoing particles. The first attempt
to extract a scattering length by analysis of such a
coincident experiment was reported by Rim and Rane. "
They applied the theory of Frank and GammeP to the
reaction d(p, 2p) n and extracted a singlet p nscat-tering
length with an accuracy of ~10 F. This reaction ha, s
recently been studied more extensively. " "-

The experiments presented here are the result of a
program designed to test with greatly improved pre-
cision the validity of final-state interaction theory as
applied to the extraction of a„„'from the d(p, 2p)n
reaction. A range of center-of-mass energies from 1.1 to
8.44 MeV was investigated. The detector angles were
chosen to allow enhancement of the proton-neutron
final-state interaction. The data were analyzed using a
simple model described in Sec. I D and IU E, which
assumes that only two of the three final-state particles

'6 Y. E. Kim and J. V. Kane, Rev. Mod. Phys. 37, 519 (1965)."R.M. Frank and J. L. Gammel, Phys. Rev. 93, 463 (1954) ~

"W. Dwain Simpson, W. R. Jackson, and G. C. Phillips,
Nucl. Phys. A103, 97 (1967}.

'9 A. Niiler, C. Joseph, and G. C. Phillips, Bull. Am. Phys.
Soc. 13, 569 (1968); A. Niiler, C. Joseph, V. Valkovic, W. von
Witsch, and G. Phillips, Phys. Rev. 182, 1083 {1969).

~ D. Boyd, D. J. Bredin, J. P. F. Sellschop, J. F. Mollenauer,
C. Zupancic, and P. F. Donovan, Bull. Am. Phys. Soc. 12, 34
(1967)."P.F. Donovan, J. F. Mollenauer, D. Boyd, and C. Zupancic,
in Proceedings of the International Conference on Nuclear Struc-
ture, Tokyo, 1967, p. 620 (unpublished); D. Boyd, P. F. Dono-
van, B. Marsh, and P. Assimakopoulos, Bull. Am. Phys. Soc.
13, 567 (1968)."H. Bruckmann, W. Gehrke, W. Kluge, H. Matthay, L.
Schanzler, and K. Wick, Report of Institute fur Experimentelle
Kernphysik der Universitat und der Kernforschungszentrums,
Karlsruhe, Germany (unpublished) .
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interact. This model takes into account contributions
both from resonant and nonresonant processes, includ-
ing "spectator" eRects.

Experimental broadening effects were accounted for
by using the "data-simulation" technique as explained
in Sec. II B. The computer program that generates the
simulated data is described in the Appendix (see also
Ref. 23).

3. Kinematics of Three-Particle Reactions

6'e consider reactions of the following form:

1+2—+3+4+5.

The nine scalar momentum components of the final
state completely specify the kinematics of the system.
Four components can be eliminated by applying the
conservation of energy and momentum. Thus the
measurement of five independent scalar variables
suffices.

In coincidence experiments, two of the particles (by
our convention, particles 3 and 4) are detected at fixed
angles. Thus six scalar variables are measured: the beam
energy, two final-state particle energies, two angles with
respect to the beam axis, and the azimuthal angle
between the two detected particles. This constitutes a
kinematic over specification of the system, which is
useful in reducing background.

Conservation of energy and momentum restricts the
energies of the two detected particles to values given by
the following equation":

Q = (1+sni,'m;) T3+ (1+mi/m„)Ti (1-mi/m;) —Ti—
—2 cosHL (m, m, /m;;") Ti T,j'~-'

—2 cosH, L(mimi/m -') TiTi)"-

+2 cosH„((m3mi/m. '-) TgT&j"--', (1)
where

cosH~~= cos83 cos84+ sin83 sin84 cos(qq —qi).

The 0;, ~;, m;, and T; are the polar angles, azimuthal
angles, masses, and energies of particle i; Q is the Q
value of the reaction. This is the equation of a fourth-
degree curve in the T3-T~ experimental space. Particle 5
is free to assume various momenta consistent with each
Ta, T4 solution of Eq. (1). Each point on the T3, T,
curve corresponds to a definite relative energy between
each pair of particles. The occurrence of a resonance at
a particular relative energy results in an enhancement
or peak in the three-body cross section at the approp-
riate point on the T~-T4 curve. An experiment at fixed
angles and fixed incident energy may contain several
peaks corresponding to resonances at various internal
relative energies. It is convenient to formulate a theory

"D. Boyd, Ph. D. thesis, Rutgers 'University, 1968 (unpub-
lished); available from University Microfilms, Ann Arbor, Mich."P. A. Assimakopoulos, N. H. Gangas, and S. Kossionides,
Nucl. Phys. 81, 308 (1965).

in terms of relative momenta, since they are Galilean
invariants and may be calculated in any inertial system.

Calculations of three-body kinematics are in general
too lengthy to perform by hand, and computer methods
are necessary. The problem that is presented to the
computer is to calculate the momentum of each of the
three final-state particles, given the angles of the two
detected particles and the energy of one of them. The
computer also calculates the various relative energies
in the intermediate two-particle systems. Because of the
accuracy with which the experiment measures proton
energies, a relativistic version of Eq. (1) is used.

The derivation of many useful three-particle kine-
matic formulas has been published by Ohlsen, "and the
general case of e particles has been treated by Zupancic. '
These two authors also give phase-space expressions,
which are discussed in Sec. I E. The solution of the
relativistic version of Eq. (1) was worked out by Kane'r
in the following form:

Pi I bc+ j—b'—(—c' 1) —4—a'm)1'"I /(c'- —4a"-)

where

a= Ti+mi+m2 —T3—m31

b = I'i2+ I'~-' —2I'~ I'i cos83+ m~'- —m4' —a',

c= 2P3[cos83 cosH, +sin83 sinH, cos(g —
@~)j—2Pi cosHi,

and the m;, I';, and T; are the masses, momenta, and
kinetic energies of particle i in units such that c= 1. The
angular coordinate system is defined so that the s axis is
in the direction of the beam, and the y a.xis is perpen-
dicular to the plane defined by the beam axis and the
two coplanar detector centers.

The rnomenturn of particle 5 is then given b&

P5-—Pi —P3—P4,

and the total and 1'inetic energies of particle i by

I":;"-=I' c'—mPc4,

T =E —m;c'

The relative momenta of particles i and j are defined as

and the relative wave number k is

k= P;; „)/fi,.

C. Theory of Final-State Interactions

In many types of three-body reactions, the cross
section is found to depend on the relative energies of

"G. G. Ohlsen, Nucl. Instr. Methods 37, 501 (1965)."C. Zupancic, Nuclear Institute "J. Stefan" Report No.
R-429, 1964 (unpublished); in Few NNcleon Problems, edited by
Cerineo (Federal Nuclear Energy Commission of Yugoslavia,
Hercegovina, 1964) ."J.V. Kane (private communication).
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pairs of final-state particles. This relationship appears
to be independent of momentum-transfer variables
which characterize production amplitudes. We are thus
led to hypothesize that such reactions are of a sequen-
tial form, consisting of a primary interaction or produc-
tion process followed by final-state interactions between
pairs of particles. To the extent that these steps are
independent, we may study them separately by varying
the relative-energy and momentum-transfer variables.

Final-state interaction theory depends on the assump-
tion of successive independent interactions. This
assumption is valid if the lifetime of the final-state two-
particle system is sufIiciently long for its decay not to
be influenced by the presence of the third particle. In
reactions involving nucleons, the 'So interaction of two
nucleons can produce a virtual state that approximately
satisfies this requirement. Such a state is not a Breit-
Wigner type of resonance and is not an exponentially
decaying state. However, the 'so phase shift has a rapid
increase at about 70-keV relative p-n energy. A rapidly
increasing phase shift may be interpreted as a time
delay, "-" and the lifetime may be so defined. This
leads to a pole in the scattering amplitude for such
states, having the form (k+i/a) ', where k is the
relative wave number of the two interacting nucleons,
and a is the scattering length of the eRective-range
theory. " Since this expression has a maximum at zero
relative energy, the interaction is sometimes referred to
as a zero-energy resonance.

Watson' showed that under certain conditions the
matrix element describing a three-body breakup reac-
tion could be factored into two parts: An amplitude
describing the production mechanism, and the square
of the relative wave function of the interacting pair
f(k, r) averaged over the production region. If this
wave function is normalized to unity for zero interac-
tion, then it becomes an enhancement factor for the
production process. Fermi" suggested a suitable
normalized enhancement factor to be the square of
the ratio of the wave function P(k, r) to the wave
function corresponding to zero phase shift, the ratio
being evaluated at a radius corresponding to the range
of the interaction. If we use the asymptotic wave func-
tion for s-wave continuum states and the eRective-
range theory, the enhancement factor E for an n-n or
n-p final-state interaction is

P(k, r,) ' (1/ro —I/a+orok')'
lk&o& (k, ro) k'+ (1/a ——,'rok') '

where ro is the eRective range, u is the scattering length,
and k is the relative wave number.

~' M. L. Goldberger and K. M. Watson, Collision Theory
(John %iley R Sons, Inc. , New York, 1964), p. 479."L.Eisenbud, Ph. D. thesis, Princeton University, 1948 (un-
published) .

'0 For a discussion of e6'ective-range theory, see S. De Bene-
detti, cVuclear Interactions (John Wiley 5z Sons, Inc. , New York,
1964), p. 159."E.Fermi, Elementary Particles (Yale University Press, New
Haven, Conn. , 1951),p. 58—64.

A consideration of the Coulomb repulsion yields the
following expression for the p-p enhancement I'» "-.

[I/ro —1/a+-,'rok' —(1/p) k(n) j"
C'k'+ (1/C'-) Ll/a —orok'+ (1 p) k(n) j'

where

C'= 2s.g/(e'-~" —1), g = e'-', 'nv,

34 35 45

Kinematically, the interactions are coupled by momen-
tum and energy conservation. For example, if one pair
has low relative momentum, then the third particle must
have a large momentum relative to that pair, unless the
center-of-mass energy is very low.

If the regions of two simultaneous enhancements are
well separated, the multiplicative enhancement factor
approaches the additive form, but if the enhanced
regions overlap, this is not the case. If there are two
overlapping resonances, the multiplicative form gives a
more dramatic enhancement than the additive form.
Present final-state interaction theory provides no
general guides regarding the use of rnultiplicative or
additive forms. This choice appears to be model-

32 C. Zupancic, Rev. Mod. Phys. 3V, 332 (1965), and Ref. 65."J.D. Jackson and J.M. Blatt, Rev. Mod. Phys. 22, 77 (1950)."G. Phillips, Rev. Mod. Phys. 3V, 414 (1965).

p=fi2/me" , and -k(g) is a function evaluated in Jackson
and Blatt." m and e are the mass and charge of the
proton, and e is the relative p-p velocity.

The presence of three strongly interacting particles
in the p+ p+ n system complicates the theoretical
treatment considerably. If all three particles are in
relative s states, they may all interact simultaneously.
The symmetrization principle requires that we add the
amplitudes for each simultaneous interaction, and in
squaring, cross terms would arise that affect the cross
section. In the case that only two particles interact
strongly, we must add the amplitudes for the various
pairwise interactions either coherently or incoherently,
depending on whether the experiment can distinguish
which pair interacted. The identity of the two protons
tends to lower this distinguishability, and the require-
rnent of fermion symmetrization can lead to experim-
tally observable effects in the cross section. Inter-
ference resulting from the identity of final-state par-
ticles has been reported by Phillips34 in the reaction
Bn(p 2u)a

The enhancement is given by the relative wave
function of the interacting pair; it is therefore propor-
tional to the probability that the two particles will be
found at a small separation distance. In the independent
pair model, it is assumed that these probabilities are
dynamically independent for each pair. Therefore,
according to this model, we should use a multiplicative
enhancement factor
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OR

dT)

(b)

ference with the production term:

exp(ib;, ) sinb;;
Tb, = Tb, (0) 1+ C;; k;;

iy'-j k;;

The C;j measure the strength of the i, j scattering rela-
tive to the unenhanced production term Tb,(".In the
limit of a single strong final-state interaction, this
reduces to the simple Watson formula, Eq. (2).

Fio. 2. (a), (b), (c) . Three possible intersections of a kinematic
line with a two-dimensional energy channel. (d) Treatment of case
c by the computer program (see Sec. I E}.

dependent. The Lee" and K.huri-Treiman" models lead
to a product form of enhancement in the limit of two
particles resonating with an infinitely massive third.
References to other efforts concerning these problems
are found in an article by Peierls and Tarski. '7 The
theoretical answer to these questions may lie in the
solution of the three-particle Lippmann-Schwinger
equation, as in the work of Faddeev, ' who showed that
the series solution to the Lippmann-Schwinger equation
could be reordered in terms of the two-body scattering
amplitudes as follows:

T= To+2 T GOTO+2 T GOT5GOTO
a

+higher-order terms,

where To is the production amplitude, the TI, are the
final-state pair amplitudes, and 60 is the 1 "reen's func-
tion of the unperturbed Hamiltonian. The second term
on the right-hand side corresponds to the diagrams of
Fig. 1, which are discussed in Sec. I D, and the third
term represents multiple final-state interactions. Aaron
and Amado" have applied this formulation using s-
wave, separable, spin-dependent two-body potentials.
They were able to reproduce the major features of the
n+d data of Ilakovac et a/. ' However, their theory
predicts too narrow a final-state interaction peak. These
calculations involve much of the full complexity of the
three-body problem, but by means of judicious ap-
proximations, various applications to final-state inter-
action theory are beginning to emergy. Delbourgo' has
obtained an amplitude that allows for interference be-
tween various final-state interactions, as well as inter-

"R. %'. Amado, Phys. Rev. 122, 696 (1961)."I.J. R. Aitchison, Nuovo Cimento (1964)."R.F. Peierls and J. Tarski, Phys. Rev. 129, 981 (1963).
'g L. D. Faddeev, Zh. Eksperim. i Teor. Fiz. 39, 1459 (1960)

LSoviet Phys. —JETP 12, 1014 (1961)); Dokl. Akad. Nauk
SSSR 138, 565 (1961);145, 301 (1962) 1 English transls. : Soviet
Phys. —Dokl. 0, 384 (1961);7, 600 (1963)j.

3' R. Aaron and R. D. Amado, Phys. Rev. 150, 857 (1966)."R.Delbourgo, Nucl. Phys. 38, 249 (1962).

D. Single-Interaction Model

Some special features of the p+p+n final state at
moderate energies suggest a simple model to treat
possible multiple interactions. Since the characteristic
dimensions of the deuteron are large, it unlikely that all
the pairs of particles will be in relative s states. Thus
it is probable that if one proton is in an s state relative
to the neutron, then the other proton-neutron pair is in a
p state. Since there are no known p-state resonances in
the nucleon-nucleon system, we might expect to have
final states with only one interacting pair most of the
time.

Xeglecting the possibility of spin-Rip processes, the
possible final-state interactions may be represented by
the diagrams of Fig. 1. The large circles represent a
primary interaction that produces two particles in a
relative s state. The small circles represent the final-state
interactions of the two s-state particles. Since the spin
of the three outgoing particles could be experimentally
measured, final states with different spins should be
regarded as distinguishable, and those with the same
spins as indistinguishable. Therefore, the cross section
should consist of a coherent sum of the indistinguishable
diagrams and an incoherent sum of the distinguishable
ones. If one studies the singlet final-state interaction of
pa, rticles 3 a,nd 5 (5 refers to the neutron), interference
e6ects due to the indistinguishability of this diagram
from those of the 3-4 singlet and the 4-5 triplet diagrams
will occur.

Assuming a constant production mechanism repre-
sented by C;;", a complex number, the amplitude for
each diagram may be written as

C;,"f;,'=C;,"/(k;, +i43;,'),
where q;,"=1/a, the inverse of the scattering length for
particles i and j in the spin state denoted by k. The
matrix element is

[ 4M
( ( C35 4k35 +C34 i(34 +C45'$45

other diagrams

As will be discussed in Sec. II A, in coincidence measure-
ments it is possible to select measuring conditions such
that in the region of the 3, 5 resonance, where k35 is
nearly zero and rapidly varying, k34 and k45 (and there-
fore $34 and 4k45) are slowly varying and approximately
equal.

~
M ~3 thus takes the form of interference of a
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all exoept

i,j,~,5,e (4)

resonant term with a constant background. " It then
follows that

I ~ I'=
I C»V»' I'(I+C.sk33)+ 2 I C"II" IR
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This matrix element describes a singlet p-n peak whose
width is distorted from the simple %atson shape by an
amount that depends on C;„t.Thus, if C;„tis not
negligible, the simple %atson theory would lead to the
extraction of the wrong scattering length. Although we
can experimentally determine I C34' I' and

I
C„'I', their

phase, and hence the value of C;„t,could be predicted
only by a more complete three-body theory. The analy-
sis of the experimental peak could thus be interpreted
as a measurement of the parameter C;„&,rather than a
measurement of a„„',since a„„'is accurately known from
elastic scat tering.

In summary, since C;„,increases as k34 (or k43) is
lowered, our model predicts the width distortion to
increase with decreasing total center-of-mass energy.
'This indicates that studies of interference eHects would
be most sensitive at low incident energies, while extrac-
tion of two-body parameters from measured three-body
cross sections would be most accurate at high energies.
An additional result of this model is that, so long as
C;„&is small, the final-state interactions may be des-
cribed by a sum of enhancement factors, one for each
diagram of Fig. 1. This approximation is used in fitting
our data and is described in more detail in Sec. IV E.

E. Phase Space

In many experiments, the three-body cross section is
observed to be well reproduced by a phase-space dis-
tribution of events. This phase-space prediction is
based on the assumption of a uniform population of
events along the energy-momentum shell, and depar-
tures from such a distribution are considered to be the
interesting features of the reaction. The differential
phase space for a kinematically complete experiment is

P3P4d TgdQ3dQ4

1+dTS/d TS

This form is not very useful, since it does not take into
account the fact that the experiment deals with rec-
tangular channels in TS and T4. In fact, 433(T3) diverges
where the kinematic line is tangent to the T4 axis. %hat
is needed is an expression for the phase space inside
each rectangular dT3&(dT4 channel. To do this, we
need the expression for the phase space as a function of
the arc length along the kinematic locus. The element
of arc ds is given by the relation:

ds = [1+(EITS/a T3) ']"'dT, .

"R.J. N. Phillips, Nucl. Phys. 31, 643 (1962).
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Fzc. 3. Block diagram of the experimental electronics.

BTS/EIT4&ATS/TT T4 [see Fig. 2(a)];
As = [1+(EI TE/EI TS) ']T"6TS.

AT3 and 5T4 refer to the actual widths of the experimen-
tal T3 and T4 channels, and AQ3 and AQ4 are the angular
apertures of the detectors at 83 and 8&. %e assume that
~ is reasonably constant over the dimensions of a
channel. The result is

P3P46Q36Q46 T3
~ TS, T, dQSdQ, ds=

1+le To/cl T4

Case B.
BTR/BT4&. ATS/AT4 [see Fig. 2(b)];

As= [1+(8TS/EIT4) 3]"EATS,

P3P4AQ3iAQ4t1 +(8 TS/8 T4)']6 T4
ITS TR, T, dQ, dQ4ds=

(1+d Ts/d T,) [1+(8T4/8 TR) ']

solving this for dTR and substituting into Eq. (5), we
6nd that the expression for p, the phase space per unit
arc length, is given simply by

a(TS)
[1+(a T4/a TS)3]TIR

'

The number of events falling into a certain channel
which contains an element of kinematic line is propor-
tional to

P3PTSdQ3dQ4ds
p TS, TS dQSdQ4ds= [1+d T;d T4][1+(8 TSTIT,) ']

To evaluate this integral, we assume that the segment
of kinematic line in each channel is straight, as shown
in the diagrams of Fig. 2.

Case .-f.
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~+P p+p+n E&=ai ~ I Mq

(o) EXPERIMENT (b) THEORY

(c ) EX PK RINGENT (d ) THEORY

Fio. 4. Comparison of d+p 21.1-MeV data with a complete simulation. a and b are at low count gain, and c and d at a higher
count gain (see text) .

Interchanging T3 and T4 according to the relation

[1+BT;/BTgjdT3+[1+BT5/BT4jdT, =O,

this expression becomes

I'3I'4d QghQgd T4
~(T,, T,)do,do,ds=

1+BT; BT3

Case C. [See Fig. 2(c).) The cases shown in Fig.
2(c) cannot be treated explicitly by the above equa-
tions, but can be treated by using the following pro-
cedure to compute phase space. Consider the following
example, in which the kinematic line crosses the two
channels labeled 1 and 2 in Fig. 2(d). As described in
the Appendix, the computer program steps down the
T3 axis channel by channel and searches for kinematic
solutions in the center of each channel along the
dashed line in the diagram. The program will find a
solution in channel 1 but not in channel 2. However, the

As, which is computed according to case A above,
includes both the parts that fall in channels 1 and 2.
Thus, the contribution that falls into channel 2 will be
added to the phase-space probability of channel 1.
This procedure can never result in an error of more than
—.' channel and is usually much more accurate than that.
If the experimental kinematic line is at least a few
channels broad, such effects will cancel out.

Finally, from three-body kinematics we can obtain
the result that

8T~/8 T4 —V4 Vs/V42, ——

or, relativistically,

aT.(aT, = (E,/E, )P, P,/PP2. -

The relations derived above are used in Monte ("arlo
calculations, which simulate our experimental data.
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d+p ~p+p+n Ed = 2l. l MeV

(0 ) SUM OF ENHANCEMENTS
C@= 0.0

(b) P P ENHANCEMFNT

(c) P —~ S lNGLET ENHANCEMENT (d) P —~ TRIPLET ENHANCEMENT

Fir. 5. Simulations using various enhancement factors for the d+p reaction at 21.1 MeV in {b), (c'), and (d}; their sum in {a).

II. COINCIDENCE METHOD AND DATA
SIMULATION

A. Advantages of Coincidence Experiments

The majority of previous investigations of nucleon-
nucleon final-state interactions have consisted of meas-
urements of the energy spectrum of one particle. If
there is a final-state interaction with the two interacting
particles having low relative energy, there will be a
peak at the high-energy end of the spectrum of the
other particle. The detector is usuall~ placed at a
forward angle because it is often experimentally ob-
served that this high-energy peak is strongest there. In
the breakup of a three-body system with high internal
energy, the various relative momenta are free to assume
a large range of values. A "singles" experiment, as
described above, integrates over all. of these momenta,
and it is often not a good approximation to neglect the

intensity variation of the production process over the
energy region of interest; that is, the primary interaction
cannot be approximated by a phase-space distribution.
In addition, final-state interactions between other pairs
of particles are likely to occur, and these may distort
the shape of the high-energy peak.

In coincidence measurements, the final-state inter-
action manifests itself by intensity &nodulation along
the three-body locus in the two-dimensional energy
spectrum. The additional kinematic constraints pro-
vided b& the coincidence geometry permit the place-
ment of the final-state interaction peak in a region of
this locus where the production processes do not pro-
duce intensity modulation. Thus, it is reasonable to
expect that the background under such a final-state
interaction peak. is essentially constant; the peak,
therefore, should be well described by a final-state
interaction enhancement of phase space.
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FIG. 6. Nucleon-nucleon enhancement factors for singlet
and triplet spin states as a function of relative energy.

In order to extract the p-n scattering length from our
experimental data, we must somehow analyze the

A further advantage of coincidence experiments is
that three-body kinematics restrict the range of relative
energies accessible to the various pairs of particles. This
makes it possible to limit the contributions from other
resonances, since, if the relative energy of one pair is
selected to be small, then the others are, in genera],
large. In a singles measurement, the relative energies
are not as severely restricted, even in the high-energy
portion of the spectrum.

In our coincidence experiments on reactions of the
type 1+2~3+4+5, we detect two particles at fixed
angles. By our convention, they are particles 3 and 4 at
angles 83 and 84. If we wish to study a final-state inter-
action between particles 3 and 5, we choose the angles
83 and 84 to be those of the two-body reaction 1+2—+

(3, 5)+4. For example, in the reaction p+d~p+ p+n,
the singlet deuteron (d') may be formed as an inter-
mediate "state." Thus, d'+~d'+~p+p+n; Q=—2.226 and d' is the (3, 5) system.

At these angles, the internal energy of the (3, 5)
system T3~ „qgoes to zero at the point on the kinematic
locus where T4 is at a maximum. At this point T3 is also
equal to T5. As mentioned above, T4,& „&and T3,4 ]

will be large under these conditions; thus, we expect
that final-state effects will not be important for pairs
(3, 4) and (4, 5). In addition, since the different reson-
ances are separated in energy, the possibility of inter-
ference between the various final-state interactions is
decreased.

B. Data Simulation

broadened shape of the experimental p-n final-state
interaction peak. The experimental broadening arises
from the following sources: finite angular apertures of
the detectors, finite beam-spot diameter, effects of
target thickness, detector energy resolution and dead
layer, and multiple scattering in the target. Although
the contribution of each of these separate processes can
be accurately calculated, great difhculties arise when
one tries to unfold these effects from the data.

A possible method of attack is to fold into the pro-
jected theoretical spectrum a Gaussian function of some
estimated appropriate width and to compare this with
projections of the two-dimensional data onto either
energy axis. However, much of the useful information
measured in the experiment is lost when the two-dimen-
sional data are projected. A refinement of the projection
technique is to express the data and theory as a function
of s, the length along the kinematic locus. ~ This method
reduces the errors that occur in regions where the kine-
matic line is nearly perpendicular to the energy axes.
However, many comparison difhculties still remain;
for example, the fact that the resolution function will
vary with the curvature of the kinematic locus must be
taken into account. Also, it must be borne in mind that
the resolution function is not in general a Gaussian
function.

All these problems are solved by the technique of
"data simulation. "43~ In this method, the data are
simulated by performing a Monte Carlo computer
calculation. The simulation program accepts as input
all factors relating to the experimental detector, target,
and beam geometry, and parameters that describe
target thickness and detector energy resolution. The
program then calculates p( T&, T4), the predicted energy
distribution of events for a given experiment. Mathe-
matically, this consists of evaluating the following
integral:

d4g
~(T3, T4) =

dQgdQgd T3d T4

XRa(Ts, T3 ) R4(T4) T4 )d03d~4dT3 dT4', (6)
where d'/dQ&d04d T3dT4 is a theoretical differential cross
section and R;( T;, T ) describes energy-resolution
effects that arise from target thickness and energy
resolution of the detectors. The angular part of this
integral is computed by a Monte Carlo method. Ran-
dom points are selected that lie within the experimental
dimensions of the detectors and target beam spot. From
these points the relevant particle energies are calculated.
The integrand is then evaluated at each set of angles for
each kinematically allowed T3 and T4 channel; the
average of a large number of such computations multi-
plied by 603&&4 converges to the value of the angular
part of the integral. In the calculations presented in this

42 P. A. Assimakopoulos and N. H. Gangas, Nucl. Instr. Meth-
ods 47, 260 (1967).

4' J. F. Mollenauer, IEEE Trans. Nucl. Sci. NS-11, 338 (1964).
44 P. F. Donovan, Rev. Mod. Phys. 37, 503 (1965).
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p+d p+ p+ n E p
= 16.0 MeV STANDARD RESOLUTION

(g ) EXPERIMENT (b) THEORY

p+d = p+p+n Ep =16.0 MeV HIGH RESOLUTION

(c } KXPF Rl ME N T (d ) THEORY

FIG. 7. Comparison of the p+d 16-MeV data with theory. In {a) and (b) angular widths of the detectors were 2'. In (c) and (d)
these widths were set to 1.4' in order to increases the resolution of the experiment. The resulting FSI peak is much narrower than
its counterpart in (a) and {b).

work, the size of the Ts, T& energy array is 64X64
channels. The integration over T3' and T4' could be
performed by selecting random energies along with the
random angles. However, when the number of kine-
matically allowed channels in the simulated two-dimen-
sional spectrum is large (&500), the required computer
time becomes significant. For this reason, the energy
part of the integral is performed independently after
the angular integration is completed. It was ascertained
that this had no noticeable e6ect on the results.

The resolution function R;(T,, T ) consists of a
product of two terms, one of which describes the energy
loss of the detected particles in the target, and the
other a Gaussian function which describes the energy
resolution of the detectors. These integrals are evaluated
numerically by approximating R;(T,, T ) with a step
function. The details of these calculations are given in
the Appendix. The result of this process yields a dis-

tribution of events p(T3, T4) in which the experimental
broadening eBects are simulated as accurately as their
individual contribution is known, and in the same way
that they contribute in the actual experiment. By
subtracting these simulations from experimental data,
one achieves an easy quantitative comparison of theory
with experiment without resorting to projection;
theoretical parameters may then be adjusted as sensi-
tively as the quality of the data will allow. This process
is discussed in Sec. IV F.

C. Absolute Cross Sections

d40.

d T3d T4dQ3dQ4

number of counts per channel

6T36T45Q35Q4X~n]t

A quantity of theoretical interest is the differential
cross section d4~. We may make the approximation
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where 3 ~ is the number of incident projectiles, n& is the
number of target nuclei in the target per unit volume,
t is the target thickness, 603 and 304 are the detector
solid angles, and AT3 and ET4 are the energy widths of a
channel. This expression is valid only if there are no
broadening effects. The effect of the finite solid angle
and other factors is to broaden the kinematic line. The

result is that experimentally we see fewer counts per
channel than can be expected under "ideal" conditions
(those under which there are no broadening effects).
To find the actual cross section, we may account for the
broadening by calculating a "smearing factor" using
the simulation program. This smearing factor S(T3, T,)
is equal to

number of counts per channel in "ideal" experiment
S(T3, T4) =

number of counts per channel in actual experiment

Thus, the corrected differential cross section is

d'0 number of counts per channel=S T3, T4
dT3dT4dQ, ding

'
DTghT45fl3LLQ41V~n, t

The smearing factor S(T„T4)is given by

~
M I'Fp s dT,dT41Q, d. Q,

S(T,, T4) =
fff f j

M
~

Fp s R3(T3, T3 )R4(T4, T4 )de dT4 tfQ3dQ4

I'p. s. is the phase space factor, and + and & are func-
tions that describe the energy-broadening effects, as in
Eq. (6). The integration in the denominator is per-
formed over the experimental solid angles 03, Q~ and
energy channel widths. But thisintegration is exactly
what the Monte Carlo simulation program calculates.
Thus, we may calculate S(T3, T,) in the following way:

simulation of ideal experiment
S(T3, Tg ——

simulation of actual experiment

Often the form of
~
M ~' is only approximately known.

However, if the full simulation has approximately the
same shape as the experimental spectrum, then we may
assume that the

~
M t' used is adequate for obtaining

S(T3, T4).

III. EXPERIMENTAL APPARATUS
AND PROCEDURES

A. Beam Alignment

The beam from the Rutgers-Bell FN tandeni Van de
GraaA accelerator4' was focused through a 2-m-long
collimation system consisting of three adjustable cir-
cular tantalum apertures followed by antiscattering
bafBes. Each collimator assembly contained a selection
of collimators having diameters of 1.0, 1.5, 2.0, and 3.0
mm, which could be rotated into a fixed position in line
with the beam axis. %ith the smallest collimators in
position, it was possible to maintain a beam spot of
1.0 mm on target.

The collimators were initially aligned optically, by
requiring that each aperture be centered on an axis that
was level with the accelerator and aimed at the center
of the switching magnet. This axis was defined by a

"Manufactured by High Voltage Engineering Corp. , Burling-
ton, Mass.

Wild" telescope permanently mounted behind the
scattering chamber. As a final check on the alignment,
a laser beam was directed through the eyepiece of the
telescope. The laser beam was thus focused at the center
of the switching magnet. The optical axis could then be
located everywhere along the beam line bv the insertion
of a scale at the point of interest.

A calculation of the effect of the earth's magnetic
field on our particle beams showed that this effect
could produce a deflection of about 1 mm over the
length of the collimation system. In order to reduce this
effect, magnetic shielding metal was inserted in the
beam pipe along a part of the collimation system. Even
with this precaution, shifts of about 0.5 mm on the
target were observed to occur with various beams. Such
a shift can result in an angular missetting of the detectors
of the order of -', . Consequently, before each experiment,
the scattering chamber was checked for left-ring angular
symmetry, using a scattering angular distribution with a
very sharp angular dependence.

Once the beam was switched into the beam line, it was
focused into the scattering chamber with a magnetic
quadrupole lens. It was found necessary to observe the
beam just before it entered the first collimator in order
to initially steer it into the scattering chamber. There-
fore, at that point, a rare-earth-doped Pyrex glass
fiber, 4" about 6 cm long and 0.2 cm in diameter, was
rotated in the beam at a 45' angle. The glass fiber
fluoresced brightly enough so that even very weak
beams (less than 10 9 A) could be easily viewed with a
TV monitor placed at 90' to the beam. This system has
the advantage over the usual quartz viewer because it
does not block the beam, and the beam current may be
monitored farther downstream while the fiber is rotat-

"%ild Corporation, Heerbrugg, Switzerland."Obtained from H. (guggenheim, Bell Telephone Laboratories,
Inc. , Murray Hill, X. J.
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TABLE I. Experimental parameters used in simulations.

Projectile Protons Deuterons Deuterons Deuterons

Beam energv (MeV}
84 {deg)

(«g)
~-~4 (deg)
Servo pulser (MeV''

P1(T4), Ch64
P2 ( T4), Ch16
P1(T3), Ch64
P2(T3), Ch16

16.0
—29.72

82.55
180

8.9.
3.03
4.79
4.03

21. 1

—26
26

180

15.75

4.25
15.75

4.25

16.0
—19.26

41.27
180

7.89
2.98
4.91
3.41

10.0
—30.37

15.87
180

3.2(
2.3/
4.0
2.0

Detector resolutien
in channels

T4 F%HM
T3 FWHM
Target angle {deg',l

Target thickness (mg ~cm~')

0.8
5. 1

40
2.3a

1

3
0
1.05

3
2

0
0.3

In the high-resolution data shown in Figs. c lc) and 7(d}, P1(T4) was 8.0 and the target thickness was 0.5 mg/cm2,

ing. Advantages of this system over beam scanners are
complete beam shape determination, low cost, and
simplicity of position calibration.

B. Scattering Chamber

The scattering chamber was 40 cm in diameter with
a clear plastic top. Two detectors, one mounted on a
circular plate and one on a movable arm, could be
positioned from outside the chamber with a precision of
0.1'. By rotation of a turret mechanism mounted on the
plastic top, any one of six targets could be lowered into
the geometric center of the chamber. One of the target
holders held a Pu'3'-Am"' mixed source used for a-
particle detector calibrations.

The Faraday cup was 1 m long, with a tantalum
beam stop at the end; this beam stop could be rotated
90' to expose a quartz plate mounted at the end of the
beam pipe, which was used for monitoring the beam
position. The telescope, which was mounted directly
behind the Faraday cup, could viev the inside of the
scattering chamber through this window. This was found
useful for measuring the size and position of the beam
spot on the target and for aligning the detector colli-
mators.

C. Targets

The targets used in these experiments were poly-
ethylene (CH~) and deuterated polyethylene (CD~)
foils. Although a gas target cell was available, the
advantages of using a thin foil far outweigh the dis-
advantage of having C" in the target. 1-mg/cm' CHq
targets were cut from commercial polyethylene material
of this density. Thinner targets were made by dissolving
polyethylene and casting from hot xylene. 484' CD& and

4g G. I. J. Arnison, Nucl. Instr. Methods 40, 359 (1966)."R. Klein (private communication) .

CH2 foils about 1 cm' in area and 0.1 mg(cm' thick
were made with this method.

D. Electronics

The detectors used in the various measurements were
either the lithium-drifted silicon p-n junction" type or
the silicon surface-barrier type, "with depletion regions
1—3-mm thick.

A block diagram of the electronics used in these
experiments is shown in Fig. 3. The detector signals
were amplified by charge-sensitive preamplifiers, using
field-effect transistors (PET's). The amplified signals
traveled through a signal-handling cable system" to the
control room, where they were further amplified with
Tennelec"' TC-200 amplifiers. The signals were then fed
through gated dc restorers'4 and into two 50-MHz
4096-channel analog-to-digital converters" (ADC's).
The ADC's were stabilized with two levels of precision
pulses, which went to the preamplifier through the
detector bias cable. These servo pulses then traveled
through the electronics in the same way as detector
pulses, back to the ADC's. The internal gain of the
ADC's was varied in order to force the higher servo
pulser to store in channel 4096, and the lower one in
channel 1024. Therefore, both gain and zero intercept
of the ADC's were servoed. The servo pulse heights
were varied by precision potentiometers, which could
be normalized to be direct reading in MeV. In order to

'0 Purchased from Technical Measurements Corp. , San Mateo,
Calif.

"ORTEC, Oak Ridge, Tenn.
"Designed by E. A. Gere, %'. Gibson, and G. L. Miller, Bell

Telephone Laboratories, Inc. Murray Hill, N. J.
'Tennelec, Oak Ridge, Tenn."E. A. Gere and G. L. Miller, IEEE Trans. Nucl. Sci. NS-14, 89

(1967) ."E. A. Gere and G. L. Miller, IEEE Trans. Nucl. Sci. NS-
13, 508 (1966)
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p + d~p+p+n E
&

= l6.0 MeV

(o ) P-P ENHANCEMENT (b) P —& ENHANCE NENT

a = —30 fr@

(c ) P-~ E NHANCEME NT

&q =-24 fm
(d ) P-& ENHANCEMENT

+I = -t8 f m

FJG. 8. Raw Monte Carlo simulations of the 16-MeV p+d experiment without the smearing due to target thickness and detector
energy resolution being folded in. The effect of varying the singlet p-n scattering length for particles 4 and 5 is illustrated in (b), (c),
and (d).

change the energy calibration precisely, the potentiom-
eters were reset to the new values, and the external
amplifier was adjusted so that the ADC's were in their
servo range. If the lower pulser (P2) is adjusted to
greater than -', of the upper one (P1), then channel 0
will be greater than 0 MeV, and the energy scale is
expanded. This made the use of a biased amplifier
unnecessary in achieving the greatly expanded energy
scales used in these experiments.

Elastic deuterons or protons were scaled in order to
make possible comparison of the experiments with
absolute theoretical predictions, should any be forth-
coming. Cosmic 801 discriminators" were used to set
energy channels on the peaks that were scaled. The
coincidence electronics consisted of Ortec" 260 fast-

"Cosmic Radiation Laboratories, Inc. , Bellport, N. Y.

transformer-coupled picko6s, which gated an E.G. k
G." time-to-amplitude converted.

E. Computer Techniques

The data were accumulated in an on-line SOS-910
computer" that had 8192 memory locations. The ABC's
are interfaced" to the computer's 24-bit parallel-input
connector (PIN) through a buffer register. When the
bu6'er is ready, the interface sends an interrupt to the
computer, which causes the program to branch from the
display subroutine to the data-taking subroutine. This
subroutine increments the memory location specified

~7K. G. 8z G., Salem, Mass.
"Scientific Data Systems, Santa Monica, Calif."J. V. Kane, in Proceedings of Scottish Universities, Fifth

Summer School (Plenum Press, Inc. , New York, j.965).
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d+ p~p+p+n Ed = 16.0 MeV

(a) EXPERIMENT (b) THEORY

(c ) EXPERIMENT (d) Tk EORY

Fio. 9. Comparison of the 0+p 16-MeU data with theory from two perspectives.

by the binary number read in on the PIN connector.
This binary number consists of six bits from the T3
ADC, six bits from the T4 ADC, and three bits from a
third ADC, which digitizes the time-channel informa-
tion.

Between data interrupts, a live three-dimensional
display is generated by the display subroutine. A
cathode-ray oscilloscope is driven by three digital-to-
analog converters (DAC's). A rectangular channel
grid is generated by the x and y DAC's, which derive
their six bits each from the computer 5 register, which
contains the memory address of the channel being
displayed. The s DAC produces a vertical deAection of
these grid points. The input to the s DAC is the parallel-
output (POT) connector, which contains the number
of counts in the channel being displayed. The x and y
DAC outputs can be transformed by rotation about
two axes through an angle 8 by an analog display
rotator. This produces an isometric display with various

degrees of tilt. Every eighth dot in the grid is brightened
to facilitate the determination of channel numbers.

Since the two-dimensional data-taking program
requires 6144 locations for data storage, it was written
in assembler language in order to fit in the remaining
2048 memory locations. Therefore, the input-output
capabilities of this program are limited. The normal
output was via the paper-tape punch. Paper-tape dumps
were found to be easier to catalog than the binary
magnetic-tape dumps that the program can write. Since
the coincidence runs were usually fairly long, the
quantity of paper tape produced per unit time was not
excessive.

F. Fast-Coincidence Techniques

The time at which a leading-edge discriminator hres
depends on the pulse voltage, the detector rise time, and
the particle arrival time. Each of these factors in turn
depends on the particle energy. Therefore, the fast-
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d+ p = p+p+n Eg =IO.G MeV

(0 ) EXPERIMENT (b) THEORY

(c ) EX PERIINENT (d) THEORY

FiG. 10. Comparison of the d+p 10-Meh data with theory.

coincidence signals have a time-energy correlation. To
minimize this effect, the discriminator level should be
set as low as possible, and the rise times of the detector
pulses should be made as fast as possible. In order to
trigger on pulses whose rise time was not degraded bi
the preamplifier, a transformer-coupled time pickoff'
was placed in the circuit immediately after the detector
and before the preamplifier.

In this configuration the rise time is limited by the
charge-collection time and the CR time of the detectors.
The charge-collection time depends on the detector
bias and the penetration depth of the detected particles. "
For proton energies up to 12 MeV, a charge-collection
time of about 30 nsec can be obtained by using 1-mm
Sii ji) detectors run at 300—400 V bias. The detector
CR time is only a few nsec. It is advantageous to have

"C.K. KVilliams, O'. E. Kiker, and H. K. Schmitt, Rev. Sci.
Instr. 35, 1116 (1964')."Blignant and McMurray, Nucl. Instr. Methods 51, 102
('1967') .

a capacitance to ground, located after the time pickoff,
which is greater than the detector capacitance. This
optimizes the rise time of the current pulse going
through the time pickoff. Usually about 3 ft of 50-0
cable between the time pickoff and the preamplifier
will satisfy this requirement.

With the above configuration, the resolving time
between two detectors, which detect coincident 6-MeV
monoenergetic protons, was found to be about 500-nsec
full width at half-height. With an electronic pulser, a
resolving time of about 350 psec was obtained. Thus,
there is a broadening of the resolving time due to detec-
tor effects such as straggling of particle ranges in the
detector and dispersion of charge-collection times.

There is a substantial variation in the triggering time
of the pickoffs with particle energy, because of the
time-energy correlation effects previously mentioned.
This time-energy correlation, which is about 1 nsec per
MeV for protons, can be compensated for by using
techniques described below. It also often provides a
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TABLE II. Extracted values of theoretical parameters.

Reaction

Beam energy (MeV)
c.m, energy (MeV)
TIS
Cup

C,
—a. (F)

16.0
8.44
2.0a0.5
3%2
0+0.3

23.8~0.5

21. 1

4.81
3.0a0. 5

3~1
1~0.1

24~4

16.0
3.11
3.0&1
3~2
0.5&0.3

23.5~2

10.0
1.11
5.0a2
5~2
0.5&0.3

24&6

convenient method of discrimination between different
particle types. 6'

The two fast signals from the time pickoffs were used
to start and stop an E.G. R G. time-to-amplitude
converter (TAC)."The output of the TAC is a pulse
whose height is proportional to the time difference
between the arrivals of the two fast signals. This pulse
was amplified with an E.G. k G. biased amplifier" and
then digitized. In the early experiments, a six-channel
stacked discriminator was used for this purpose. More
recently, a third ABC was used, as described in Sec.
III E.

In the most recent version of the data-taking program,
the computer memory is arranged in a three-dimensional
array, 64&64&6 channels. This is done by a word-
splitting procedure that allows a channel depth of only
64 events. The two-particle energies are stored with a
precision of 64 channels, and the time-difference
information in six channels. The time-energy correlation
corrections may be made ofI' line after the experiment.
In the reactions of interest here, the counting rate is
high enough so that the experiment is self-calibrating;
that is, in each of the six 64&(64 T3-T4 arrays, the coin-
cident events quickly populate a bounded area or time
zone. Since lines of constant time difference are straight
lines radiating from the energy origin, we can easily
estimate the energy region corresponding to real coin-
cidences. In very low-rate experiments, or when the
real-to-random ratio is low, the real coincidence energy
regions can be determined by running a suitable high
cross-section reaction as a timing calibration.

IV. DESCRIPTION AND ANALYSIS
OF EXPERIMENTS

A. Analysis of Reaction P(d, 2P)n

Figures 4(a) and 4(c) are photographs of data ob-
tained by Donovan, Kane, Mollenauer, and ZupanciP'
at Brookhaven, at 21.1-MeV incident deuteron energy.
Zero energy for both protons is at the top corner of the

62P. Assimakopoulos, E. Beardsworth, D. P. Boyd, and P. F.
Donovan, Bull. Am. Phys. Soc. 14, 22 I1969}.

6'P. F. Donovan, J. F. Mollenauer, 0. Zupancic, D. Boyd,
and P. D. Parker, in Proceedings of International Conference on
,Vuclear Physics, Gatlinburg, Tenn. 1966, edited by R. L. Becher
I'Academic Press Inc. , New York, 1967).

array, with the two-proton energies increasing in the
directions shown by the arrows. In this form of display,
regions of high cross section manifest themselves by
upward displacement of the grid points. The data of
Figs. 4(a) and 4(c) are identical; Fig. 4(c) ha, s a higher
count gain. The energy calibration of each proton axis is
12.0 MeV in channel 48. The data were taken with the
detector angles at plus and minus 26' (coplanar on

opposite sides of the beam avis), and the detector
angular widths were 2.5'.

The most striking features of the data of Fig. 4 are
the two pronounced peaks centered near channels
(12, 48) and (48, 12), the strong ridge connecting these
peaks, and the low-energy peak near channel (8, 8). An
understanding of the origin of these peaks is facilitated
by a consideration of the particle kinematics. In the
region of channels (12, 48), the lower-energy proton ha, s
the same energy and direction as the undetected neu-
tron. Hence, these two particles have zero relative
momentum, and they may be expected to experience
a strong final-state interaction. The resulting enhance-
ments may be calculated with the Watson formula;
simulations are shown in Figs. 4(b) and 4(d), which
take into account both the singlet and triplet spin states.
The triplet enhancement was multiplied by a factor of
3; this was necessary to fit the experimental data and
represents a manifestation of the greater statistical
weight of the triplet state.

In the region of the peak in cha.nnel (8, 8), the two
protons have low laboratory energy, and hence lov
relative energy. We might then expect a peak due to a
proton-proton final-state interaction. This enhance-
ment is shown in Fig. 5(b). The simulated low-energy
peak is considerably smaller than the peak that is
observed evperimentally [cf. Fig. 4(c)]. Figure 5(a)
shows the sum of the enhancements given in Figs.
5(b) —5(d). Comparison with the data. [Fig. 4(c)]
shows that final-state interaction theory does not
account for the magnitude of the low-energy peak, and
we should therefore consider the primary interaction
mechanism as a possible contributor.

Examining the kinematics, we find that in this region
of the T3, T4 array, the (unobserved) neutron travels
forward with essentially the same momentum it had in
the incident beam; the two protons, however, sufI'er a
large momentum transfer. Ke thus are led to tn a
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d+ p = p+p+n Ed= 10.0 MeV

(o ) NON RESONANT SINGLET
ENHANCEMENT

(b) NON RESONANT TRIPLET
ENHANCEMENT

(c) RESONANT SINGLET
ENHANCEMENT

(d ) RESONANT TRIPLET
ENHANCEMENT

Fro. 11. (a) and {b). Singlet and triplet enhancement factors for the "nonresonant" particles 4 and 5. (c) and (d). The same en-
hancements for the "resonant" particles 3 and 5, which are formed with low relative energy.

simple knockout model, "using the Born approximation.
This model is sometimes called the "spectator" model;
this term refers to a spectator particle, here the neutron,
which does not participate in the collision. If we assume
a Hulthen type of wave function for the deuteron, the
amplitude for this process is"

4(P.) =(P-'+~') '—(P-'+fl') '

where P„is the momentum transferred to the neutron
in the collision; a/P = 1/7; n'= m„B, where 8=—
—2.226 MeV, the binding energy of the deuteron; and
m„is the neutron mass. A simple physical way of looking
at this process is indicated by the fact that

~
P(P„)~ is

the probability distribution for the momentum of each
particle in the deuteron. The reaction thus proceeds as a

'4 For the procedure used in the calculation of this amplitude,
see P. F. Donovan, J.V. Kane, Q. Zupancic, C. P. Baker, and J.F.
Mollenauer, Phys. Rev. 135 375 (1964).

free two-body reaction, but with an initial velocity
spread of the struck particles given by

~
P(P„)~'.

Figures 4(b) and (d) shows the result of multiplying
Fig. 5(a) by this amplitude. Theory is now in quite
good agreement with experiment. The success of this
fit lends additional confidence in the form of the matrix
elements that are used to extract the p-n scattering
length in the higher-resolution experiments.

B.Higher-Resolution Experiments: Selection of Angles
and Energies

In order to examine the fine details of the p-n final-
state interaction, new experiments were undertaken.
The energy axes of the two-dimensional spectrum were
expanded so that one of the p-n final-state interaction
peaks of Fig. 4 was spread out over a region encompas-
sing about 1000 channels. The coincidence resolving
time was improved by taking into account the time-
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energy correlation of the detected particles. This made
it possible to run at a higher counting rate without
introducing an unacceptable number of random coin-
cidences. Also, the solid angles of the detectors and the
target thickness were reduced. These experimental
improvements are described in detail below.

We wish to test final-state interaction theory and the
eRect of kinematic factors on its predictions. When a
singlet deuteron is formed in the p+d reaction, the
singlet deuteron and the preparing proton emerge in
opposite directions in the center-of-mass system. If
we wish to vary the relative velocity between them, we
must vary the center-of-mass energy of the reaction.
This is given by

TO
3000—

XX~ 2000
4.0fm

l OOO

E. = [~/(nag+~) ]Tr+Q, Q= —2.226 MeV.

As we go to higher center-of-mass energy, and thus
higher relative velocity for the final-state particles, the
interaction of the proton with the decaying singlet
deuteron becomes smaller, and the assumptions of
Watson theory become more valid. Such interfering
eRects can become quite important. For example, in
the d+ p reaction at 10-MeV incident deuteron energy,
the center-of-mass energy is only 1.1 MeV, and since the
p-p interaction is strongest at about 0.4-MeV relative
energy (Fig. 6), one can expect an appreciable effect
from this source regardless of any kinematic constraints
imposed.

The p+d and a+p reactions were studied at center-
of-mass energies of 1.11, 3.11, 4.81, and 8.44 MeV. At
each incident energy, the laboratory angle of the two

24 30
1

36
I

42
0

IB

CHANNEL NUM8ER

FIG. 13. Projection of the high-resolution p+d 16-MeV
data onto the T4 axis.

protons was chosen so that they had approximately
equal laboratory energies when singlet deuterons were
formed. This ensured that the detected protons had a
substantial laboratory energy ()3 MeV) over the
region of interest. At such energies, the fast-pickoff
time resolution is better than at lower energies, and the
eRects of target thickness and dead layers on the
detectors are less important.

In addition, at these angles a "kinematic-amplifier"
eRect is observed. An investigation of the kinematics
shows that when a decay particle is emitted by a system
that has low excitation energy (just above the decay
threshold) and high laboratory velocity, the laboratory
kinetic energy of this decay particle is a very sensitive
function of the system excitation energy; that is,
dT/dE"»1, where T is the laboratory energy of the
decay particle, and E* is the energy above threshold
of the decaying system.

In the p-n final-state interaction peaks shown in the
data of Figs. 4(a) and 4(c), one sees that the laboratory
energy of the lower-energy (decay) proton varies by
about 2 MeV across the peak; this region is only about
200 keV broad in the p-n center-of-mass system. There-
fore, we have a kinematic-amplification factor 6T/AE*
of about 10. This means that, in principle, we could see
structure in the final-state interaction peak with a
resolution about 10 times sharper than the detector
resolution, or about 7 keV. This eRect has been used to
measure with otherwise unattainable precision the
position and shape of particle-emitting states of He .@"

3000—

x

g 2000—

I-
X
8
CJ

24.0$

1000-

200
l2

I l

24 30
CHANNEL NUMBER

I

36

Fio. 12. Projection of the p+d 16-MeV data (circles) and two
simulations (solid curves) onto the T4 axis. This illustrates the
sensitivity to the scattering length in a projection treatment of
the data.

~ P. F. Donovan, Rev. Mod. Phys. 37, 506 (1965) .~ P. D. Parker, P. F. Donovan, J. V. Kane, and J. F. Molle-
nauer, Phys. Rev. Letters 14, 15 {1965}.

PROTON-NEUTRON FINAL-STATE INTERACTION
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10L-10
I I I I— —21 -24 -27

SCATTERING LENGTH {FERMIS)
-30

Fio. 14. y' fits of selected regions of the 16-MeV p+d final-
state interaction peak to various scattering lengths. The ordinate
is the normalized p-squared deviation, and the abscissa is the
singlet p-n scattering length. Each of the four curves were com-
puted using regions that encompassed channels from the peak
maximum down to some level that was about —,'-maximum for the
largest area {300channels) that is plotted.

The selection of detector solid angles depends on the
choice of a real counting rate and a tolerable ratio of
reals to randoms; these in turn depend on the coin-
cidence and singles counting rates and on the experi-
mental coincidence resolving time. A large solid angle
is desirable in order to achieve high data accumulation
rates; however, the energy spread associated with large
angular apertures dictates that these be kept as small
as practicable. In view of the necessary compromise
involved, we selected for the high-resolution runs solid
angles of 603=604=4.06)&10 ' sr, and, in the case of
the highest-angular-resolution experiment, 603= 604=
2.03&(10 ' sr. These were defined by placing colli-
mators 0.3 cm wide by 1.0 cm high at distances of 8.6
and 12.2 cm from the target. This corresponds to
angular widths of 2' and 1.4' in the reaction plane. The
rectangular shape of the collimators minimizes the
energy dispersion due to dE/d8 in the experiment, since
the relative angle between the detected protons varies
less for a shift in p (out of the reaction plane) than it
varies with tI (in the reaction plane).

Lsee Figs. 7(c) and 7(d)]. In this run, the coincidence
resolving time had been improved to 0.8 nsec due to the
use of the coincidence circuit described in Sec. III F and
the use of 1-mm-thick surface-barrier detectors. The
beam current was 70 nA, the target thickness was 0.5
mg/cm', and 46.1X10' elastic protons were scaled in
the 82' detector.

The 16-MeV d+p experiment was run for 40 h at
0.5 nA on a 1.0-mg/cm' CHn target, and 23.2X106
elastic protons were scaled at 41.27'. Kith the old
electronics, the resolving time was 7 nsec.

Surface barrier detectors, 0.5 mm thick, were used
for the 10-MeV d+ p run. The beam current was 10 nA
for 38 h and a 0.3-mg/cm' CH2 target was used.
120.0X10 deuterons, which were scattered backward
in the c.m. system, were scaled in the 15.9 detector.
The coincidence resolving time was 1.5 nsec. The
amount of beam current that could be used was limited
by pileup in the 15.9' detector.

In all the runs, a random-coincidence spectrum was
stored, and we could, in principle, subtract this spec-
trum from the data. However, this background was
roughly uniform and of the order of one count per
channel or less, and the interesting region of the real
spectrum contained 100—300 counts per channel. Hence
the accidental-coincidence correction was negligible, and
no subtraction v as made.

Full simulations of the Rutgers experiments were gen-
erated, using a combination of the GE-645 computer at
Sell Telephone Laboratories, Murray Hill, and the
SDS-925 at Rutgers. The GE computer was used to do
the time-consuming Monte Carlo calculations, and the
final corrections were more efFiciently performed with
the aid of the display facility of the SDS-925. The
various experimental dimensions that are necessary for
the simulation were carefully measured. However, the
exact thickness of the CD2 targets was unknown.

The target thickness was determined by making
several simulations with various thicknesses and com-
paring with the experimental data. This method ap-
peared to be accurate to about 5%. In the case of the

C. Description of Experiments

The experimental detector angles, bombarding
energies, and energy calibrations of the high-resolution
runs are summarized in Table I. In the first p+d
16-MeV runs, in which M was 2.0' Lsee Figs. 7(a) and
7 (b) ],3-mm Si (Li) detectors were used, and a resolving
time of 7 nsec was achieved; a 4-nA beam was main-
tained on a 2-mg/cm' CD2 target for a period of 48 h,
and about 200 counts per channel were accumulated in
the singlet deuteron peak. 26.8&(10' elastic protons
were detected in the 82' detector. Many months later,
this run was repeated at higher resolution, with 68= 1.4'

3.0—

2.5—

20-

-IS -2I -24 -27 "30
SCATTERING LENGTH {FERMIS)

Fro. 15. Best y' parabola for the high-resolution p+d 16-
3leV expenment.
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CH2 target, the thickness was accurately known by
weighing, and the results of the simulation agreed with
that value. The target-thickness correction program
produced excellent hts to reactions having various
charged reaction products over a wide energy range.
Figure 8 shows simulations that have not had the effect
of target thickness and detector energy resolution
folded in. The broadening that these effects produce is
seen by comparing Figs. 8(c) and 7(b).

The energy calibrations were adjusted by varying
these parameters in the simulation and comparing with
the experiment. In the worst case, this adjustment
differed by only 100 keU from the nominal experimental
value. A summary of the Anal experimental parameters
of all the simulations appears in Table I.

2.1—

19)

1.3—12

d+ p~p+ p+ n

Ed a 16.0 MeV

250 CHANNELS

I I 5 I I I

-21 -24 -27 -30 -33
SCATTERING LENGTH (FERMIS)

D. Matrix Elements

The considerations of Sec. I D lead one to expect the
reaction matrix element to be given by the product of
two terms, one that represents the primary interaction
(PI) and one that describes the final-state interactions
(FSI).

The only production process that is observed to cause
strong modulation of the cross section in the p+d and
d+p reactions is the knockout process, or spectator
effect, described in Sec. IV A. Ke therefore approxi-
mate the PI expression with the sum of two terms: A
constant term that represents the production processes
that have no strong 6nal-state energy dependence, and a
term describing the spectator effect,

&PI (I—C.) +C. I p(P. ) I-", (7)

where C, describes the strength of the spectator effect
relative to the constant term, and ip(P„)—the deuteron
wave function in momentum space —describes the
amplitude for the spectator effect, as explained in Sec.
IV A. The constant C, is left as an adjustable param-
eter, which must be fitted to the experiment. If the
description of the production interaction given in Eq.
(5) is not accurate, we might expect to find an apparent
variation of C, with the detection angles 03 and 84. In
any case, C, would in general be expected to vary with
the total center-of-mass energy.

The discussions of Sec. I D and IV A suggest that,
assuming interference terms are small, the FSI term
should be represented by the sum of the enhancement
factors for each pair of particles, in each spin state.
Thus, we may write

MFsr —C3I*E34'+C3 E3-'+Cg E4 +C3 J'-3 +Cog'E4,

where the E„~terms are the enhancement factors of
Eqs. (2) and (3) (see Sec. I C).

Each term of this expression can be represented by
one of the diagrams of Fig. i. The five parameters C;,~

describe the probability that the primary interaction
leaves particles i and j in a relative s state with spin k,
and the E;,~ terms describe the resulting Anal-state

FIG. 16. p' fits to the scattering length for the 16-MeV d+p
data. Since the sensitivity to the scattering length is greatly de-
creased for this run, an attempt was made to determine the effect
of using a more complete theory for the background terms than
is ordinarily necessary to get the peak shape. The improvement in
the curvature when nonresonant terms are included is only very
slight, as is evident by comparing the curve labeled "includes
nonresonant enhancements" to the other two, which include only
singlet and triplet enhancements from particles 4 and 5.

enhancement as a function of relative energy. In the
high-resolution experiments, where the angles were
selected to allow particles 4 and 5 to have a low relative
energy, E4 is the strongest and most rapidly varying
term.

The other enhancement terms are slowly varying and
make up the background. The strength of this back-
ground can be measured in regions on either side of the
peak, which we refer to as the wings. " The enhance-
ments E~„'(p 55 sing-let), E„„'(p-55 triplet), and E»"
(p-p singlet) are shown in Fig. 6.

The p-p enhancement E»' goes to zero at low relative
energy because of the Coulomb barrier. Since there is
not enough structure in the cross section to determine
all the C;;~ parameters uniquely from these experiments,
it is desirable to reduce the number of such free param-
eters. If we assume that the primary interaction pro-
duces virtual deuterons isotropically in the center-of-
mass system, it follows that

C3-'= C4-'

C3; —Cg'.

At symmetric angles, such as in the 21.1-MeV d+p
experiment, this relation clearly holds independently
of the assumption of isotropy. We therefore write

~FBt = &5 +E55'+ C„&54'+&/&(Eaa'+ a5'), (&)

where we have set
C3-'= C4-'

Ca /Ca =Cg /Ca = T/S,
C3g'= C»,

and C3&' and C4~' have been normalized to unity. The
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E. Comparison of Experiment to Theory

Figures 4, 7, 9, and 10 show full simulations of the
various experiments. The experimental parameters
used in the simulations are given in Table I, and the
values of C», T/S, and C„which produced best fits,
are given in Table II. For these simulations, accepted
values of scattering lengths and effective ranges were
used. ' These are given below in fermis:

a, = —23.68,

a]——5.40,

g» = —7.8,

r, = 2.5,

~t 1 7)

r» ——2.75.

The relative contributions of some of the various
enhancements in the FSI term are illustrated in
Figs. 5 and 11. Figure 5, the d+p 21.1-MeV enhance-
ments, was discussed in Sec. IV A. Figure 10 is dis-
cussed in Sec. IV G. The simulations of Fig. 7 were
projected onto the T4 axis; these projections are
shown in Figs. 12 and 13, along with the projected
experimental data. The solid curves show the effect
of varying the singlet P-e scattering length in the
simulations. Figure 8 shows the eGect of var~ ing
the scattering length in a two-dimensional simulation.
Since projection causes the loss of much hard-won
experimental information, the projection method is not
the most satisfactory way to compare theory to experi-
ment. Therefore, a program was written that measures
the mean-square deviation of theory and experiment in
any region of the two-dimensional energy array indi-
cated to the computer by light pen.

Since the over-all normalization of the theory is
arbitrary, we first normalize the theory to the data at a
region (usually the top of the peak) indicated by light
pen. This is done using a computer program that mini-
mizes the variance of the selected channels. Once the
normalization is completed, a region of interest in the
spectrum is indicated by removing these channels from
the display with the light pen. The computer then
evaluates the expression

+2 P—i P (X Him + expt) 2/Q. expt

"H. P. Noyes, Phys. Rev. 130, 2205 I,'1963) .

FSI's are thus described by just two adjustable param-
eters, the triplet-to-singlet ratio T/5 and the pp inter-
action strength C».

The final form of the cross section will be

d'a jd Ttd Ttd&sdK = 'ir XMpr XMpsi Xp,

where X is the over-all normalization, and the expression
for phase space p is given in Sec. I E. There are four
adjustable parameters in this expression: X, C„C»,
and T/5. In addition, the singlet p nsca-ttering length
will be treated as a free parameter in order to determine
how accurately this parameter can be extracted from
the data.

where X" and X' &" are the number of counts in the
ith simulated and experimental channel, respectively,
and X is the number of indicated channels. This ex-
pression is the normalized y' deviation of the X
channels indicated by the light pen.

In order to measure the sensitivity with which the
experiment determines some parameters, e.g. , the
singlet p-e scattering length u~', we determine the
variation of y' with that parameter y'(ap *). The
minimum of this function determines the best value of
a„„'.Providing that rV is large, the g;„2of a normalized
y' distribution are Gaussian-distributed, with an ex-
pectation value equal to 1, and with variance (2/Ã)' 2.

In addition, the error in any parameter, such as a~',
can be determined by varying that parameter until x'
increases by 1/N above x; ' while holding the other
parameters fixed at their optimum values. "

F. Extraction of Singlet P-n Scattering Length

Simulations of the three 16-MeV runs were per-
formed with singlet p-n scattering lengths a„„'ranging
from —18 to —33 F. For each simulation, the best
value of T/5 was determined, and the other parameters
were held fixed at their previously determined optimum
values. T/S must be varied, since changing ap„'changes
the normalization of the singlet enhancements while
the triplet enhancements are held fixed. This adjust-
ment is made by varying the strength of the simulated
"wings" to match those of the data. The function y' is
then computed for each value of a„„',and the results
are fitted to a parabola, using a least-squares fitting
routine. "

Figure 14 shows the resulting parabolas for the p+d,
58= 2.0' experiment at 16 MeV. In order to determine
any possible systematic errors, the function &'(ap„')was
determined, using successively larger regions of the
singlet p-e FSI peak. The four parabolas are labeled
according to the number of channels included in the
measured region: 150 channels include just the upper
quarter of the peak; 300 channels include about two-
thirds of the peak (measured from top to base). Since
the width of the peak is the feature most sensitive to the
scattering length, we would ideally expect to get the
steepest parabola from the region that contains the
greatest part of the peak, i.e., the 300-channel curve.
This is seen to be the case in Fig. 14; however, the value
of y' at the minimum is larger when more channels are
used, indicating that the theory departs from the data
slightly in shape. The statistical uncertainty of these
curves varies from 0.2 to 0.5 F, and the minima are
found to range from 23.5 to 24.1 F.

In order to assign an uncertainty to the value ofa„„'as obtained from these curves, many factors have
to be considered. In addition to the statistical un-
certainties of 0.2—0.5 F and the fact that the minima

«R. J. Piano (unpublished).' Subroutine QUADFIT, written by D. H. wilkinson, F. R, S.,
Professor of Experimental Physics, University of Oxford.



PROTON-NEIITRON FINAL-STATE INTERACTION 1565

so that
Cg = Cg = C34' = C,=0,

3Irsi = I;i.'+ T/S I-'4''. -

In this enhancement factor, only the contribution from
the two "resonating" particles (4 and 5) is included,
and the effect of leaving out the nonresonant processes
is compensated for by using a larger value for T/S.
These parabolas show a slight decrease in sensitivity toa„'and the same minimum within the fitting error. In
the p+d 16-MeV experiments, there is essentially no
difference between parabolas that use the full FSI
term or those that use the abbreviated one.

The d+ p parabolas have considerably less sensitivity
to the scattering length than the p+d ones. This de-
crease in the sensitivity to a„„'at lower c.m. energies is
explained by the relatively stronger background present
under these conditions. Even a careful adjustment of the
shape of the background, such as is obtained using the
complete FSI term, does not compensate for the lack of
sharpness of the peak. The statistical error is 1.5 F for
the shallow curves and 1.0 F for the steeper one. How-

depend on the range of data considered, there are errors
introduced by the uncertainty in the exact shape of the
p' curve, which was assumed to be parabolic, and by the

difhculty in optimizing all of the many simulation
parameters (Table I). We believe that these effects
combine to produce an over-all uncertainty of &0.5 F,
and the value of the scattering length obtained in this
way is —23.8&0.5 F.

In order to determine whether broadening effects
were limiting the accuracy with which we could extract
a~', a second run was taken with smaller solid angles:
LB= 1.4'. These data are shown in Fig. 7(d). The FSI
peak is narrower and contains about twice as many
counts at the maximum as Fig. 7(b). This improve-
ment in resolution resulted in a x' curve (Fig. 15) tha. t
does not have as low a minimum as Fig. 14. This is
explained by a small departure in shape of the simula-
tion from the experiment, which may indicate the limit
to which the simulation technique in its present form
can account for broadening effects. The minimum of
the parabola shown in Fig. 15 is at 23.9 F, but, as before,
this value was found to vary by ~0.5 F, depending on
many factors, such as the way in which theory and
experiment were normalized, exactly which channels
were selected for the x' comparison, etc. As a final check,
y'- parabolas of the projected spectra of Fig. 12 mere
made. These were steeper than in Fig. 15, but their
minima agreed with the results of the full two-dimen-
sional comparisons and showed the same variations.

Figure 16 shows y'(a„„')parabolas obtained from
the d+p 16-MeV experiment. The steepest parabola
was obtained by using the complete FSI enhancement
factor [Eq. (8)], which includes the interactions of all
pairs of particles. In order to test the sensitivity of the
fit to the details of the theory, the other two parabolas
show the result one obtains if we set

ever, a consideration of the effects discussed for the
higher-energy data increases this uncertainty to 2.0 F.
We thus extract from this run a value of u~„'of —23.5%
2.0 F (see Table II}.

In the 10-MeU d+p data (Fig. 10), the background
from nonresonant processes is so large that it was not
possible to extract a very meaningful value of a„„'.The
value of this experiment lies in elucidating the behavior
of the parameters that describe the background, i.e.,
T/S, C„and C».

6. Discussion of Other Parameters —Effective Range

As shown in Eq. (2) the FSI enhancement factor
depends on the effective range ro. Therefore, the experi-
mental peak width does not determine uniquely the
scattering length if ro is unknown. The error we would
make by neglecting ro entirely (setting ro ——0) is meas-
ured by the expression

-', ro'k'/(1/a ' —-,'ro'k') .

If we confine our attention to the region of the singlet
FSI peak above its half-maximum point, i.e., k(0~~2,
then this error will be about 5% in the derived value of
u»', since ro'/a»' —0.1 and 1/u»' —kig2. However, if
ro' were substantially larger than O. la', then the effect
of the ~ro'k' term becomes more significant. As a check
of this reasoning, full simulations were performed, using
r0=3.6 F rather than its accepted value of 2.4 F. It
was then found that best fits were obtained with
scattering lengths of about —30 instead of —24 F.
This assumes considerable importance if the method is
to be used to extract accurate scattering lengths for
particle interactions where the effective range is poorly
known, e.g. , the n-ss interaction.

Tri piet-to-Singlet Ratio

It was found that the value for the triplet-to-singlet
ratio T/S seems to increase from 2 to 5 as we go from
8.44 meV to 1.1 MeV in center-of-mass energy (see
Table II) . If we assume that the diagrams of the single-
interaction model (Fig. 1) are formed with equal
probability for each spin state, then we would expect
'1/S to be 3 or greater, allowing a spin degeneracy of 3
for each of the triplet graphs. A value of 3 would be
appropriate if the doublet scattering dominates, and a
value of 6 would be expected for the case that the doub-
let and quartet diagrams have equal probability, etc.
Bruckmann et al.~ studied the dependence of T/S on gq

at fixed energy (52-MeV deuterons). They found a
la.rge variation, which had a minimum of T/S=O at

=60'. These large variations in T/S are manifes-
tations of primary reaction effects, which are poorly
understood at the present time.

Vonresonant Terms

By referring to Fig. 6, we see that the contributions
from the various enhancements increase several times as
we go from &6- to 1-MeV relative energy. Since the
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relative energy between any two particles can be, at
most, the total c.m. energy, this means that the relative
contribution from "nonresonant" interactions will

increase as the c.m. energy decreases. We therefore
expect the background to increase substantially as we

go from high center-of-mass energy (8.44 MeV in the
16-MeU p+d runs) to low center-of-mass energy (1.11
MeV in the 10-MeV d+ p run).

Figures 11(s)—(d) show the terms E35*, T/SE3~',
E~5', and T/SE~' in the proportion that the contribute
to the full d+P 10-MeV simulation of Fig. 10. In this
experiment, the angles were selected to allow a low
relative energy between particles 3 and 5, and the
resulting broad singlet FSI peak is shown in Fig. 11(c).
Particles 4 and 5 contribute as the nonresonant en-
hancements of Figs. 11(a) and 11(b).The full simula-
tion with T/S=5, C»=5, and C,=0.5 is a very good
fit to the experimental data, except for a small defi-
ciency in the wing at high T3 energy, in the region where
the (4, 5) enhancement is increasing. The fact that
our FSI matrix element can produce excellent fits even
at such low center-of-mass energies lends additional
confidence to its use.

Since the various background terms do not show
much structure, the parameters C», C„and T/S
cannot be determined independently with accuracy.
Many simulations were made with various combina-
tions of parameters, and it was possible to estimate what
the errors in these parameters might be if they were
allowed to vary freely. The errors are tabulated in
Table II. These parameters could be more accurately
determined if we expanded the spectrum to include
the entire kinematic line, as in the 21.1-MeV d+p
experiment. However, for the purposes of extracting
the p-n scattering length, we do not need to know them
accurately.

H. Interference EBects

In order to determine whether the interference eRects
discussed in Sec. I D might be important in our experi-
ments, the FSI matrix element of Eq. (8) was modified
according to Eq. (4), so that

~Fsr = E~s'(1+ C;„tk45)+E3~'+ C»E3g*

+&/S(Ese'+E4s')

Full simulations of the 16-MeV p+d data with 66t= 2'
were made using this expression. If we assume con-
structive interference and use the measured quantities
of C» and T/S from Table II,

(C - )- =2LCn "'+(~/S)'"j/&»=0025.
Such a value of C;„&produced a shift in a„„'of 6 F. Due
to phase cancellation, C;„&and the shift in a„„'are likely
to be much smaller, and this indeed seems to be the
case, since the extracted value of u„„'is in agreement
with its known value to within 0.5 F.

(C; ~) increases at lower center-of-mass energies,
and hence the two d+p runs should be more sensitive

to interference eff'ects. Unfortunately, the sensitivity
of these experiments to a~' is also decreasing, and con-

sequently, we cannot say for sure whether there is inter-
ference or not at lower energies.

V. CONCLUSIONS

Coincidence studies of three-body final states have
the advantage of maximally isolating the FSI of interest
from background processes. As can be seen from Fig.
7 (c), the nonresonant background under the FSI
levels of interest can be made both very small and quite
Hat. Consequently, it is not necessary to describe this
background in detail in order to parametrize accurately
the FSI. For such experiments, it is found that a simple
theory containing three adjustable parameters can
adequately account for all the structure of the experi-
mental data. This theory treats the singlet and triplet
pair interactions of all the final-state particles by means
of additive enhancements and accounts for spectator
eRects. With this description, it is possible to extract
accurately the singlet p-n scattering length from data at
c.m. energies greater than a few MeV. The success of
these experiments in predicting the known scattering
length indicates that interference eRects that could
distort the shape of the FSI cross section are not sig-
nificant, under the conditions of the investigation. We
would expect that these conclusions should correspond-
ingly hold true for the n+d reaction; this would make
possible the extraction of an accurate n-n scattering
length, using similar techniques. However, in the n-n

case, some ambiguity would still remain, in that the
value of the scattering length will depend to some
extent on the assumed magnitude of the eRective
range, especially if it were larger than 1.5 F.

The analysis presented here indicates that even
greater accuracy could be achieved in extracting a~' if
higher center-of-mass energies and smaller solid angles
were used. In addition, it should be interesting to
perform higher-resolution experiments at low c.m.
energy in order to determine the limit of applicability of
FSI theory.
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APPENDIX

A. Three-Body Simulation Program

The basic philosophy of the simulation program is
discussed in Sec. II B. A partial listing of the FORTRAN

statements is included in Ref. 23.
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In order to optimize the use of the computer memory,
the program is divided into several sections called
links, which may operate in any desired sequence. Each
link performs operations on a 64&(64-channel data
array.

Kithout disturbing this data array, the links are
successively loaded into memory from magnetic tape in
an order specified by a link list, which is provided as
input data. Normally, the first link will be the main
simulation program, which performs the Monte Carlo
integration over the solid angles. Since this program is
time consuming, two versions are available, one which
runs on the SDS-925 at Rutgers, and a computation
center version which runs on a GE-645 at Bell I-abora-
tories and computes for several theoretical parameters
simultaneously. The result of the GE-645 calculation is
punched on cards that can be read into the SDS-925
computer, where the other links are most efhciently
executed.

The main simulation program reads the necessary
input parameters such as masses, the dimensions of the
detector and beam collimators, detector angles, beam
energy, energy calibration, ahd the desired number of
Monte Carlo events.

For each of the Monte Carlo events, random points
are selected within the geometric limits specified by the
beam spot, detector collimators, and a multiple-scatter-
ing angle. The angles of particles 3 and 4 are calculated
from these points.

A kinematic locus is then calculated channel by
channel, forming a T3-T4 spectrum. These solutions
are calculated using two DO 1oops: One steps along the
T3 axis channel by channel; the other interchanges the
role of the T3 and T4 axes and steps through the
channels again. The T4 kinematic solutions correspond-
ing to the T3 energies are then calculated. Phase space is
calculated as described in Sec. I E and is multiplied by
the matrix elements described in Sec. IV D. The kine-
matic solutions and corresponding cross sections for
each kinematic loop are stored. At the completion of
each loop, the SDS-925 program writes the results on
magnetic tape for later analysis; the GE-645 program
adds it directly into the 64)&64 channel data array.
The SDS-925-generated results are added into the 64'
64-channel data array by a new link, which has avail-
able suKcient memory space to store 4098 channels.

B.Target-Thickness Correction

The result of the main simulation program may now
be corrected for the energy loss of the beam and detected
particles by executing the target-correction link. The
energy loss in CH2 and CD~ targets is computed using

the expression

E~„,= (0.1428mz'/E) (X/A) f8.0 ln(E/M)+30. 9},
where X and 3 are the target thickness in rng/crn2 and
its molecular weight. m, s, and 8 are the mass in amu,
charge number, and kinetic energy in MeV of the pro-
jectile.

In order to obtain an integration over the target
thickness, the target is divided into X layers. The
resulting energy corrections to the T3-T4 data array
are computed for each layer and the results averaged.
The energy loss of the projectile is accounted for by
using the approximation that this energy loss is shared
among the three final particles in proportion to their
energies.

C. Energy Resolution of Detectors

The 64&&64-channel data array is corrected for the
effect of the detector resolution by folding in a Gaussian
function whose width is given by an experimentally
measured resolution function. The correction to the data
array is given by the following convolution integral:

T3—Tg Tg —T1
p(T3, T4) = exp — exp—

0.73m 3 0.73crg

Xp(T3', T4')de'dT4',

where cr3 and o.~ are the full widths at half-maximum of
the detector resolution functions. This integral is
calculated numerically by the energy-resolution link. .
The exponential functions are approximated by step
functions, where each step is the width of a T3 or T~
channel. The contribution of each step is calculated,
and, after averaging, the corrected array p(TI, T4)
results. For cases in which the resolution function was
not Gaussian, an option is available that folds in the
actual experimental detector resolution function, as
measured with a pulser.

D. Energy-Calibration Correction

The exact channel location of the simulated T3-T4
spectrum depends on the energy calibration of the T3
and T4 axes. If it is desired to change this energy
calibration and thereby shift the location and scale of
the simulation, the energy-calibration link may be used.
This transformation is simply performed by using DO
loops, which first calculate and adjust the T3 energies
and then the T4 energies. The effect of the transforma-
tion may be judged using the display link, which
displays theory and experiment alternately and in-
cludes an option for subtracting theory from experi-
ment.
















