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approximate value of Repo(q, E) has to be determined

by interpolation. An example for the conversion of
exact cross sections into real parts of the form factors is
given in Fig. 4 for 38Sr . The result is compared with
the corresponding MIA curve obtained from Eq. (57)
and with the Born-approximation form factor.

VII. SUMMARY

A model-independent analysis of inelastic electron
scattering from nuclei can only be performed if the
analytical. behavior of the Coulomb corrections is
known. This behavior has been discussed earlier' in the
case of low momentum transfer and for monopole as
well as qua. drupole transitions. These results have been
obtained in a second Born approximation with the
additional assumption that the charge distribution in
the nuclear ground state can be described by a single
parameter, the rrns radius. In the case of high momen-
tum transfer, this assumption is much too restrictive.

A new method of deriving model-independent
expressions for the Coulomb corrections is discussed in
this paper It is shown that this new method, which can
incorporate more details of the ground-state charge
distribution, leads to results similar to those obtained
in Ref. 1 for low momentum transfer. The purpose of
this method, however, is to explain the analytical
behavior of the form factors at high momentum
transfer as well.

The most obvious feature of the plane-wave Born
approximation at high momentum transfer is the occur-
rence of zeros in the cross sections at certain values of
the momentum transfer q. It has been observed'4
that these zeros are filled up and that their position is

shifted towards smaller angles in exact results. This
behavior is understood in our present method by
observing that the Born approximation form factor has
to be replaced by a complex form factor if the distortion
of the electron wave functions is taken into account.
The real part of this redefined form factor is responsible
for the shifting of the zeros, and the imaginary part
accounts for the filling up.

The method presented in this paper offers a possi-
bility of determining the Coulomb corrections in a
model-independent way, but it can also be used to
calculate the corrections for any given nuclear model
without extensive numerical procedures. Since this
method follows closely the formalism of the exact
partial-wave calculations, its results as well as its
secondary assumptions can be checked step by step by
comparison with exact results. It is for the same reason
that this method can be generalized to other multipole
orders and to magnetic transitions.
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The hypothesis of partially conserved axial-vector current (PCAC') is applied to relate the threshold
production amplitude for the process n —+p+~+ to the meson-exchange contributions in cr—+p+e +v„where
n and p are nuclear states. The latter contributions are calculated by assuming that the two-nucleon p-decay
processN;+A, -~N +X +e +v, is dominated by the one-pion-exchange contribution. Particular attention
is given to the radial dependence of the effective two-body operator which is used to describe both p+p —+

d+m+ and the meson-exchange effects in H'~He'+e +v, . It is shown that terms as singular as x 'e * and
x 'e can arise naturally in a dynamical (as opposed to a phenomenological) treatment of meson-exchange
eRects, and that these terms contribute significantly to p+p~d+~+ but not at all to H'~He'+e +v, .
Some discussion of the present experimental status of these two processes is also given.

I. INTRODUCTION

T is well known that, within the usual impulse. . approximation, the V—A theory of weak inter-
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actions has been extensively tested with impressive
success in nuclear P-decay and muon-capture proc-
esses."To achieve a greater degree of quantitative
understanding of these phenomena, it is then natural to
begin to study the contributions from meson-exchange
effects. Undoubtedly this study will provide an oppor-

' T. D. Lee and C. S. Wu, Ann. Rev. Nucl. Sci. 16, 511 (1966).' H. Primakoff, in lVeak Interactions and High-Energy Neutrino
Physics, edited by T. D. Lee (Academic Press Inc. , Hew York,
1966},p. 96.
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tunity for investigating in more detail questions
concerning the validity of the conserved vector-current
(CVC) hypothesisz and the partially conserved axial-
vector-current (PCAC) hypothesis' in a realm where
they have thus far not been tested extensively. In this
paper, we address ourselves to a discussion of meson-
exchange effects in nuclear P decay. Recently, one of
the authors (WKC) proposed a theory of meson-
exchange effects in nuclear P decay based on CVC and
PCAC. ' In this theory some insight was obtained into
(1) the expression of meson-exchange mechanisms in
terms of experimentally well-established baryon and
meson-exchange mechanisms in terms of experimentally
well-established baryon and meson resonances, and (2)
the detailed structure of the most general phenome-
nological two-body operator in P decay. When applied
to triton P decay, H'—&He'+e +v, , this theory gave an
enhancement of approximately 10% (due to meson-
exchange effects) to the Gamow-Teller matrix element
(He'

~

zr
~

H') which is in good agreement with the
experimentally determined value of 8%. In the
triton P deca& the following consequences of the theory,
as will be explained below, are important for our dis-
cussion. (1) The radial dependence of the exchange
operator is given bv a Yukawa form ( I x 'e, where
F is a phenomenological strength parameter, x=pr,
rr=pion mass, and r= ~ ri —rz

~

is the internucleon
distance) in contrast to the phenomenological theories
previously suggested' in which this Yukawa-type radial
dependence is a basic asszrzrzptiozr. (2) The meson-
exchange contribution arising from the X*(z3+, $) zr-X
resonance rescattering in the intermediate states is
identically zero.

Recently, Blin-Stoyle and Tint' (BT) have proposed
a PCAC theory of low-energy strong pion production
in which a relation is obtained between the two-body
pion-production operator and the phenomenological
meson-exchange operator in P decay. Using this
relation, they calculated the meson-exchange effects in
H' —+He'+e +r,. by use of the (near threshold)
p+ ~d+~+ experimental data and obtained a reduction
of 5—25% to (He' '

rr
~

H'). The finding of a reduction
(and not the expected enhancement) might lead one to
express some doubts about the validitz of PCAC as
applied to the problem of meson-exchange effects in
nuclear P decay. However, apart from the fact that the
p+ p—+4+m+ data used by BT differ significantly from

' R. P. Feynman and M. Gell-Mann, Phys. Rev. 109, 193
(1958); S. S. Gershstein and Ya, B. Zeldovich, Zh. Eksperirn. i
Teor. Fiz. 29, 698 (1955') LEnglish transl. : Soviet Phys. —JETP
2, 576 (1956)g.' Y. Nambu, Phys. Rev. Letters 4, 380 (1960); M. Gell-Mann
and M. Levy, Nuovo Cimento 16, 705 (1960); J. Bernstein, M.
Gell-Mann, and %. Thirring, ibid. 16, 560 (1960); J. Bernstein,
S. Fubini, M. Gell-Mann, and %. Thirring, ibid. 17, 75? (1960) .' W. K. Cheng, Ph. D. thesis, University of Pennsylvania, 1966
{unpublished). The details of this work will be published else-
where.' See, for example, R. J. Blin-Stoyle and S. Papageorgiu, Nucl.
Phys. 65, 1 {1965);Phys. Letters 14, 343 (1965).' R. J. Blin-Stoyle and M. Tint, Phys. Rev. 160, 803 (196?).

where .4~, . . . , C~~ are constant parameters. We may
point out that in Ref. 5 these six parameters were
shown to be expressible in terms of various strong-
interaction coupling constants and hadron masses (see
Sec. II B) and that, moreover, these parameters were
such that

~z(x)+zcrzz(x) = (Az+3Azz) (& '/x). (12)

Therefore, in connection with the approach of BT, one
may demand purely phenomenologically that Eq. (1.2)
hold together with

Bg+-', Bgg ——0 and Cg+ —', Cgg ——0. (1 3)

We remark that in imposing Eqs. (1.2) and (1.3) the
number of parameters is reduced from six to four in the
meson-exchange calculation of p+p~d+m+, while at
the same time the x 'e * and x 'e ' terms in nz (x) and
nzz(x) become entirely irrelevant to the meson-exchange
calculation in H'~He'+e +v, . It is now clear that,
with a certain latitude in suitably choosing the remain-
ing four phenomenological parameters, it is possible to
fit both the two-body production amplitudes in
p+p —rd+zr+ and an erzhazzcemerzt of 5—20% because of
meson-exchange effects in H' —+He'1 e +v, In this
way, we can reconcile the apparent discrepancy dis-
cussed in BT between PCAC and an enhancing meson-
exchange contribution to the Gamow- Teller matrix
element (He'

~

rr
~

H').

8 C. M. Rose, Jr. , Phys. Rev. 154, 1305 (1967). This paper also
contains references to earlier theoretical work on p+p~d+~+.

the results of a more recent remeasurement, ' BT's work
involves some other (theoretical) difficulties which we
wish to discuss. We have previously mentioned that BT
calculated the phenomenological meson-exchange
strength parameter F in H'—+He'+e +v, by using the
p+p~d+~+ experimental data. However, we shall
show in Sec. II B that the intermediate state X~($+, -', )
rescattering contributes dominantly to the two-body
production amplitude in p+ p-+d+7r+, whereas its
contribution to the meson-exchange effects in
H'—+He'+e +v, is identically zero, as we have already
noted. In view of this, one is led to doubt the validity
of BT's use of the p+p~d+~+ data to deduce the
magnitude of the meson-exchange effects in triton P
decay. It must be emphasized that we are ~zot ques-
tioning the validity of the relation $Eq. (2.11)j which
connects the two processes a~P+m+ and u—+P+e +v,
(n and P are nuclear states) but merely the manner in
which this relation was applied. Second, the expres-
sions for the radial functions zzz(x) and

air�

(x) taken by
BT were very restrictive. We note that, consistent with
the idea of a one-pion-exchange (OPE) interaction
between two nucleons, the most general forms for
crz(x) and nzz(x) are

zzz(x) = (e /x) (Az+Bz/x+Cz/x'),

crzz(x) = (e */x) (Azz+Bzz/x+Czz/x'), (l.1)
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For the sake of completeness, we will review, in Sec.
II, the theory of BT as well as the theory given in Ref. 5.
%e will also comment on the basic difference between
our approach and that of BT. In Sec. III, we present
our calculation of the two-body production amplitudes
for p+p~d+m+ near threshold using the results of
Sec. II. Finally, in Sec. A, a discussion is given of some
of the questions considered in this paper.

II. THEORY

A. 31in-Stoyle and Tint

Lagrangian which induces the process ir'+~jP. BT
assume that Z has the form

d P'5g I By/ I (23)

where Si'(r) Lwhose detailed structure is given Eq.
(2.12) j is a function of the momenta, spins, and
isospins of the nucleons in

I
n) and

I
p). T(m'+~p)

and 2 are related as follows:

(pl —z.
l
~n)

=i(2x)484(P +q —Pe)Ã Xe(2qoV) "'T(x+n—+P)

In this section, we summarize the method BT7 for
relating the production amplitude for the process
p+ p—+d+ x+ to an effective Lagrangian describing
meson-exchange eHects. Ke begin by assuming PCAC
in the form

a,nd hence, from Eqs. (2.4) and (2.5),

(2qo V) '"C
(p I

—z. v'n)
gl21p2

(2.6)

8gAg'(x) = C@'(x)= (p'a /v2)@'&x), a=1, 2, 3 (2.1)

where 4 (x) is the field operator which annihilates a
pion with isospin a, and a =0.94. Using Eq. (2.1), a
relation may be derived9 between &p I

8iA&,'(x)
I n) and

the transition amplitude T(v-++n +p), wh—ere n and p
are nuclear states. Ke have

(p 8,.4;(x) ln)= &p I
C@.(x) I n)

= I:C/(q'+~') j(P I ( — +i ')4'(x) In)

= LC/(v'+i ") j&P I
j:(x) n), (2.2)

where j, (x) —= ( — +p')@'(x), and q=Pe —P is the
pion four-momentum. (p I j '(0)

I
n) may be related to

T(v'+n~p) by noting that

&pl ~( '+ p) —1
I )

—= i(2')'8'(p~+9 —pe) LVaXe(2$0V) T(1r'+n +p)

=i(2ifoU) "' d4—x e'q "&p
I g '(x)

I
n)

=i(2VoV) "'(2~)'8'(P-+V Pe) (P I j- (—0)
I n) (2 3)

In Eq. (2.3), X and Xe denote the usual normalization
factors (m;f/E V) "' for the ith fermion and (2E V)
for the jth boson. In going to the second line of Eq.
(2.3), we have performed a Lehmann-Si manzik-
Zimmermann (LSZ) reduction on the incoming pion
and have denoted

I n);„by
I n), etc. Combining Eqs.

(2.2) and (2.3), we then have

&p I
&&A;(0)

I )= LC/(q'+ p') j.v.x,T(~+ p),
(2.4)

which is just Adler's result. We have in mind that
I n) and

I p) are nuclear states, and we are interested in
evaluating the left-hand side of Eq. (2.4) by relating
T(n +n—+p) to an effective P-wave pion-production

S. L. Adler, Phys. Rev. 137, 81022 (1965}.

(2qp V) '"C
(p I

iPr' S„~(r')8„4~(r') 't x n)
gl2+ p2

= i (2n)484(P +. q Pe) (P—
I

8g 4i'(0)
I
n). (2. I )

If we confine our attention to allowed P decays, then

I
n) and

I p) will be states having the same parity, and
therefore we need only consider (p I

S'(r)
I n) and

&p I
A'(r)

I
n). Furthermore, since the momentum

transfer q can be taken as zero, we can write

(2 )'8'(p- —pe) &P I

v.A (r)
I )

= —(C/„2) (2~) ~8'(p.—p, ) (P I
V S.(r) I

n) (2 g)

after a partial integration. Multiplving Eq. (2.8) by
l.r, where 1= iu(p, ) y(1+ps) v(p„) is the lepton current
in momentum space, and integrating over all space
we find

(2x)'8'(p. —pe) &P I
~Pr A'(r) ~ 1

I n)

= —(2')'83(p —pe) (C/ii') &p ~ iPr S'(r) 1
I
n).

(2.9)

(In Eq. (2.9) it is now understood that we are spe-
cializing to the charged currents corresponding to
a= 1&i2.j Hence, if we define an effective axial-vector
P-decay operator Zp by

Ze= (G cos8/&2)Ae 1, (2.10)

where G—10 '/m' (m= nucleon mass) and 8 is the
Cabibbo angle, then

C
Ae= —— (Pr S(r). (2.11)

p 2

Equation (2.11) establishes BT's connection between
the axial-vector matrix element describing the process
n~P+e +v, and the source term S(r) describing the
process a~P+~+. The two-body contributions to Ap
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which arise from meson-exchange effects may thus be
calculated from Eq. (2.11), if S(r) is known once the
previously mentioned difhculties have been straightened
out. (Recall that by CVC the polar-vector matrix
elements are unaffected by meson-exchange contribu-
tions, as we shall discuss in more detail in Sec. II.)

On general symmetry grounds S(r) can be taken as

S(r) = g(g ~v/m) K N~(0) r;&+&a;8'(r r;)—

+ Z {(S"T*'+T"S*')L~&(r) (a' —a )
i&j

+»( )(&r*—a') &'rj( ~+—+)

+ ( T, T;,'+S;,'S,,') Pt, (r) (a;—a.,)

+err(r) (&r,—o,) .rr j(r;+ r,+)—
+ CV( (r) (a*+a,)+V&((r) («+a, ) .) rj(r."+r ') }

&&-'L~'(r —r')+~'(r —r ) j,

By use of the Goldberger- Treiman' relation

G, =Cg.~„K.„~(0)/mi ',

where G~ ——1.23 is the usual axial-vector form factor, "
the one-body term Aeo& in Eq. (2.14) is seen to repro-
duce the conventional Gamow-Teller operator, while
the two-body term Ap(» gives the most general phenome-
nological form of the meson-exchange operator (see
Sec. II C). We note that the detailed form of the
functions o, ;(r), P;(r), and y;(r) can be predicted only
on the basis of a detailed dynamical model. In the
Sec. II, we summarize the model of Ref. 5 and present
its main conclusions.

B. Cheng

To discuss the meson-exchange contributions to the
effective hadron weak-current operator, consider first
the following fundamental two-nucleon nuclear P-decay
process:

r~= 2 (r,Wfrv), y (')(p (') m)+i)&&.(')(p.(') m)~)& (i)(p;(i) m)
I,'2.12~

where g )r&v'/4)r=14. 4 and K,NN(q') is the pionic for
factor of the nucleon normalized to unity at q'= —p,'.
5;; and T;; are the singlet and triplet projection
operators

S;,'=-,'(1—o; o;), S;,"= —,
' (1—v;.r,),

As&'& = —(C/p') g K.NN(0) r +o;
8$

(2.14)

A&) = —(C/p') P {(S; T; +T S; )(~&(r) (a,—a';)

+n„(r) (o.;—o,) .rr j(r,+ r,+)—
+ (T;, T;,'+ S,, S,,') [P, (r) (o;—a, )

+P)z(r) (o;—o;.) rr j(r;+ r,+)—
+8 r (r) ((r;+a,)+err (r) (a;+a;) .r) j(r,++r+) }.

T,,'= ', (3+o; o,),-T;,'= 4(3+v; r, ) .-(2.13)

e(; (r), P; (r), and p; (r) (i= I or II) are as yet unspeci-
fied functions of r= { r;—r; I. From Eqs. (2.11) and
(2.12), we then have

A, =A,{»+A,(»,

+ )),«& (p, «&, m)+e (p„m,)+v, (p-„, 0), (2.16)

where the subscripts i and j designate the ith and jth
nucleons, and the superscripts (i) and ( f) denote
(initial) and (final) states, respectively. The p's are
the momenta of the respective particles and the m's

their masses. Ke assume the simultaneous presence of
strong and weak interactions but neglect entirely the
electromagnetic interaction. Just as in any actual
nuclear P-decay, the momentum transfer q to the lepton
pair (e v, ),

(t
—

(p +p ) —L(p,&~)+p.('&) (p &i&+p.&.i)) j2 (2 17)

is small and can be taken as zero. As noted previously,
CVC implies that, in the q= 0 limit, the meson-exchange
contribution to the effective polar vector current V„ is
zero. This is so because the value of the hadron —+hadron
matrix element of V„depends, in this limit, only on the
spin (J), parity (P), and isospin (I) quantum numbers
of the two hadrons involved. Thus we need only
calculate the meson-exchange contribution to the
effective axial-vector hadron weak current A„. %e
further assume that

and

(~)t+ )& (&)~')/' (f)+ g' (f)+ —. +v}.',$'.{i)~$&.(f)+e
—+p +~.

X„{')~X,(»+e-+-.,+~;

g+ $ .(t)~QT.(f)

~+ $. .(s)~ $~.(f)

{X(*'—+.V &i&e++v,+7r }—
x(" a+

g~,$'(f)+ 7r

gf~ $"(f)+e
—+p

+ {g'(&&~/'(i)+~

(Class I processes)

M&)r+e +r'—,} (Class II processes) . (2.19)

' M. L. Goldberger and S. B. Treiman, Phys. Rev. 109, 193 (1958)."C. J. Christensen, A. Nielsen, A. Bahnsen, W. K. Brown, and B.M. Rustad, Phys. Letters 26$, 11 (1967).
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N(0( (f)
i P

P (p

~;(p, , m)
(0 (t')

e(pe, me)

N,. (p
(i)

I N, (p, m~
(i) (i)

I'CG, 1. General Feynman diagram for the two-nucleon n
P-decay processlh";("+.V;("~X;~ + r (l')+; '+e 1,1.The relevant

ria es are a so displayed.

N, N(i)
l

F . ' - g iagrams for the P-decay rocessesFiG. 3. Class-I pion-exchan e dia r

iag~ram) and P~;(')~.y~+~~~y;(f)+'e +v +~ ~ (') (

(lower diagram)

interaction-stable "particles" d tan s rong-interaction-
unstable "res"esonances are treated in essentially the17

same way. All relevant coupling constants in these
effective Lagrangians are calculated using the experi-
mentally determined decay width s or scattering cross
sections. After all of this has been done, what remains
is t en some lengthy calculations involvin the foll

g ps:, a& Expressing in momentum space the
Lorentz-covariant 5-matrix elern ten s correspon ing to
the OPE diagrams shown in Figs. 1—4, (b) executing a
nonrelativistic reduction of the nucl Dnuc eon irac spinors,
retaining terms up to order I lr

I jrn (I R
I

=
y, ~c, Founer-transforming the results into

coordinate space. To summarize the final results, we
define an effective Lagrangian 2 ' '" f dp or ecay by

Zp'"'" = (G cosII/v2) Ap'"'"(7r) ~ 1, (2.20)

where 1=iII,y(1+y5)p-„ is the lepton current in co-

N{f)
l

In E . (,'2.19~q. (,
'

~, 8 and M represent, respectively, various
intermediate bar ons dpons and mesons with appropriate J,
I', and quantum numbers. The scheme d b descri e in

qs. ( . ) and (2.19) isdia~rammaticallyrep t d
in Fi s. 14,

y represente
in igs. —,Consider next the P-decay pro- ecay processes

e +v, and M~m+e +T,. Ke note th t l
a owed and M= I j(initial) —J(final) I =0 1 Iirst-
forbidden P-dP-decay transitions have nonvanishing
axial-vector-current matrix element

'
th =0 's in e q=0 limit.

Hence, the entire complex of OPE d'iagrams can be
reduced to only four diagrams with 8 being identified
as the pion-nucleon resonances Ã*(Jp, I) = iY*' '+ -"—
~QUA(3 — 1) ykf 1+ 1%

) i —~ i~ )2)~
&» ~g, and with M taken as the

meson. To lcalculate the weak axial-vector 8~X or
s e p

PCAC an
M—+m matrix elements of A in the =0 l'

and derive in the usual manner a Goldberger-
Treiman type relation. This permits the weak axial-
vector form factor F~(cV*—+iV. q'=0) F (
o e expressed in terms of the corresponding 3T*~Vx or

pxm. strong coupling constant and the neutron P-decay
axia -vector form factor G~=F~(n~p q'=0). Th
stron -in

*

g-interaction vertices are described bz ex licitly
specifying effective Lagrangians in which strong-

N.

N{i)

Fio. 2. General OPE diagram for the p-deca y process
2

1" y =p ontributes from the mesons of the 0 a d'-' That onl M = co
-p ™y

ectively accounted for by use

(i)
N.

,
N(i)

F . ' - n e 'a ramIG. 4. Class-II pion-exchan e dia ram
J

nge 'agram for the P-decay process
g,.v)+ +;+„-,- +~,('& ~,v)j
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ordinate space, and

A exch(x) g A exch(~ X) (2.21)

Vs(c-h a) Vs(a— z) artcc(1+ 1)
The Ae'-"'h(zr —X) are the pion-exchange weak hadron
current operators arising from the pion-exchange
diagrams of Figs. 1—4. All of the Atr'"'"(zr —X) operators
have the general form of Aez2& in Eq. (2.14) with radial
functions gz(r), , jzz(r) given by'r

-gz(*) =~L~z(x) -Pz(x) j
—hz(x) =1rLaz(x)+Pz(x) j,
—j,(x) = 2zpz(*),

—grz(x) =XLrzzz(x) —Pzz(x) j, (2.22)
—hzz(x) =XLzrzz(x)+Pzz(x) j,
—jrr(*) =2lzPzz(x),

lz= mGg/2g rr~K rrzr(0) .

For.V*(2+, 2), we have

gz(x) =
I

G'*'"(~'*(-'+ 8) ) I (—12) e (1+1/x+1/*')
grz(x) =

I
G~'"(V*(—+, 2) ) I (12) (e */x) (1+3/x+3/x'),

hrz(x) =
I

Gcx'"(3 ~(—'+ —') ) I

X ( —6) ( -*/..) ( + / +3/ ') =j (. ),
zr= (Mh*+m)/2m

I
G'""&cV*('+ -'-) ) I

=
I 3 (f.rr+*'/4~-) G~Lv/(itrrr * m—) 31,

where f.zrh e'/4zr 0.0—65
For the p contribution, we have

e t' 1 1
g, (.) =

I
G--'"(p)

I -,' -» —
I
1+ -+ —,,x 4 x x'-'

+ — 12 —1+ —+—

e ' 3 3
gzz(x) =

I
G""(p)

I

-', 12 —1+ —+-
x x x'

12 —1+ —+ —,2.26

hz(x) = hrz(x) =jr(x) =jrz(x) = 0,

X= (mn/p) x,

hz(*) =jz(x)
(2.23)

I Gexch(p)

I
—,'2(1+p„—p„) (fc,.'/4rr) Gz&'/m(mr' p ') j I,

—'

=
I

G"'"(-i'*(2+, 2) ) I (—24) (e-*/x) (I/x+ 1/rz)

hzz(*) =jzr(x) =2grz(x),
' G'"'"(~'*(-'+ -'') ) I

=
I 9 (f-v~*'/4x) G~C~/(~~* m) jl, —

wrth ferry e /4rr 0 36—.
For 1V*(a2, ~r), we have

(X)
I

Gexch(VO(3 — Z) )
X (12) (e */x) (1+1/x+ 1/x'-),

(x) —
I

Gexch(VW(a —
) ) I

X ( —12) (e */'x) ('1+3/x+3/x')

(.&') j (X) —
I

Gexch(VO(3 —1) ) I

X ( —12) (e—*/x) (1/x+1/x') (2 24)

hrz(x) =err(x) =
',
G'"'"(-V*(2, k) ) I

X (12) (e=/x) (1+3/x+3/x2)
I
G'"'(r~'*(2, 2) ) =

I 9(f.~~'/4~) G~L~/(Jlf~*+m) 3 I

where f ~~c2/4rr=0 26.
For rV*(—,'+, 2), we have

g (x) =
I
G'-"h(-v*(-'-+ l) ) I

Xrr(12) (e */x) (1+1/x+1/x')
g (x) =

I
G'"'"(V*(-" -') ) I

Xr1(—12) (e /x) (1+3/x+3/x')
Irz(x) =

I
Gexch(,V+(-+ r) ) I

X (6) (e */x) (1/x+1/x') =jz(x), (2.25)

where p,„=1.79 and p„= —1.91 are the anomalous
magnetic moments of the proton and neutron, respec-
tively, and f, '/4zr 2.4. This —completes our. dis-
cussion of the results of Ref. 5, except for some general
remarks which we reserve for Sec. II C.

C. Remarks

(1) We notice that Ae'-"'h has precisely the same fornz
as the phenomenological meson-exchange Lagrangian
obtained by Blin-Stoyle ef al.' " on general symmetry
grounds. Of course, in a phenomenological treatment
one cannot determine the numerical value of G' '" or
the functional dependence of gz (x), , jrz (x) on x.
We also note that Aeexch(zr) has the sa.me space-time
and isospace transformation properties as the primitive
strangeness conserving hadronic axial-vector current
A(x) .

(2) In applying Ze'-'h to the triton P decay, we are
led to consider only the combination gr(x)+-', gzz(x)+
hz(x)+ 3hzz(x) =2lzLaz(x)+z3zzzz(x) ]. It can be easily
seen from Eq. (2.23) that the rr-X*(2+, —,') pion-
exchange contribution to (He' I o I H') is identically
zero, while the rr-.V*(~, 2), zr-X*(2+, ~), and rr-p

pion-exchange contributions are each associated with a
Yukawa-type radial dependence I'x ' e ' (where x= pr
or m, r) as assumed by Blin-Stoyle and Papageorgiu'
on purely phenomenological grounds.

(3) We remark that for any nuclear P-decay process

' R. J. Blin-Stoyle, V. Gupta, and H. PrimakoG, Nucl. Phys.
11, 44 (1959);J. S. Bell and R. J. Blin-Stoyle, ibid. 6, 87 (1957).
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crz(x) =Az(e —*/x), ozz(x) =Azz(c '/x) (2 28)

must be regarded as a very restrictive assumption. If
one uses zrz(x) and nzz(x) as given in Eqs. (2.22)—
(2.26) to calculate the two-body production amplitudes
in pi p—+d+x+, the results turn out to depend very
sensitively on the x 'e ' and .v 'e terms (see Sec.
III). On the other hand, we have alreadv seen that
even with the radial functions given in Eqs. (2.22)—
(2.26), the combinzztson of terms given by nz (x)+

—.,zrzz(x) can appear as a simple Yukawa form. Thus, it
is not unreasonable from a phenomenological point of
view to assume in conjunction with Eqs. (2.22) —(2.26)
th;it

czz(x)+-sz-zrzz(x) = I'(e, x).
This corresponds to having

(2.29)

~I+ 3~I I Ci+ g&'ri =0.
(2.30)

(5) The quantity b which characterizes the pion-
exchange eEects in triton P decay is defined by

8 (Hs~He', rr)

—=(He'
I

Atz' '" (zr)
I
H')/ (He'

I G~go, r,+
I
H'). (2.31)

Our calculation' of ii(Ha~Her; zr) with As'"'" as given in
Sec. II 8 yields an enhancement of ~10% to be com-
pared to the best experimentally based estimate of

8%. Moreover, the value of 8(Hs~Hes; zr) is also
sho~n to be insensitive to the various H' and He'
nuclear wave functions which have been used in the
literature. "

LZ, Aj—+IZ+1, Aj+e +r, the zr-X*(s+, —,') pion-
exchange contribution will always be identically zero if
both the initial and final nuclear wave functions can be
factorized into a spin-isospin part multiplied by a fully
symmetric space part.

(4) As was pointed out in the discussion of As'"'"(zr),
the most general phenomenological form of crz(x) and
zrzz(x) consistent with the idea, of a, OPE two-nucleon
interaction is'4

zrz(x) = (e */x) (Az+Bz/x+Cz~x')

zrzz(x) = (e */x) (Azz+Bzz/x+Czz/x'). (2.27)

In this sense, a pure Yukawa form

where a(zSs), o(sPz), and zz(zDs) are the amplitudes for
pion production from initial diproton states having
l=o, 1, and 2, respectively. Since, as noted above,
zz(sPz) provides no information about 2, we shall
henceforth omit consideration of it. To extract the
interesting two-body contribution from zz(zSs) and
zz(zD. ), we write

a(zSs) = Lb(zSs) +c(zSs) j exp(irs) rtsts mb"'

zz('Ds) = Lb('Ds)+c('Ds) jr/'z' mb'" (3.2)

where the b and c amplitudes derive, respectively, from
the one-body and two-body pieces of S(r), zt is the
c.m. pion momentum in units of pc, and vo is the relative
S-D phase. As noted by BT, the only two-body terms
in S(r) which contribute to p+ p-+d+zr+ are

g T; 5,,'I zr z (r) (o;—o' ) +at z (r) (zr;—zr~) .r r j(r;+ r,+)—
X s I h'(r —r;)+zz'(r —r;) g. (3.3)

The one-body contributions have been evaluated by
Woodru6" and are given by

b('Sa) =0.24, b('Ds) =0.86, re= 2.65. (3.4)

(It is understood that all amplitudes are in units of
mbzzs —0.316 F.) We next turn to a calculation of the
two-body contributions c('Sa) and c('Ds) using Eq.
(3.3). We talze the deuteron wave function%'q to be

+ =(z/4 )"'(1/r)LN(r)x+~(r)xnj~*

are in a position to calculate the cross section for the
strong process p+~d+m+ in terms of the weak-
interaction parameters which emerged from the pre-
ceding analysis. "

The Lagrangian 2 of Eq. (2.5) describes P-wave
pion production which can take place from initial 'So
and zDs diproton states. (At low energies, S-wave pion
production can take place from an initial 'P~ diproton
state, but since S-wave production is not described by
2, we omit a detailed consideration of the 3P~ con-
tribution. ) The dift'erential cross section for p+ p~d+zr+
is given by'~

4-(«./dfi) =!({I
o( 5.) I+!I

o('D.) I'

+%2 ReLzz( Ss) *zz('Ds) j+ I
zz('Pz) I'}

+ I-',
I
a(zDs) I' —V2 ReLzz(zSs)*zz(zDs) ]}3cos'8) (3.1)

where xzz= (1/+8) Stree„x, (xz) being singlet (triplet)
spin functions, Szs ——(3o'z rot. r/r' —o'z. os), and zz, is a
singlet isospin function. N(r) and zo(r) are the S- and
D-state radial functions for the deuteron which we have
taken from Kottler and Kowalski. "The initial diproton

"See Ref. 8 for references to earlier theoretical work on
p+p-+d+x+.' F. Mandl and T. Regge, Phys. Rev. 99, 1478 (1955)."A. E. Woodruff, Phys. Rev. 117, 1113 (1960) .

'9 H. Kottler and K. L. Kowalski, Nucl. Phys. 53, 334 (1964).

IIL APPLICATION TO P+P+d+w+-
Given the detailed form of As=Atz"'"(zr) in Eq.

(2.21) and the connection between Zs and S(r), we

"The radial dependence of ar, zz in Eq. (2.27) arises from a
Fourier transformation of terms of the form kIk j(k'+@~), where
l, m=1, 2, 3. Recall that in the nonrelativistic reduction of the
OPE diagrams (Figs. 1&) terms zzp to [ iz }/zzz were retained for
each nucleon leg, so that terms of the form krak /(k~+p, ') will
appear. These terms are similar to those which arise in the deriva-
tion of the tensor force in the two-nucleon nuclear potential."The speci6c wave functions considered were the exponential,
Gaussian, Irving, and Irving-Gunn wave functions.
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dx zz(x) R()(k'x) j()(-,'q'x) e
—

(A z+-',-.4 zz)

—K2 j. (x))(,(k'*)j,(-', q'*) *(-',A„

c()Do)

Br C,

)
(3.8)

dx zz) (x)R, (k'x)j, (-,'q'x) e—

X Ar+~~Air
Br Cr

x x'

7wave function is assumed to have the form

4'z„= (2/ V) ( o/V)""R (kr) ——[3(k r)o—1)Ro(kr))e 'K '7t.zjz,

(3.6)

where k an are ed K th relative and total momenta of
the two protons. The E's are given by

Ro(kr) =0,

=(kr) 'sin(k(r —r,)), r)r, (3.7)

R,(kr) =j,(kr)=,—(kr) ' sin(kr) —,cos kr,

ere k=
~

k
~&

and x,= jzr, =0.35 is t..e hard-core
radius. We assume, in addition, t-a p'

scribed by a plane wave. Collecting the previous results
together, we find

e('So)

ma nitude of the contributions from Bz and Cz i.e.,

al to 1, x and 1/x' in c('So) make relatively

c 2 serves 0 mI'D ~ to make plausible the relative size of th(.

relative total contributions of c(zSo) an e(,),
z3 8) that the essential differencenote from Eqs.

between these amplitudes liei s in the functions Rp an

tends to weight the singula, r 1/x and I/xo terms more
heavily t an 2, ann E d these contributions in turn serve to

ive e((So) its relatively large magnitude. The pre-
ceding argument is obviously n 'g

at east ma e p ausl k plausible the conclusion that e(zSo) can
be larger than e()Dz) .

Our results are summarized in Table I. The va ues o
A A B and Cz have been deducedthe parameters A z, zz, z, an

andfrom Ref. 5, as we have already discussed. p an pq

denote the pieces o e ef th Aective p contribution w ich
&" and e ~" respectively. Evi-are proportiona to e a

~ ~

to a small additional contribution to

and which must be integrated separately. Hence, the
f h uld not be calculated usingcontribution from po s ou

F s. 3.9). We note t.hat, as expected, the donunant
contribution to ot cb h ('S ) and c('D, ) comes fronz

Y*,-'+ -') rescattering" which, how-intermediate state
ever, fails to contribute at all to pion-exchange effects in

IV, we discuss our theoretical resu ts as well as the
present experimental status of H'~He'+e +v, and

—j2 j. (. ))(,((,'*)j,(-', tj*) '(-', A„

k' = k/' and q'= q,/'p, . For threshold pion-where x=pr, k = /p, an q =,
ion =

t (

—0, whence jo(oq'x)=1. Carrying
out the integrations indicated in Eqs. ..we

e 'So) = Sz (k ) A z+ So (k ) A z z+ So (k )Bz+S4(k') Cz

= 1.96A z+0.26A zz+ 1.38Bz+1.93Cz, k'= 1.11

= 1.03A z+ 0.08A z z+ 1.10Br+1.69Cr
&

k'= 2.22

e('D, ) = D, (k') A z+Dz(k') Art+Do(k') Bz+Dz(k') Cz

=0.15A r
—0.14A zz+0.32Bz—0.04Cr, k' = 1.11

Bz Cr

v

=0 30A r —0.16A rz+0.55Br—0.58Cz, k'= 2.22.

(3 9)

The integras e ning1 d fi
'

the dimensionless functions
~ ~ ~ ~S, k') and D, (k') are given explicitly in the Appen zx.

It is evident from qs.K s. (3.9) that the contributions
n C x2 whic corre-from the singular terms Bz/x and Cz, , h

B x 'e and Czx 3e of Sec.spond, respectively, to Brx e
arisin from A zII C) are at least as important as those arising from

and A rz if not more so. One may understan t e rthe relative

P=4)z '
~

(z('Do) I'(1+
(

&0 (') =)z 'otot,

X=—'
~

1+v28o )'-'(1 —2&2 Rei)o) (4.2)

ho = (z('So) /jz('D;),

and where tTtot, eno es ed t th total 8-wave pion-production
cross section. wo se s o. T t of experimental data for P and

' '* ~+ —' rescattering contributionThe dominance of the 3
has also been noted indepen y y inentl b Woodru, e . , in
purely strong-interaction calculation (as contraste o
weak-interaction calculation) .

IV. DISCUSSION

(1) We have not attempted to znakcke a detailed
comparison of our results wiith the ex erimental data-p

+~d+71-+ for several reasons which we proceeon P ~ 71.

is of theto iscuss. ea . W first recall that in the ana ys sE.expenmenta a a,
'

l d t it is customary to reexpress q.
(3.1) in the form'

4zr(d~/dn) ~z ~o~o ——3tf)z'L(xycos'8)/(3X+I) jy (4.1

~here
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TABLE I. Summary of p+ p~d+x+ amplitudes. '

Contribution (F) -0 II(F) BI(F) CI(F)

k'=1. 11
c('50) c('D&)
in F in F

k'=2. 22
c('So) c('D.)
in F in F

PW( 3+ 3)
Pr4( 1+ 1

)
Q4( 3— 1)
Pe
Total

0.45—0.17—0.03
0.06
0.30

—1.35
0.24
0—0.06—1.16

1.35—0.24
0
0.06
1.16

1.35—0.24
0
0.06
1.16

4.98—1.07—0.08
0.29
4. 12

0.63—0. 13—0.01
0.03
0.53

4. 10—0.83—0.05
0.09
3.32

0.31—0 ~ 08—0.01
0.02
0.24

small additional contribution. from pf, has not been included, as explained in. the te~t.

X are available:

(i) Crawford and Stevenson":

&3 = (1.01&0.08) mb, X=0.082&0.34,

(ii) Rose'.

P = (0.74&0.05) mb, X= unpublished.

Ae remark that apart from a significant difference in
the two quoted values for P there appears to be a large
uncertainty in the experimental values of X. Quoted
values for X range from X—0.05&0.05 " to X=
0.22~0.05.23 The difhculty in determining P arises in
part from the fact that at low energies the differential
cross section (when including other partial waves) is
relatively insensitive to P.' Since a('So) and a('D, )
depend on P and X in a rather complicated way, as may
be seen from Eqs. (4.1) and (4.2), it appears unprofitable
at the present time to attempt to extract the magnitudes
of these amplitudes from experiment in an effort to
determine c('So) and c('D~) .

(2) On the basis of the discussion given in previous
sections, we conclude that the discrepancy between
&(H'~He'; ir) =—(5—25) % calculated by BT and the
experimental value &i(H'~He')'—8% is specifically a
consequence of assuming a Yukawa form for ar (x) and
urr (x), and hence should not be taken as a basis for
criticizing either PCAC or their effective Lagrangian
formalism. At the same time, it should be pointed out
that doubts have been expressed concerning the accuracy
of the experimental ft value for H'—+He'+e +p.. This
ft value is needed along with that of the free neutron in
order to determine the experimental value of
li(H' —+He'). It thus appears that to really settle the
question (of the magnitude and sign of ri), a remeasure-

ment of the triton ft value is called for, especially in
view of the recent remeasurement of the neutron ft
value. "It is also worth pointing out that with a reliable
experimental value of (He3

I
&r

I
H') and more quantita-

tive information about f&(H'—+He'), it would be possible
to obtain an accurate estimate of p(112S) and p(114D)—
the probabilities of the II'S and II4D states in the H'
and He' wave functions. These are related to
(He'

I
&r

I
H') and 5 (H'~He') as follows'.

=3Ll —(8(3)p (112S)—xp (II4D) +2&i (H'—+He3) ).
(4.3)

Thus, through Eq. (4.3) the detailed nature of the H'
and He' wave functions may hopefully be elucidated
through a knowledge of meson-exchange effects in
triton P decay.

Xo&e added inproof. Afte,r completing this manu-
script, we learned of a paper by Blin-Stoyle

I following
paper, Phys. Rev. 186, 1540 (1969)]in which the orig-
inal calculation of BT is reexamined in the light of new
experimental data and existing experimental uncer-
tainties, such as were described in Sec. IV above.
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APPENDIX

In this Appendix, we define the functions Si(k'), . . . , Sr(k') and Di(k'), . . . , D, (k') .

S&(k ) = —, dx(die "+ " d.e &r+~'") —si—n(k'(x —x,) ),
0.3,&

cc
, 1, V2A,

' "" 1S (k') = — rfx(d, e &'+ ' de "+»~) ——sin(k'{x —x,) )— rlx(fie "+ "~ f.e "+e"') —sin—(k'(x —x,) )3k 0 35 x 3k () 3-
"

x

1
dx(g, e &'+» +g2e &'+»') —sin(k'(x —x,)), (Al)3k 3 42

"F.S. Crawford and M. I. Stevenson, Phys. Rev. 97, 1305 (1955)."%ewish to thank Dr. C. M. Rose, Jr., for communicating to us this unpublished result.
2' C. Richard-Serre, CERN Report No. 68-40 (unpublished).
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K2x' '"- 1 . , W2x'
5((k') =, dx(fle "+»'&* f—le &(+»') —sin(k'(x —x,))+- dr(gle &'+ '&'+g2e &(+e'&') —sin(k'(x —x,)),

0.35 X k 342 X

K2X' 342 I . , VB,'
54(k') = dx(fle &'+a»* f2e—&'+»&*) —sin(k'(x —x))+, dx(g, e

—&'+ &»+age &'+»&a) —sin(k'(x —.r,.)).

Dl(k') =l&'
0.35

dx( f e—((+al)z f e
—(&+&&\)a)R (k x)+g dx(g e ((+»4)»+—

g e
—(I+&&4)z)R (k x)

3.42

D:(k') = — dx( fle &'+»" f,e —&(+e»')Rl(k'x)+ — dx(gle &&+a»*+gle (&+el)*)Rl(k'x)
0.35 3 3.42

dx(&Ile &'+ & die —"+e& )Rq(k'x),

Dl(k') = —X'
3.42

0.35
dX( f e (1+a()a f—e

—((+p»»)
R, (k'x)

x 3.42

dX (gle
—(1+al)»+ gle

—O+&&1)»)
R, (k'x)

D4(k') = —X'
3.42

dx( fle (&+»»» —
f~e 0+—&&»»)-

R, (k'x)
X2 3.42

+92)&' dx(die &'+»" die &'+—e&»), (A2)
, R, (k'x)

0 X

dx (g1e
—{1+al)z+ g2e

—(1+&&4)a)
Rg(k'x)

g2

l&'=—8 (M/p) '"
+&2A, ' Rl(k'x)

(fx((fle &'+a& —d,e—&'+ (»)
gl2

The constants (x, p, . . ., pq and dl, . . . , g2 are taken from the work of Kottler and Kowalski, "and have the following
values:

0.=0.33,

/= 2.90,

d, = r.05,

22= 2.58,

aj =0.66,

pg= 5.42,

f1=0.46,

fl =0.24,

+2= 0.42,

Pl= 1.17,

gg =0.13,

g2= 0.86.


