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Linear Wave-Vector Shifts in the Raman Spectrum of I-Quartz
and Infrared Optical Activity*
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(Received 7 July 1969)

Fine structure has been observed in the low-temperature Raman spectrum of the 128-cm ' L mode in
cr.-quartz. This structure is a manifestation of an allowed linear dependence of the optical-phonon frequency
on wave vector. Since Raman scattering probes a small but finite wave vector, it is possible to observe
these frequency shifts using high-resolution thermal or simulated Raman spectroscopy. The linear splitting
of the 128-cm ' L'-mode doublet is 0.86&0.05&(10' cm/sec as determined by backscattering with several
laser wavelengths. Such linear wave-vector shifts lead to optical activity in the far infrared (IR). The
theory of the strength and dispersion of infrared rotary power is developed in order to establish the connec-
tion between the two phenomena. The rotary power for the 128-cm ' resonance can be estimated from the
measured linear shift, lifetime, and IR oscillator strength. However, a direct lR rotation measurement
would be hindered by the associated absorption.

INTRODUCTION

f' '[SING Raman scattering, we have measured for
the first time a linear wave-vector dependence of

the frequency of a zone-center optical phonon. The
observation was made on the low-temperature 128-cm '
A' mode in o.-quartz. This mode is doubly degenerate at
q =0, but the degeneracy is lifted to first order in wave
vector along the c axis. Since Raman scattering probes
a small but finite wave vector, by using high-resolution
thermal or stimulated Raman spectroscopy, it is possible
to observe a splitting. In the usual case, where linear
terms are not present, typical Raman shifts that are due
to parabolic dispersion would be less than 10 ' cm ', and
so would not be resolvable. The shifts measured here are
two orders of magnitude larger, and are resolved from
the very narrow natural linewidth of the 128-cm ' mode
at liquid-helium temperature. '

The 128-cm ' E mode is also infrared- (IR-)active.
The effect of the linear wave-vector shift on the coupled
photon modes is manifest as a resonant dispersion in the
IR optical activity. The connection between linear
wave-vector shifts and optical activity is not accidental.
Similar symmetry considerations apply to the two
phenomena since optical rotary power can be viewed as
arising from linear terms in a wave-vector expansion of
the dielectric tensor. This connection was also noted by
Portigal and Burstein' in discussing the related problem
of acoustical activity. A general theory of IR rotary
power is presented in the Appendix. It is demonstrated
that the linear shifts are the predominant cause of
optical activity near a lattice resonance. The rotation
for the 76 p mode in n-quartz is calculated from the
measured oscillator strength, linewidth, and linear shift.

Observation of linear wave-vector shifts for IR-
active phonons may be complicated experimentally by
two effects. The 6rst is the additional wave-vector

* Work sponsored by the U. S. Air Force.
'A. S. Pine and P. E. Tannenwald, Phys. Rev. 178, 1424

(1969).
~ D. T.. Portigal and E. Burstein, Phys. Rev. 170, 673 (1968).
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dependence of the frequency in the polariton regime. '
This regime may be studied by near-forward Raman
scattering, or avoided by large-angle scattering. The
second complication arises in noncubic crystals, where
the longitudinal-transverse character of a mode varies
anisotropically. 4 Thus, LO-TO shifts may occur with
the direction of the wave vector. However, the IR
coupling is so weak for the 128-cm ' X~; mode in n-quartz
that the LO-TO splitting is unresolvable. A slight
misorientation of q from the c axis therefore will not
noticeably affect the measurement.

THEORETICAL CONSIDERATIONS

There are two aspects to a theory of linear wave-
vector shifts in the phonon spectra of crystals. The first
is the general symmetry requirements that permit such
a dispersion; the second is an estimate of the magnitude
of the effect. Group-theoretical considerations yield the
possible crystal classes, phonon symmetries, and wave-
vector orientations that may exhibit linear shifts. A
cursory description of these considerations is presented
in this section, and amore detailed analysis, using quartz
as an illustrative example, is given in the Appendix. The
magnitude of the linear shift depends, in principle, on
the solution of some lattice-dynamical model such as the
Born—von Karman central-force model. ' However, for
quartz it is possible to give an ad hoc symmetry argu-
ment for the approximate splitting of the mode under
study. This argument is emphasized because of its
simplicity and its applicability to several other inter-
esting crystals. It is not intended to be highly accurate
or completely generalizable to all other materials that
show linear phonon dispersion.

We now examine the circumstances under which
linear shifts are allowed for zone-center phonons. Many
of the concepts here have their counterpart in the

' J. F. Scott, L. E. Cheesman, and S. P. S. Porto, Phys. Rev.
162, 834 (1967).

4R. Loudon, in Light Scattering Spectra of Solids, edited by
G. B. Wright (Springer-Verlag, New York, 1969), p. 25.' M. M. Elcombe, Proc. Phys. Soc. (London) 91, 947 (1967).
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analogous problem for electronic bands. ' The results are
not identical, however, because the absence of spin
restricts the conditions for an allowed linear slope of the
zone-center-phonon levels. In fact, we 6nd that linear
shifts for phonons may occur only (1) along the c axis
for doublets in the uniaxial crystals 4, 422, 3, 32, 6, 622,
and (2) isotropically for triplets in the cubic crystals
23, 432. Portigal and Burstein' show that these are also
the crystal classes that may exhibit acoustical activity.
The above crystals, modes, and axes are obtained from
the following analysis.

For a given wave vector q there are 3iV coupled
equations of motion for the Fourier amplitudes of the A'

ions per unit cell. Since w'e are concerned only with the
branches near the center of the zone, we take the basis
functions to be the normal modes at q=0, labeled by
their irreducible representations F;~ Thus, the dynamical
equations-of-motion mat. rix is diagonal at q=0, with
eigenvalues co'=coi-,.'. At finite q, the matrix may be ex-
panded as a Taylor series in wave vector, and the new
normal modes will be linear combinations of the F-point
modes, aside from the phase e'&'.

It is convenient to subdivide the dynamical matrix
into an XXX array of 3)&3 submatrices. The 3)(3
submatrix is sufFicient to contain the highest possible
phonon degeneracy. Any arbitrary 3)&3 matrix can be
formed from a basis of nine linearly independent
matrices such as Jo~ Jx& Jpp Jzp Jx p Jy y JzJy+JyJZ&J„J.+J,J„,and J.-J +J J,.' These matrices are repre-
sentations of the angular-momentum operator J= rgp
for J=i, where

1 0 0 0 0 0
Jo= 0 1 0, J,= 0 0 —i

0 0 1 0 i 0
0 0 0 —i 0

J.„= 0 0 0, J,= i 0 0
—i 0 0 0 0 0'

h J

Such matrices satisfy the usual rules J,'+J„'+J,2
=J'(J'+1), and JXJ=iJ This basis .is not unique, but
is chosen for its symmetry-transformation properties.

The equations of motion, and hence also the dy-
namical matrix, must be invariant under time reversal
and the symmetry operations of the crystal. The latter
invariance is assured if the Taylor series expansion of
the dynamical matrix is constructed from Fr (scalar)
symmetry combinations of the above basis submatrices
with the various powers of q. Furthermore, under time
inversion both q and J change signs, so that the odd
powers of q can combine only with the linear J;matrices,
whereas the even powers of q combine only with J or
J;J; components. Therefore, matrix elements can be
linear in q if and only if some of the vector components
q; transform according to the same irreducible repre-

' C. Kittel, Quantum Theory of SoInb (John Wiley R Sons, Inc. ,
New York, 1963), Chap. 14 and references therein.' J. M. Luttinger, Phys. Rev. 102, 1030 (1956).

sentations as J, ; that is, Fq,.XFJ,. must contain Fj.. For
example, this eliminates all crystals with a center of
symmetry, since q is odd under space inversion while J
is even.

Of the linear q matrix elements that may exist because
Fq XFJ contains F~, those which couple a phonon mode
of F& symmetry to one of F; will vanish unless Fq ~ )(Fj
contains FI,. For example, the doublet E, modes in the
cubic system can only couple to the triplet T modes,
since Tq,, XL'=T,+T~-. In addition, as shown by a,

simple example in the Appendix, those matrix elements
that couple levels that are nondegenerate at q=0 can
only contribute quadratically to the eigenvalue shift.
Conversely, degenerate levels coupled by a matrix
element are split linearly. A corollary of this condition is
that no singlets may show a linear q shift. Therefore, it
is clear that triclinic, monoclinic, and orthorhombic
crystals cannot show the eGect, since their symmetry is
too low to have phonon representations higher than
one-dimensional.

From this set of rules we may establish the criteria of
crystal class, phonon mode, and wave-vector direction
given at the outset. Some of these rules may be stated in

a more transparent, if less rigorous, way by analog&
with electronic energy levels. For example, time reversal
requires the frequency of a singlet to be equal a,t ~q.
Similarly, space inversion requires the same, even for a
level within a degenerate manifold. This evenness
precludes the possibility of linear q shifts.

To this point the discussion has treated the ionic
system as isolated from external forces such as may
arise from electron-phonon interaction, or coupling to
the electromagnetic field. The former interaction has
been considered for cubic covalent crystals. ' Electro-
magnetic coupling is particularly important near the
zone center for IR-active modes in ionic crystals. Its
inclusion in this problem makes the connection between
linear q shifts and optical activity as mentioned in the
Introduction. This is readily demonstrated by the
example in the Appendix. We derive there the dispersion
of the rotary power near the IR resonance.

The magnitude of the linear wave-vector splitting of
the 128-cm ' E mode in n-quartz can be estimated from
an ad hoc argument that is based on the simplified
phonon-dispersion model in Fig. 1. The zeroth ap-
proximation for obtaining optical-phonon branches
with a multiatomic unit cell is to fold back the large
zone acoustic branch of a, monatomic cell. %e have
triply segmented a sinusoidal curve on the right to
correspond to the three molecules per unit cell in n-
quartz. Usually at the reciprocal-lattice vectors x,
corresponding to twice the Brillouin-zone boundaries,
the structure factors S(x)=P„j„e'"'~are nonzero.

G. F. Koster, J. O. Dimmock, R. G. Wheeler, and H. Statz,
Properties of the Thirty-T~o Print Groups (The MIT Press,
Cambridge, Mass. , 1963).

9G. Dresselhaus and M. S. Dresselhaus, Intern. J. Quantum
Chem. IIS, 333 (1968).
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S(n00) 4 0 S(001) = S{002)= 0
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I'IG. 1. Simplihed phonon-dispersion model: folded zone scheme.
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Here f„is the form factor of atom g located with posi-
tion vector ~„in the unit cell. S(x)WO is the condition
for Bragg reflection of a wave; for example, x rays are
diAracted at such a reciprocal-lattice point. Such a
refiection implies zero group velocity of the phonon or,
equivalently, a horizontal dispersion curve at the zone
boundaries, as illustrated on the left-hand side of Fig. 1.
Along the trigonal screw axis in n-quartz, however, the
structure factors associated with the (001) and (002)
reciprocal-lattice vectors vanish. Hence, there is no
Bragg reflection and the dispersion curves approach the
zone edges with a finite slope. Interestingly, for the
folded sinusoid along the c axis, the frequency splitting
of the Raman doublet Ace& is equal to the Brillouin shift
~g at the same small wave vector. M B ls typically on the
order of 1 cm '

In the real crystal, the lattice dispersion is consider-
ably modified because other modes interact with those
of the simple model. This is apparent in Fig. 2, where
we show the actual dispersion in cx-quartz along the
c axis as measured by neutron spectroscopy. ' The
principal distortion of the simple model occurs from the

anticrossing of the A~ modes. This mutual repulsion

reduces the linear splitting of the 128-cm ' mode from
that of the sinusoidal case, but the neutron data are too
coarse to obtain an accurate estimate for this splitting.
Obviously all the J' modes in n-quartz may show linear
dispersion near the zone center because of the vanishing
(002) structure factor.

Similarly all (and only) crystals with a primitive
three- four- or sixfold screw axis have a vanishing
structure factor associated with the zone center in the
folded scheme. ' These crystals are a subgroup of those
symmetry classes that permit linear q shifts, so they
may have a dispersion comparable to o.-quartz. Ex-
amples are Se, Te, HgS, and P-quartz, which all have
threefold screw axes; the first three have the same
space group as a-quartz (P3~21). NiSO4. 6H~O (P4&2,2)
has a fourfold screw axis. A prominent example of a
crystal without such a screw axis, but within the linear
shift category, is NaC10, (P2~3).

EXPERIMENT

In Fig. 3 we show some of the experimental traces
obtained by backscattering along the c axis in o.-quartz
with a single-mode Ar+ laser at 4880 A. Backscattering
gives the largest splitting, since the shift is linearly
dependent on the wave-vector transfer to the phonon.
The filtered 128-cm ' Raman light is anal'. zed in a
pressure-scanned Fabry-Perot interferometer with a
free spectral range of 2.60 cm '. The laser light that
leaks through the filters acts as a marker. The upper
trace corresponds to linearly polarized incident light
that is scattered by both branches of the I:-mode
phonon, giving rise to a Raman doublet. The two
normal modes are circularly polarized in opposite direc-
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I'fG. 2, Dispersion of lower-energy phonons along trigonal axis in
~-quartz. After Elcombe (Ref. 5).

FIG. 3. High-resolution kaman scattering from 128-cm ' I;
mode in n-quartz at 5 K. Backscattering of 4880-A light along
c axis; Fabry-Perot analyzer with free spectral range 2.60 cm '.
Upper trace, linear polarization; lower traces, opposite circular
polarization s.

' International Tables for X-ray Crystallography (K&rnoch Press,
Birmingham, England, 1952), Vol. I, Sec, 4.7.
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Fro. 4. High-resolution Raman scat-
tering from 128-cm ' I' mode in o.-
quartz along c axis at 5'K. Upper
trace, backscattering of 6328-A light,
FSR 2.60 cm ', linear polarization.
Lower interferogram, stimulated back-
scattering of 6943-A light, FSR 0.787
cm ', linear polarization.

tions, as seen in the Appendix. In an IR absorption
measurement, this would be manifest as circular
dichroism or, concomitantly, rotary power dispersion.
The use of circularly polarized laser light discriminates
between the two normal modes, as seen in the lower

0.2

I

E

3
0.I

8~ 10

q~ pn/k (cm I)
L

I rG. 5. Raman doublet splitting for 128-cm ' I' mode in o.-quartz.

traces. The measured left-right splitting for this experi-
mental geometry and wavelength is 0.19&0.01 cm '.

In Fig. 4 we again show the doublet obtained with a
He-Ne 6328-A laser and a Q-switched ruby laser at
6943 A. For these smaller wave vectors, the doublet
splitting is barely resolvable from the very narrow
natural linewidths. The resolution is improved, how-

ever, by using stimulated scattering, which greatly
emphasizes the peaks of the spectrum. The free spectral
range of the upper trace is again 2.60 cm '; and, for the
lower interferogram, it is 0.787 cm '. Forward scattering
is observed in the interferogram because of rejections
from the rear face of the crystal. All measurements are
taken at helium temperature to sharpen the spectra. '

A graph of the Raman doublet splitting versus wave
vector, for our three laser frequencies, is shown in Fig. 5.
The linear splitting in velocity units is 0.86~0.05X10'
cm/sec, which is about 1/7 the velocity of longitudinal
sound along the c axis in n-quartz. Recall that the
simple approximation in Fig. 1 would have the doublet
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splitting equal to the velocity of sound. From the
standpoint of a lattice dynamics, accurate measurement
of such linear terms in the phonon dispersion comple-
ments neutron scattering data in much the same way as
a sound-velocity measurement would.

The E doublet may also be split anisotropically by
electrostatic forces for propagation directions o6' the c
axis. Kith a small misorientation, such anisotropy could
mask the linear wave-vector eBect if the LO-TO
splitting in the basal plane were much greater than the
TO+-TO splitting along the c axis. However, it was
previously shown' that, for the weakly IR-active 128-
cm ' mode, the LO-TO splitting is unresolved from the
natural linewidth. Therefore the linear q shifts dominate
the electrostatic eff'ects and the anisotropic splitting is
maximum along the c axis.

APPENDIX: THEORY OF LINEAR WAVE-VECTOR
SHIFI'S AND INFRARED OrmCAX, XCYIVIVY

In this section we derive the essential symmetry
conditions for linear wave-vector shifts in the zone-
center-phonon spectrum. The connection between this
eff'ect and optical activity is established. The magnitude
of the linear q shift inAuences both the strength and the
dispersion of the IR rotary power.

We begin with a general description of the lattice
dynamics within the context of the rigid-ion model. The
dynamical matrix is expanded in a Taylor series in wave
vector, and only those terms contributing near the zone
center are kept. Wherever possible we illustrate the
proper construction of the matrix by a concrete ex-
ample. Most of the interesting physical effects are con-
tained in a model with the symmetry of e-quartz;
however, we discuss other cases as well when warranted
by completeness or simplicity.

The equations of motion for the vector displacement
n(&rr) for ion r in unit cell a in the presence of an
electric field E(or) are

ri'u;(~rr)
+ p 4,, (nr, a'r')u, (a'r')

=Q e;,'F, (ar). (Al)

Here m is the mass and e' the eff'ective-charge tensor
for ion r. + is the elastic force between ions. Similarly,
Maxwell's equations for the field that is driven by the
lattice polarization are given by

c2& X&XE+~".

a" is the dielectric tensor at frequencies high compared
to the lattice modes. The field and vibration vectors are
Fourier-analyzed in the usual way.

The 3X3 tensor F(q) is formed from the double cross
product

(A6)J'* (q) =~'(r'~' —v.c ).
The eRective-charge matrix elements e;,'/m' comprise a,

3XX3 array.
The dispersion relations for the coupled phonon-

photon modes are obtained from the secular determinant

[D (q) —co'1) —[e(q)/m) =0. (A7)—[4~iV~'e(q))' [F(q)—~'e" (q))

This determinant may be written as generalized
Lyddane-Sachs-Teller (LST) relations by eliminating U
or Kin Eq. (A4). Then

where
I
F (q) -~"(q) I

=0 (A8a, )

s(q) =e"(q)+4m X.[e(q))
X[D(q) —~ 1]-'[e(q)/m], (Agb)

or, alternatively,

where
I
D'(q) —co'1I =0, (A8c)

o'(q) =D(q) —4 ~~'[e(q)/~)
X[F(q)—~'e" (q)] '[e(q)]'. (Agd)

The matrices 0, e, and a" are expanded in a Taylor
series in wave vector about q =0, where we assume that
the eigenvalues and normal modes are known. There the
determinant

I D(0) —oPl
I
=0 has 3' roots &dr, ', which

are l.abeled by their irreducible representations, and the
dielectric tensor is diagonal along the principal axes.
Then the LST relations (A8b) and (A8d) can be written
to a first approximation in a commonly recognized form.
For example, in the optical branches of an alkali halide,
where D(0), e"(0),and e(0) are unit 3X3 matrices
and tl is the reduced mass, esitii2/(m&+m2), of the two
ions, we have from (A8b)

where r(ar) is the equilibrium position vector of an ion

at or. Ke make use of the periodicity of the lattice and

ignore local field variations over the dimensions of the
unit cell. The equations of motion for the Fourier
amplitudes can now be written in matrix form

[D(q)--'1][U]=[ (q)/ )I E),
[F(q)—cu'e" (q))[E)=[47rX~'e(q))r[U], (A4b)

with X, being the number of unit cells per unit volume.

D(q) is the 3VX3X dynamical matrix with elements
given by

I
.TT (q) P @ (&& &l&l)piq ~ ir(a'r') r(sr —]i(AS)

m' "

n(ar) U,

E(or) ~ E
~ s[q ~ r(rr r)—~ t]

7 (A3)
47'-i~, e-"g m

6=6. +
My —M~

(A9a)
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and from (A8d), at q=0,

D'(0) =~r-"+4m.'i'~'/me" —=col.'. (A9b)

Equations (ASc) and (A8d) are related to Keller-
mann's formulation of the rigid-ion model, "where he
divides the force matrix into short-range and long-range
(Coulomb) terms. The short-range forces are equivalent
to D(q); the Coulomb matrix has the form of the second
term in (ASd) for small wave vector. The full Coulomb
matrix can be reproduced by taking local field efFects
into account, but the difFerence is significant to the
dispersion only near the Brillouin-zone boundaries.
Another lattice-dynamics theory, known as the shell
model, "may be derived in a similar way by including
electron-phonon interactions. This interaction is par-
ticularly important in materials where the electronic
transitions occur at frequencies not much higher than
the phonons'; this constitutes a breakdown of the
Born-Oppenheimer or adiabatic approximation.

We now specialize the problem by considering only a
3)&3 dynamical matrix interacting with the electro-
magnetic field. That is, we are ignoring coupling to the
remaining 3Ã —3 modes, but we do not lose any of the
symmetry since phonons cannot have higher than
threefold degeneracy. The full symmetry involved in the
linear wave-vector effects can be studied by a few
examples of this type. As stated in the theoretical dis-
cussion, time reversal implies that the linear q expansion
of the matrices must transform as the angular-mo-
mentum matrices. Therefore, the most general 3/3
matrix linear in q may be written

—iEv*q i'm v
co =co& cv =cuz &0!;;q (A12a)

nonzero components allowed then in M(q') are y„
=y» and y„.Another interesting example is the
wurtzite 6nws class, which has operations C2, C3, aq, cr„
so that only q,J„—q„J,is invariant. Here the nonzero
components are y „=—y„.

It should be recognized that the form of the matrix
e"(q') as in (A10) is very similar to that deduced for
optical activity. "However, only the symmetric terms
&;,=», can contribute to the rotary power. Thus,
crystals such as 6mm are nonrotary even though linear q
tensor elements are allowed. The reason for this is
simple. The antisymmetric combinations of y,; arise
from components of q)&J.Under a change of handedness
of the coordinate system the rotary power must change
sign, whereas the polar-axial-vector cross product does
not.

The remaining selection rules for linear wave-vector
shifts are best illustrated by specific examples. YVe

choose first a set of polar modes exhibiting class 32
symmetry, which consists of a doublet 5; mode along x
and y and a singlet A2 along s. Then, to first order in

q we have, from our previous considerations,
T 2 2

ca) & —Q7 —zcx q 'l Q q y

t D(q) —(a21j= iot„q, cux' —cu' in„—q, . (A11)
2 2—zof»q „~n»q.

Since q, transforms as A2 and A2)&E=E, and q, q„
transform as E and EXE=A~+A2+E, ' the orthogo-
nality condition is satisfied for all the oG-diagonal
elements. Ignoring, for the moment, any coupling to the
electromagnetic field, we examine the roots of the
secular determinant of (A11). First take q=q, and
q, =q„=O.Then the three eigenvalues are

M(q') = i Zv*,v,

iZv*v

& 2 %~i' ~
and the doublet is split linearly. Next take q=q„
q„=q,=O; then

(d =(ds M = (M@ +(dg )
&P (co/' —(d A ')'+n y j'". (A12b)

(A10)

The linear expansions D(q') and e"(q') are also
subject to the symmetry operations of the crystal. ThusF„.XFg,. must contain F~, and F„.XF;must contain r,-,
if F; and Fl„-are the symmetries of the coupled phonon
modes at the F point. The latter condition is required by
orthogonality. The first requirement states that the
D (q') and e"(q') matrices be constructed from invariant
combinations of q;J, . In Table I we list these combina-
tions for the common crystal symmetry operations.
Only those combinations that are coincident to all the
symmetry operations of the crystal may be used. For
example, e-quartz has operations C3 and C2', so that
only q J +q„J„andq,J, are invariant. The only

"E. K. Kellermann, Phil. Trans. Roy. Soc. I.ondon A238, 513
(1940}."B. G. Dick and A. %. Overhauser, Phys. Rev. 112, 90 (1958).

Here, if cog2 and cog,2 are not accidentally degenerate, the
last two modes are split quadratically in q. These
demonstrations are immediately generalizable to the
prior statement that nondegenerate modes are split
quadratically by the coupling matrix element. This
statement is actually a well-known result of nonde-
generate-perturbation theory, which is recovered term
by term in (A12b) by expanding the square root.

From the above reasoning, we can discount the
possibility of linear shifts for singlet modes, and,
thereby, for biaxial crystals. Furthermore, orthogonality
rules out the doublet modes in cubic crystals, since
T„.)&E does not contain E. The doublets in uniaxial
crystals are only split linearly by q;J, combinations as
is evident in (A12a). This combination exists exclusively

"J.P. Mathieu, in EIandbuch der Physik, edited by S. Flugge
(Springer-Verlag, Berlin, 1957), Vol. XXVIII, p. 333, a thorough
review of optical activity and an extensive bibliography.
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TABLE I. Invariant combinations of V,J, for common symmetry operations.

Symmetry operations on
polar and axial vectors

I(q, qu, q,) = (—q„—qy,
—q, )

1(J,J„,J-) = (J,J„,J.)
~ (V*,V.,V ~=(—V-, qu& q.~

o, (J,JyJ) = (J, —Jy, —J)
«(V-&&lu&V ) = (&lu, &l-,V.)

~~(J.,Jy,J,) = (—Jy, —J, —J, )

~n(&1,&lu, q.) = (qz& q„—V.)
&Ji, (J„Ju,J.) = (—J, —J„J.)

~1(&I Vu &1=-~ = (Vu V V=-~

5,(J.,J„,J,~
= ( —Jy, J., J.~

~1(&lr&&ly&&l=) = (Vy& Vr& V )

C4(J.,J„,J,) = (J„,—J., J, )

~3(&lz&&ly&Vz) = ( ~&lr+~~~qu& uv3qx &Vu& Vz~

C3 (J,Ju,J,) = (—&J +)AJy, —A&3J —
p Ju, J.)

Invariant combinations

none

V-J., q-J, quJ. , V-J.

&lrJx VuJu& Vrl„—Vy Jr

V.Ju, V,J, V J„qyJz

VzJr VyJy& &lzJy+Vy J»

V J +VuJu& V Ju VyJ VzJz

V J +'lyJu '1 Ju &luJ V J=

C3'(q„qy,V,)
C3'(J,Ju,J,)

t- '-& (&l»&l y &&le~

C (J„Jy,J.)
~'-' (&l»Vu&&l-"~

C '(J,Jy,J.)
C'& (&1 &lu '1:

C "(J.,Jy,J,)

(Vu&qz&qz&

(Jy,J.,J.)

(—V-, —
ly& V.)

('lz& '1 y & Vz~{J„—J„,—J.)
(1!,Vz&
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&lr Jr& 'luJy& V-J-& '1yJ-" 'le Ju
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for the classes 4, 422, 3, 32, 6, and 622, and then only as
q,J,. Thus, the linear shifts occur along the c axis for all
the uniaxial crystals that exhibit optical activity along
this axis. The other two uniaxial optically active
crystals, 4 and 42m, do not show linear phonon shifts
and are nonrotary for c-axis propagation. The cubic
crystals 23 and 432 have the invariant q J, which
implies p, =p»=p„and assures that the linear triplet
splittings, as well as the optical activity, are isotropic.

Ke now return to the coupled phonon-photon problem
in order to establish the influence of the linearly split
modes on the IR optical activity. This is accomplished
in the simulated n-quartz example by introducing a

~, -—~2+~q 0
0 up; —oP —ng
0 0

47r lt', ~'(ee+&!q)— 0
0 4&rX~'(ee r!q)— —
0 0

0
0

Mg —(d

0
0

47t 3 y&d 8g~

nonzero effective-charge tensor of the proper symmetry
to couple to the electric field modes. Noting that the
fields along the principal axes E, and E„have E
symmetry, and that E, has A2, by orthogonality we see
that e (q) must transform as Fi to couple the fields to the
same symmetry vibrations. Therefore, in this case, 0,
e", and e all have the same form as (A11). As a further
simplification, we take purely c-axis propagation, so
q=q„q,=q„=0,and let n,.=n. Each of the 3X3
submatrices is diagonalized, as indicated in (A12a), by a
unitary transformation of the (x,y) polar modes to a
set of circularly polarized modes (1/V2) (x&iy). With
this basis the coupled matrices in (A7) can be written

—(eF+»q)/m
0
0

e q
—(d (eF, +Pq)

0
0

0
—(ee —»q)/m

0
0

e q
—cd (ep —&!q)

0

0
0

eg, /rn =0. (A13)—
0
0

Here nz is dependent on the particular combination of
ionic motions making up the given normal mode. Ke
have absorbed its index and wave-vector dependence
in the effective charge.

The solutions of the secular equation (A13) are
obtained from three 2X2 determinants. The dispersion
of the F modes is expressed in the form of Eq. (A8b) for

the phonon-modified dielectric tensor

(4&r 3'./m) (ee&»q)'-'
ee~ = ee"&Pq+ — . (A14)

&d y —&d &o.'!I

The rotary power per unit length is given b&

p = ',
,qnt'Qe»+ Qe» ]=-(q/4n') k~»+—e» -), (A15)—-
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where we can neglect the relatively small linear q
terms in

n=~$+eg++Q~g ~(e"+G/(erg' c—v') J' , -(A16)
where G=4siV eg'/m=S~cog', and S~ is the oscillator
strength. To first order in q

(4Gq/e F)q ((oE u)') —2Gnq-
[eg+ —eg j=2Pq+ —. (A17)

((og-'—co'-')'- —(oq)'-

The rotary power then has three distinct linear q terms.
P is contributed by the electronic resonances and is
measurable from the usual visible optical activity.
Normally Pq is very small in the far IR. g arises from the
dipole expansion of the effective charge and so far, has
not been observed. The parameter o. measures the
linear frequency splitting, which we know from the
Raman experiment reported here. 0, can be written co~a,
where v is of the order of the velocity of sound.

The dispersion of the IR rotary power consists of two
peaks at cog&nq/2cug, as seen from (A17). Inclusion of
damping keeps the resonances finite. The two peaks are
odd about ~~ for the g contribution and even for the o.
term. Among other things, this implies that certain
lattice resonances can affect even the residual electronic
optic;d activity. Again a finite damping reduces the
anomaly.

In Fig. 6 we plot a typical I;-mode dispersion in the
polariton regime for our simulated o.-quartz example.
On the left is the familiar form of the dispersion, which
occurs for propagation in the basal plane of quartz. The
LO and TO phonons and the IR ordinary ray are easily
identified. On the right, along the c axis, the normal
modes of E symmetry are transverse and circularly
polarized. The di6'erence between the IR phase veloci-
ties is a measure of the IR optical activit~.

As a final example we calculate the rotary power in

o.-quartz for the low-temperature E.-mode resonance at
76 p, . The residual electronic contribution is

p p =Pq'/2n' =2x'nj9/X'. (A18)

From the visible rotary power" we have 2x'-P =1.27 p,
'

rad/cm. Thus, pg 3.1X10 rad/cm, which is probably
unmeasurable. The doublet splitting i~q is 0.8X10 '
cm ', where v is determined by the Raman experiment
and q is the IR wave vector. Since the natural linewidth'
ko is 0.05 cm ' (full width at half-maximum), the IR
doublet is unresolved. Therefore, the portion p„,which
is due to the effective-charge expansion, is expected to
be negligible near resonance, since the two overlapping
modes largely cancel each other out. In the wings this
expression may be significant, depending on the magni-
tude of g. On the other hand, the contributions due to
the linear shifts are additive at resonance, so that
(A17) yields

p = sl(~g/b~) (Uq/~) (q/~') .

The denominator in (A17) has been written (i~gkv) 'in'-
the limit, where the doublet is unresolved. An estimate
of S~ 10 4 at 4'K may be obtained from the room-
temperature value of Russell and Bell, '4 which has been
scaled according to the temperature dependence mea-
sured by Plendl et u/. "With the above parameters in
(A19), we obtain a substantial peak rotary power
p ~0.9 rad/cm. However, the concomitant IR absorp-
tion, or circular dichroism, is a serious impediment to
the direct observation of the optical activity. The peak
intensity absorption coeScient in the unresolved limit is,
for this mode,

I =S&(ug/5u) (q/r7~)~10 cm . (A20)

Experimentally, the significant parameter is the net
rotation in a damping length

p.l =-', n (rq/L)), (A21)

E LO

TO

y +

gJ .o E,

which is independent of the oscillator strength. Thus,
the 128-cm ' E mode is the best candidate in o.-quartz
because of its relatively long lifetime. In this case,
p l~2 arc degree. Portigal and Burstein' have suggested
tellurium as a candidate for IR optical activity, though
the relevant parameters have not been measured for
this material. To our knowledge, there have been no
observations of vibration-induced optical activity.

FIG. 6. Polariton dispersion relations in quartz illustrating the
source of IR optical activity.

'4 E. E. Russell and E. E. Bell, J. Opt. Soc. Am. 57, 341 (1967)."J.N. Plendl, L. C. Mansur, A. Hadni, F. Brehat, P. Henry,
G. Morlot, F. Xaudin, and P. Strimer, J. Phys. Chem. Solids 28,
1589 {1967).




