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Elastic waves in a general anisotropic piezoelectric medium are discussed in terms of an eight-dimensional
vector formalism. The eight-dimensional state vectors have the physical significance that their first three
components represent the local particle displacement, the second three components represent the stresses
on an arbitrarily selected plane, and the seventh and eight components represent the electric displacement
normal to this plane and to the scalar electric field potential, respectively. As an application of the formalism,
the dispersion relations for bulk waves and surface waves in Bii.Ge020 are derived, and the dispersion
relations are given for a system consisting of a vacuum followed by an arbitrary piezoelectric film on an
arbitrary semi-infinite piezoelectric substrate. Expressions are given for the propagator in arbitrary hetero-
epitaxial structures, and the boundary conditions associated with electrical or mechanical excitation of
such structures is discussed.

STATEMENT OF PROBLEM

~pq= &g qrsQr, s+ erp&g4', r )

D„=e„„,Q„,—e~,P,„. (3)

EIGHT-DIMENSIONAL MATRIX
FORMULATION

In studying piezoelectric wave propagation in heter-
oepitaxial structures, there are eight quantities of
physical interest; these are the three components of
particle displacement which must be continuous across
interfaces, three components of stress which must
vanish at a free surface or must be continuous across
interfaces, and the normal component of electrical dis-
placement, which together with the scalar electric field
potential, must pass continuously across dielectric
interfaces.

' H. F. Tiersten, Linear Piezoelectric Plate Vj5ratjons (Plenum
Publications Corp. , New York, 1969), p. 36.

HE standard description of piezoelectric wave
propagation' leads to a set of four coupled

second-order partial-differential equations with con-
stant coeKcients in four unknowns, Qi, Q~, Q3, and @.
These represent the three components of particle dis-
placement and the scalar electric field potential, re-
spectively. The 4)&4 system

CyqrsQr, sI)+ cry+, r J) PQq )

&ursus, sy &ye@,rp= 0
& p, q, r, s= 1, 2& 3 (2)

(summation convention understood)

in which c„q„„e„„„ande„„arethe elastic, piezoelectric,
and dielectric tensors, respectively, and p is the mass
density, is easy to solve in principle. However, the
application of boundary conditions at dielectric inter-
faces or at free surfaces is algebraically complicated.
The reason is that the boundary conditions involve the
stress r„qand electrical displacement D„which must be
calculated in terms of u and @ from the equations
of state

In view of these considerations it is convenient to
recast the 4X4 second-order system (1) and (2) as an
8)&8 system of first-order partial-differential equations
in which the eight dependent variables are the three
particle displacement components, the three stress
components, the normal component of electric displace-
ment, and the scalar electric field potential. I.et xi, x2, x3
be rectangular Cartesian coordinates chosen so that the
x~ axis is normal to the layers of the heteroepitaxial
structure. Define an eight-component column vector
"N by

Q2

Qi

Q3

T2
T6
T4
D2

(5)

870 t3 8
) ) W e

x) Bxi c)xq 8t

This elegant canonical form greatly simplifies the
analysis of many problems of current interest. The
remainder of this paper will list the 64 matrix elements
of the (8X8) matrix Q and describe how (6) is derived
and applied.

The matrix Q may be represented as

Q= RPR ',

where Q2, Ql, and Q3 are the displacement components
along x2 x& and x3 respectively T2 T22) T6 7.&2)

T4=7.23 are the components of stress on a surface
normal to the x2 axis; p is the scalar electric potential;
and D2 is the component of electric displacement
along x2.

The system (1) and (2) can be rewritten as a single
8&&8-matrix partial-di6erential equation which is of
first order in the variable x2, i.e.,
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~here the HXS niatrix P is partitioned into submatrices so that

P,»

P33

P14 Pl;,
P 1

P;»»

P16
P
P36

P17 Pls
Pv Ps
P;»7 P;»8

P42 P43
P;, Pr~
P6 P63

P44 P4„- P46
Pr 1 P„-.; P;„

P6;,

P47
P;7
P6v

P48
P;s
P6s

P71 P72 P73
Psl Pso Ps:»

Pvl Pv; Pv6

P84 Pso P86
Pvz Pvs
Psv Pss

The matrices o., P, y, X, p, , 7, and G are dined in the
Appendix. The last two rows of (8) are defined as
follows: The row vectors Pvl, P72, P73 and P74 P75 P76
are each a sum of row vectors divided by a scalar and
are given by

Pvi, P72, Pv3
= (Mrat+Msa, —M.X —L.S)(¹ Gi) ', (9)

Pv4) f'v;;, Pv6
= (L,7),+L,rls+ Mpp —Ltrr)(N'Gr) '. (10)

The vectors and matrices on the right-hand sides of
(9)—(12) are defined in the Appendix and Bi=- r)/Bxi,
82——cl/cixs. The matrix elements P77 and P72 are given by

I 77 (N2' Gi) L(Ni' Gi)cil

+(¹.G,)a,+(M, V,)
y(L2 V,)+(N., G.,)), (»)

J'72 (¹'Gr)-'t (¹ Gs)rli

+(N, G2)cls+(M2 W2)y(L2. Wi)]. (12)

The last row of P is given by

Ps 67 ~ j 1 2 e ~ ~

Finally, the matrix R is dehned except for the seventh
row by

We have thus completely described the matrix Q in

(6) in terms of the matrices rr, tl, y, X, ii, v, G, L, M', and
X. These are related t.o the elastic, piezoelectric, and
dielectric constants of the material as shown in the
Appendix.

DERIVATION AND APPLICATIONS

T2 C1182+2+C12~1+l )

Ts = c44(clssi+ rlrmr),

l'4= c4482N3+ e1481$ )

I1 C12~2N2+ Cll~l+1 )

Ts c12r)2N2+cisciiN1 7 (18)
Tx = C4481Q3+ e14$2$ )

while conservation of momentum requires that

In order to illustrate how the general expression for
Q was derived, we consider a simple example of physical
interest. The general case, though tedious, is handled
in exactly the same manner.

The simplest. piezoelectric crystal we can consider is
that of bismuth germanium oxide (Bit..Ge022) which
belongs to the cubic class 23. Its only nonzero elastic,
piezoelectric, and dielectric constants are' cll, c12, c44,

el4, and all, respectively.
Let the x2 axis be normal to a cube face and let us

assume that all the Geld variables are independent of
the xs coordinate (x2 cut, xi propagation). Equa. tion
(3) becomes

l92T2 =PQ2 81T6 )

~276 P+1 ~1T1 )

~2~4 =PN3 —~1T5 ~

The seventh row of R is given by

R71 0 ) R72 &22 ) R73 &23 )

R74 L21 ) Rvo L99 ) R76 L23

R77 '~ 22 ) R78 2~1 21~1 ~~' 23~3 )

(1&) Equation (4) becomes

Dl = e14~2N3 —Ell~l@,

R;, =6,, (7'87), i=1, , 8; j=1, , 8. (14)

(19)

where again .Y;; and L;, are matrix elements defined in
the Appendix.

The inverse R ' is defined, except for 7',= 7, j= 7, by
(R ');,= R;,(R77) ', —

i= 1, , 8; j=1, , 8; i/7, j/7. (16)

D2 = e1481N3 61182@

Ds ei4(rliu2+ clssrr),
——

and charge conservation requires that

~2D2 ~loi e14~1~2+3+ &11~1 @~

(20)

(21)
The element (R ')77 is given by

(R ')77=R77 '. 2 M. Onoe, A. W. XVarner, and A. A. Ballmann, IEEE Trans.
17 Sonics Ultrasonics SU-14, 165 (1967).
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From (18), we obtain

&32242 Cll T2 (C12/Cll) &)ill )

t92N1 =C44 T6 —t9114g )

&)2342 c44 T4 (e14/c44) 1314'

and, from the second equation in (20),

(22)

8+ (e14/411) &)1243 311 D2 ~ (23)

Equations (19 and (21)—(23) can be placed in the form
of (6) provided one first expresses &tlT1 and ctlTs in (19)
in terms of the variables of w given in (5). This is done

by using Tl as given in (18) and eliminating &)sus with
the aid of (22). Similarly, one uses Ts as given in (18)
and then eliminates ct24p with the aid of (23). The result
is that

&)w/&)xs = Q(&)/&)xi, &)/&)t) w, (24)

where the only nonzero matrix elements of the 8)(S
matrix Q are the following:

pair of nonpropagating solutions, the other pair of
solutionsof (28) for P=0 is it=+(p/C44)'&2. For values P
such that 0~& p'& p/c44, (28) has two real roots and two
complex-conjugate pure imaginary roots. The two real
roots correspond to piezoelectrically stifIIened bulk
acoustic modes propagating in the directions (P, Alt) at
slightly greater than the bulk shear speed (c44/p)"'.
Finally, for p-'&p/C44, all four roots of (28) are pure
imaginary.

SURFACE WAVES

In order to examine Rayleigh-type surface waves
propagating in the x1 direction on the surface x2= 0 of a
half-space (xs&~0) of Bi»Ge023 we select four of the
eight eigenvectors of (24) corresponding to nonincreas-
ing amplitudes as x2 —++ ~. Let

w=p A,w, &"'(p) exp{s[t+pxi —lt, (p)xs]) (30)

Q12 —(C12/C1 1)&)1 i

Q&4 Cll

Qsi= —&)1,

Q

�2
5 ~44 )

—1

Q33= c44

Q33= —(ei4/c44) &)1

Q41 =P~'/@',

Qsv= (e14/«1) ctl,

Qls = —(e14/C44) d 1,

Qis= («i+c44 'ei4')&&,

Qss= (ei4/sii) &1,

87 611
—1

(25)

Q„.,= &-'/at' —(c„'—c,,-')c„'~,-,
Q34 ———(C,2/C„)8, ,

Qss &7 /&)t (C44+ 411 e14 ) &)1

Re[it, (p)]& 0. (31)

Inside the crystal, the electric field potential is

@=Q 4,P„"'(P)exp{s[t+Pxl —lt, (P)x.]) . (32)

be a, linear combination of eigencolumns of Q with
arbitrary coe%cients 3,. and with the four branches
lt, (p) of (27) and (28) chosen so that

The derivation for the case of complete anisotropy (21
elastic constants, 18 piezoelectric constants, and six
dielectric constants) proceeds in exactly the same
fashion.

Outside the crystal, p must be a solution of Laplace's
equation which matches (32) at the boundary x,=0.
The potential

X (cossPx. +n sinsPxs) (33)

&P= A &P
'"' P exp s t+Pxl

DISPERSION RELATION FOR x2 CUT xl PROPA-
GATING BULK MODES IN Bi1.Ge02p

A solution of (24) and (25) of the form

w =ws exp[s(t+ pxl —ltx2)]

yields the dispersion relations

n' —Ki(p)n'+Ks(p) = o

lt4 Ks(p) its+ K4(p) =—0,
where

has the required form. The constant parameter n in (33)
(26) is the ratio of the vertical to the horizontal electric

field components at the crystal surface, i.e.,

n= (Es/Ei)*,=o . (34)

(28)
Continuity of D2 across the boundary x2=0 requires

Kl(p) (clic44) [(c12 cli +2c12c44)p'+ p(cu+ c44)],

K2(P) =P' —p(cllc44) '(cll+ c44)P'+ p'(cllc44)

K,(p) =C44-'p —2[1+2(sllc44) 'e14']p',

K4(p) =p'(p' —pc44 ').
with &t given by (33). Consequently,

(2g)

D2 ——p A~D2&"'(p) exp[s(t+px, )]= —43 —,(35)
Bxo „2=p

Equation (27) contains no piezoelectric coupling terms
and corresponds to the pure acoustic bulk modes of an
ordinary cubic crystal. The piezoacoustic bulk modes
come from (28). When P=O in (28), 3)2=0 gives one

2 A4[D»'"'(p)+»«p4, '"'(p)] =o,
j=1

(.36)

and to this we must adjoin the conditions that stress
components T2,T6, and T4 vanish at the free surface
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In the substrate we have

1453

p A, T„&'&(p)=0, p A~T3, &p&(p) =0,

(37)

ws=g c ws (p) exp{s[t+px& —ns'(p)X2j}, (45)

P A, T4, &"&(p) =0.
j=1

The dispersion relation for Rayleigh-type surface waves
arises from the requirement that the 4X4 system (36)
and (37) have a nontrivial solution. It is given by

T2&"'(P) T»"'(P) T»"'(P) T24"'(P) '

Tp&&p&(p) T„&'&(p) T33&"(p) T44"'(P) 0 (38)
T42"'(p) T42"'(P) T43"'(P) T44"'(P)
G22 (P) G22 '(P) G»'"'(P) G24"'(P),

where

G„&'&(p)= D2, &'&(p)+nppsp&t, &'&(p), j=1, , 4. (39)

where Re fns, (p)j&~0, j=1, 2, , 4, to prevent
growth of wq as x2 ~ ~ .

The boundary condition at the interface x2= H,
between the film and the substrate, is simply wp= wq,
and when applied to (43) and (45) yields a set of eight
homogeneous equations in the 12 unknowns 3 l, , A4,

By, ', B4, and cl, ' ', c4.
The remaining four homogeneous equations are pro-

vided by requiring continuity of p and D. across the
vacuum-film interface x2= 0, and vanishing of the stress
on x2= 0. These equations are

4 4

2 A&G& +2 B&Gt'=0,

If the surface of the crystal is grounded, then (36) is
replaced by

Z A,4t'"(pl =0,
j=1

where

P .4,T F;
—+Q B,T F,+ =0,

(46)

and (38) is altered accordingly.
The surface-wave problem has an interesting struc-

ture in the present formulation. Given the 8&8 matrix

Q(p, s) in (24), one forms the corresponding eigenvector
matrix E(p,s). From E(p, s) one selects a 4X4 submatrix
whose determinant vanishes at the surface-wave poles
p=p„.Real values of p„correspond to pure surface
waves; complex p„produce "leaky" surface waves.

G,~=D2 F~(p)+n ppspg ~F(p), j=1, 2, 3, 4. (47)

The set of 12 homogeneous equations in the 12 unknowns

A;, B;, and c; consists of (46) and the eight equations

P;1„wF,—exp( —snF;II)+Q B,wF,+ exp(snF, P)

—P C,ws,
—

exp( —sns, H) =0, (48)

Consider now a general piezoelectric film 0& x.& H,
on a piezoelectric substrate II~&x2&~, and let the
region —~ (x2&0 be occupied by vacuum or air. In
the film we have

&&2&&F/&&X2 = QF24&F,

and in the substrate,

&&2&&s/BX2 = Qs2&2s.

(41)

(42)

DISPERSION RELATION IN HETEROEPITAXIAL
STRUCTURES

generated by the condition w~= wq at x~=II.
The required dispersion relation is obtained from the

condition that the 12th-order determinant of the system
(46)—(48) be zero.

PROPAGATORS FOR GENERAL PIEZOELECTRIC
HETEROEPITAXIAL STRUCTURES

Consider a structure having many layers of piezo-
electric material, generally of di6'erent symmetry and
layered in the x2 directions. Assuming solutions of the
form

The eight eigenvalues of (41) are complex functions of p
and a linear combination of the eight corresponding
eigenvectors yields a solution in the film of the form

w= w(x2) exp{s(t+px, )},
&&w/&&x2= Q(X2)P,s)w

(49)

(50)

wF ——p A,wF, (p) exp{spt+px& nF;(p)X2j}—
(51)

for the determination of the amplitude w(x2). The
matrix P(x2,X2') is called a propagator for the structure
if it has the property that when w(x2') is a solution of

4 (50) at point x2', then w(x2), given by
+Z Bf +(p) e p{sLt+Px+n (P)* j}, (43)

j~1 w(x2) =P(xp, x2') w(x2'),

where nF, (P) is defined by

nF (p) nF& 4-4&=(p), j=1,2—, 3, 4.

is a solution of (50) at x2.
In order to construct the propagator J' we need only

(44) find eight linearly independent column vector solutions
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w of (50). Tf these form a nonsingular 8X8 matrix
/.'(»2), then the propagator P(x„x2')is given by

/'(», » ') =- /.'(» l F. '(» '1, (52)

as ma&. be verified bi. substitution of (51) and (52)
into (50), remenibering that each column of I'(x;)
satisfies (50) .

The point to note is that the propagator from any
point x2' can be calculated immediately by matrix
inversion once eight linearly independent column
vector solutions of (50) are known.

REMARKS ON INPUT-OUTPUT PROBLEM

Energy is introduced into the layered structure by
either electrically or mechanically exciting the vacuum-
film interface. Electrical excitation can be accomplished
by placing a pair of parallel. line source electrodes on a
free surface a distance 3 apart with their axes along the
x3 direction. When these electrodes are connected to a
generator which puts out a potential @(t), the horizontal
component of electric field between the ale&.trodes is
approximated bs

APPENDIX

The matrices a, p, y, P„ii, v, and G appearing in (8)
are defined as follows:

~ i3+ '~ 1 lC1 o3~ ~264 )

P ==-. 1 —.01;lC);,3'-"826,-''6B264+.--11,1A'1;,;1,

y= .l i)(ei-gr'-"' —c)- '-'""/i1 '-'4"e r'-'")

(A1)

(A2)

(A5)

Xolterra' on systems of linear diiferential equations.
4'olterra's ideas have been applied by others to elastic
wave and vibration problems in isotropic and aniso-
tropic nonpiesoelectric, layered media. 4 ' The present
contribution presents the extension of this matrix de-
scription to include arbitrary piezoelectric coupling as
well as elastic and optical inisotropy effects. Wave
propagation in piezoelectric crystals has been considered
by a. number of people and many of their contributions
are discussed in the recent text by Mason. ' The excita-
tion and propagation of surface waves on piezoelectric
media is the topic of several recent papers' " and
appears to be a subject of increasing interest in view of
potential device applications. "

D, = ne„F,(x„o-,/). (54)

Equation (54) fixes Di as the vacuum-film interface is
approached from the interior of the film and (54) leads,
after Fourier transformation, to a corresponding modi-
fie, tion of (47).

iVlechanical excitation of the heteroepitaxial structure
can be accomplished by placing an electrically driven
mechanical transducer, such as a, BaTio~ or quartz
crystal on the vacuum-film interface. If the transducer
generates a stress component along the x axis acting
normal to the free surface at the origin, then the ap-
propriate boundary condition is

/' i(»i, 0 )t).= —Q(t)l~ '[I/(xi+A/2) II(xi —X/2) 1—, (i3)

and froin (34), the vertical component ot electric dis-
placement on the vacuum side of the free surface is

where

/A= J13 6424('JI 64,

p= J~3 642"',

—JI3 2 46e T12 3
264 264

'0 a,
0

0 r3;,

0 0
0 0

0 0
0 cj1

~a

0
0~

0~

0

(A4)

(A5)

(A7)

(A8)

(A9)

where F(t) is the time dependence of the applied stress.
Fquation (55) introduces a modification of the boundary
conditions in the second set of (46), to account for the
applied stress at the vacuum-film interface x2=0. For
either electrical or mechanical input, the boundary
equations (46)—(48) form an inhomogeneous set of
algebraic relations for the field amplitudes. These
amplitudes become infinite at the normal modes of the
system defined bx vanishing of the 12&12 determinant
of (46)—(48).

RELATION TO OTHER INVESTIGATIONS

The description of the problem (1) and (2) in the
matrix form (6) is based on some early investigations of

' V. Volterra, Rend. Accad. Lincei 3, 393 (1887); Mem. Soc.
Ital. Sci. 6, 1 (1887).

4 F. Gilbert and G. Backus, Geophysics 31, 326 (1966).' F. Abramovici, Bull. Seism. Soc. Am. 58, 427 (1968).'K. A. Ingebrigtsen and A. Tonning, Phys. Rev. Letters 23,
A12 (1969).' W. P. Mason, Crystal Physics of Interaction Processes (Aca-
demic Press Inc. , New York, 1966).' J. J. Campbell and %. R. Jones, IEEF Trans. Sonics Ultra-
sonics SU-15, 209 (1968).

S. G. Joshi and R. M. White, J. Appl. Phys. 39, 5819 {1968).'0 R. M. white, IEEE Trans. Electron. Devices ED-14, 181
(1967)."H. F. Tiersten, J. Acoust. Soc. Am. 35, 234 (1963)."G.A. Coquin and H. F. Tiersten, J. Acoust. Soc. Am. 41, 921
(1966)."H. F. Tiersten, J. Appl. Phys. 40, 770 (1969)."C. C. Tseng and R. M. White, J. Appl. Phys. 38, 4274 {1967)."C.C. Tseng, J. Appl. Phys. 38, 4281 (1967)."J.L. Bleustein, J. Acoust. Soc. Am. 45, 614 {1969)."K. A. Ingebrigtsen and A. Tonning, Electronics Research
Laboratory Report Xo. TE74, Xorwegian Institute of Technology,
Trondheim, Norway {unpublished).
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C12

C153" = C52
246—

Cu

C264 = C62
246

C14 C16

C54 C56

C34 C36

C24 C26

C64 C66

C44 C46

B 246= (c 246) 1

4 = —PJ(8'-' j2)t'-'),

~~264 C264 II3+C264

(9)—(17) are defined via the ma, trices L, M', 1V. where

(A10) I —e „246+ 246 (A23)

(A11)

-M = (e122 e123 'B264'"c264"')H 16, (A24)

1V = (6122"'+e126 B264 'e264 '"') . (A25)

&123 = &21
123 (A26)&23

(A14)

» (A25), 6126"' is the dielectric constant matrix
(A12) given by

(A13)

'0 0
Q= 8, 0

0

0
II13= 0 0

0

0
0
0)'

0
83

(A15)

(A16)

alld

e123246

e]23
135—

e32

C14

e24 e26

e34 e36

e13

(A27)

(A28)

H162 = (c1.2'"H2+ c1;-,"'H 1,), (A17)
e31

The vectors I.;, M;, 5;, y;,

e33 e3)

v, , and G; are dered by

C264
135—

135—
o

Fl23
153

CG1 C63

C41 C43
4

' Cll C13

C53

C31 C33

eil e21

)

C45

C15

C55 )

C35.

e31

e15 e2;, e35

C21 C23 C2;

(A18)

(Ale)

L,=row (j)
M, =row (j)
N;=row (j)
y, =row (j)
v, =row (j)
6,= column

of matrix I. ,

of matrix M,
of matrix cY,

of matrix y,
of matrix p,

(j) of matrix G.

(A29)

e13

e264 e16F123

e14 e24

~33

e36

e34

(A21)

0 0
1 0 0
0 1 0

(A22)

The matrix elements c;, and e;„represent the 21 elastic
constants and 18 piezoelectric constants of an arbitrary
linear piezoelectric solid. The quantities appearing in

The column vectors V, and W, in (11) and (12) are
dined b&-

Pl' Gl
V, — &,.6, , y,

, y3 Gl, &3 Gl
A30

gl G2 vl ' 62
%,=~,.G, , W,=„G,.

I
y3.6 V3 6,

The parameter p is the scalar mass density and all the
quantities necessary for the computation of Q in (7)
have now been defined.


