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Elastic waves in a general anisotropic piezoelectric medium are discussed in terms of an eight-dimensional
vector formalism. The eight-dimensional state vectors have the physical significance that their first three

components represent the local particle displacement,

the second three components represent the stresses

on an arbitrarily selected plane, and the seventh and eight components represent the electric displacement
normal to this plane and to the scalar electric field potential, respectively. As an application of the formalism,
the dispersion relations for bulk waves and surface waves in Bi;sGeOqo are derived, and the dispersion
relations are given for a system consisting of a vacuum followed by an arbitrary piezoelectric film on an
arbitrary semi-infinite piezoelectric substrate. Expressions are given for the propagator in arbitrary hetero-
epitaxial structures, and the boundary conditions associated with electrical or mechanical excitation of

such structures is discussed.

STATEMENT OF PROBLEM

HE standard description of piezoelectric wave

propagation! leads to a set of four coupled
second-order partial-differential equations with con-
stant coefficients in four unknowns, %1, 2., u3, and ¢.
These represent the three components of particle dis-
placement and the scalar electric field potential, re-
spectively. The 4X4 system

(1
@)

Cparsthr,spt €rped,rp= pliq,
Eprslhr,sp—€p b rp=0, p,q,7r,5=1,2,3
(summation convention understood)

in which ¢,qrs, €rp¢, and e,, are the elastic, piezoelectric,
and dielectric tensors, respectively, and p is the mass
density, is easy to solve in principle. However, the
application of boundary conditions at dielectric inter-
faces or at free surfaces is algebraically complicated.
The reason is that the boundary conditions involve the
stress 7,4 and electrical displacement D, which must be
calculated in terms of u and ¢ from the equations
of state

3)
4)

qu= Cpqrsur.s+erpq¢,7)

Dp=e€prsthr,s~€psh, .

EIGHT-DIMENSIONAL MATRIX
FORMULATION

In studying piezoelectric wave propagation in heter-
oepitaxial structures, there are eight quantities of
physical interest; these are the three components of
particle displacement which must be continuous across
interfaces, three components of stress which must
vanish at a free surface or must be continuous across
interfaces, and the normal component of electrical dis-
placement, which together with the scalar electric field
potential, must pass continuously across dielectric
interfaces.

! H. F. Tiersten, Linear Piezoelectric Plate Vibrations (Plenum
Publications Corp., New York, 1969), p. 36.
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In view of these considerations it is convenient to
recast the 4X4 second-order system (1) and (2) as an
8X 8 system of first-order partial-differential equations
in which the eight dependent variables are the three
particle displacement components, the three stress
components, the normal component of electric displace-
ment, and the scalar electric field potential. Let x1, x,, 3
be rectangular Cartesian coordinates chosen so that the
¥, axis is normal to the layers of the heteroepitaxial
structure. Define an eight-component column vector
w by

)
U1
U3
T,
Ts
Ty
D,
L ¢ 7

where u,, u;, and u; are the displacement components
along ®x,, x1, and w3, respectively; To= 79y, T¢= 71s,
T4=r7y; are the components of stress on a surface
normal to the x, axis; ¢ is the scalar electric potential;
and D, is the component of electric displacement
along x,.

The system (1) and (2) can be rewritten as a single
8X8-matrix partial-differential equation which is of
first order in the variable x,, i.e.,

d 9 9
o0
dx; dxz 9!

This elegant canonical form greatly simplifies the
analysis of many problems of current interest. The
remainder of this paper will list the 64 matrix elements
of the (8X8) matrix Q and describe how (6) is derived
and applied.

The matrix Q may be represented as

a R

(0)

Q=RPR, (1)
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where the 8 X8 matrix P is partitioned into submatrices so that

l)ll Pl'l [)13 Pli Pl.’y PlG
1)21 I)‘.!‘.! 1)'_’3 1)'_‘1 ]"_’-') 1)‘.!6
])31 I’R‘_’ })33 1)31) 1)3.3 P36
1)41 1)42 1)43 1)-14 P-t.') 1)46
P.')l P.'):Z 1’53 Pl)l P.')B P.’)G
1)61 [)ﬁ‘ 1)63 1)64 1)6") l)ﬁ(i
P71 PTZ P'M 1)7{ 1)75 1)76
P81 1)82 1)83 P84 PSC) 1)86

.

The matrices a, 8, v, A, 4, », and G are defined in the
Appendix. The last two rows of (8) are defined as
follows: The row vectors Py, Prs, P73 and Py, Prs, Prg
are each a sum of row vectors divided by a scalar and
are given by

P, Poy, P
= (M101+M30;— Mo —Ls8)(Ny- G) ',
])74) 1)7:'1) l)7ﬂ

= (141()1+L333+ Mg/.t —Lga) (Nz . Gl)—] .

Q)

(10)

The vectors and matrices on the right-hand sides of
(9)-(12) are defined in the Appendix and 8,= 9/dx;,
93= 8/dx3. The matrix elements P77 and Ps are given by

Pr=— (N2 . Gl)_lt(Nl . Gl)al
4 (N5-G1) 95+ (M,-V,)

+ L2 Vi) +(N.-G2) ], (11)

Prg= —(N2- G1)"'[(N1- Gyg) 01
+ (N3-G2) 93+ (M- W)+ (L,- W) ], (12)

The last row of P is given by
Psj=67;, j=1,2,---,8. (13)

Finally, the matrix R is defined except for the seventh
row by

Rz-,-=6i,- (i#?l), i=1,"‘,8;j=1,"',8. (14)
The seventh row of R is given by
R71=0, R72=M22, R73=M23,
R74=L21, R75=L22, R76=L23, (15)
Ryz=—2Ny, , Rag= —N2101—Ns39; )

where again V;; and L;; are matrix elements defined in
the Appendix.

The inverse R™! is defined, except for i=7, j=7, by
(R™)y= —Rij(Ru)™,

i=1,---,8; j=1,--+,8; =7, j=7. (16)
The element (R™!)77 is given by
(R_l)-n = R77h1 . (17)
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Py P
1’37 1)33 —A “ - V(;
])37 ])33
Py Py _
Py Ps| | —B —a -G |- (®)
Per Peg
P11 Py T
Pg7; P L

We have thus completely described the matrix Q in
(6) in terms of the matricesa, 8, v, \, i, », G, L, M, and
.N. These are related to the elastic, piezoelectric, and
dielectric constants of the material as shown in the
Appendix.

DERIVATION AND APPLICATIONS

In order to illustrate how the general expression for
Q was derived, we consider a simple example of physical
interest. The general case, though tedious, is handled
in exactly the same manner.

The simplest piezoelectric crystal we can consider is
that of bismuth germanium oxide (Bi;;GeO,) which
belongs to the cubic class 23. Its only nonzero elastic,
piezoelectric, and dielectric constants are? c1, ¢1a, Ca4,
e1s, and ey, respectively.

Let the x, axis be normal to a cube face and let us
assume that all the field variables are independent of
the x; coordinate (¥, cut, x; propagation). Equation
(3) becomes

T2= 61162u2+61261u1 ; T1: 61282u3+61161u1 ,

Te=cas(Oott1+ 0112),  T3=Cr200ms+C190101, (18)
Ty=c4400uzte€1401¢, T5=c440103+ 14020,
while conservation of momentum requires that
9T 5= ptis— 01T,
92T 6= ptiy— 1711, (19)
0T 4= piiz— 1 Ts.
Equation (4) becomes
D= e149:u3—€11019,
Dy= e1401u3—€119:29, (20)
D;= e14(d1142+ 9o11) ,
and charge conservation requires that
0:Dp= — 01D, = —€140102u3+ €119:°¢ . (21)

2 M. Onoe, A. W. Warner, and A. A. Ballmann, IEEE Trans.
Sonics Ultrasonics SU-14, 165 (1967).
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I'rom (18), we obtain

agug=611_1T2—(C12/611)61M1 ,

Aot =c44"' T — A1tz (22)
Boths =447 Ty— (€14/C14) 019,

and, from the second equation in (20),
329 = (€14/ €11) 01143 — €177 D (23)

Equations (19 and (21)—(23) can be placed in the form
of (6) provided one first expresses 8,71 and 8:7s in (19)
in terms of the variables of w given in (5). This is done
by using T as given in (18) and eliminating dsu, with
the aid of (22). Similarly, one uses 7’5 as given in (18)
and then eliminates 9, with the aid of (23). The result
is that

dw/ dxs=Q(3/ 9%1,0/dl)w , (24)

where the only nonzero matrix elements of the 8X8
matrix Q are the following:

Q= —(c1e/c1) 01, Q=00 —(cn* —c12¥)en™19:?,

Qu=cut, Qsa= —(c12/c11) 0y,

Qn= —0i, Q3= 9?/0* — (cast €11 'e142) 917,
Q25=cat, Qe7= (€14/ €11) 01, (25)
Qz=ca !, Q76= —(e14/¢44) 01,

Q5= (en1+caate14%) 9,2,
QES: (614/611)31,

Qs1= —en .

Q38= - (614/644)61 )
Qu: p32/312 )
Q45= —01 )

The derivation for the case of complete anisotropy (21
elastic constants, 18 piezoelectric constants, and six
dielectric constants) proceeds in exactly the same
fashion.

DISPERSION RELATION FOR x, CUT x; PROPA-
GATING BULK MODES IN Bi;»GeO

A solution of (24) and (25) of the form

w=wy exp[s({+ px1—nx2) ] (26)
vields the dispersion relations
n*—Ki(p)n*+ Ka(p) =0 (27)
and
1'—Ks(p)r*+Ku(p)=0, (28)
where

Ki(p) = (crucas) [ (c12® =1+ 2c19640) P2+ plcitcas) ],
Ky(p)=p*—plcnicas) " (cu1tcaa) p*+p* (c11640) 71,
Ki(p) =cap—2[142(enrcss) o1 1p?,
Ky(p)=p*(p*—pcai™).

Equation (27) contains no piezoelectric coupling terms
and corresponds to the pure acoustic bulk modes of an
ordinary cubic crystal. The piezoacoustic bulk modes
come from (28). When p=0 in (28), n?=0 gives one

(29)
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pair of nonpropagating solutions, the other pair of
solutions of (28) for p=01is n==(p/css)!/>. For values p
such that 0< p?<p/cqs, (28) has two real roots and two
complex-conjugate pure imaginary roots. The two real
roots correspond to piezoelectrically stiffened bulk
acoustic modes propagating in the directions (p, &7) at
slightly greater than the bulk shear speed (css/p)'/>.
Finally, for p*>p/cys, all four roots of (28) are pure
imaginary.

SURFACE WAVES

In order to examine Rayleigh-type surface waves
propagating in the x; direction on the surface x,= 0 of a
half-space (x.2>0) of Bi;2GeOs, we select four of the
eight eigenvectors of (24) corresponding to nonincreas-
ing amplitudes as x; — + . Let

w=§ Ajwi©(p) exp{s[t+pxi—ni(p)x2]} (30)

be a linear combination of eigencolumns of Q with
arbitrary coefficients A; and with the four branches
n;(p) of (27) and (28) chosen so that

Re[n,(p)]20.

Inside the crystal, the electric field potential is

(31)

¢=§1 A;0;0(p) exp{sli+pri—ni(p)e.]}.  (32)

Outside the crystal, ¢ must be a solution of Laplace’s
equation which matches (32) at the boundary x,=0.
The potential

4
d=2 A;0;(p) exp[s(t+px1)]
=1

X (cosspxstn sinspxs)  (33)

has the required form. The constant parameter 7 in (33)
is the ratio of the vertical to the horizontal electric
field components at the crystal surface, i.e.,

n= (E2/El)zz=0“ . (34)
Continuity of D, across the boundary x,=0 requires
s d¢
Dy=3%" A;Dy™(p) exp[s(t4px1)]= —e(,(-—) , (35)
re=0

=t I

with ¢ given by (33). Consequently,
4
2 A LDy (p)+neospd; @ (p)]=0, (36)
j=1

and to this we must adjoin the conditions that stress
components 75,7, and 74 vanish at the free surface



x2=0:
4 4
Z AfTQJ'(O)(P):()) Z AJ'TGJ'(O)(p) =0’
=1 =1

4 37
2 AT (p)=0.
=1

The dispersion relation for Rayleigh-type surface waves
arises from the requirement that the 4X4 system (36)
and (37) have a nontrivial solution. It is given by

T ®(p) Tou®(p) Taus®(p) Tau®(p)

Ta®(p) Tu®(p) Tu®() Tu®@) _, 38)
Ta®(p) Tu®(@) Tu®@) Tu®0P) ’
Can®(p) Gau®(P) Gu®(p) Goy®(p)

where
G2 (p)= Dy (p)+neospd; ¥ (p),

If the surface of the crystal is grounded, then (36) is
replaced by

j=1,---,4. (39)

4
> A0,(p)=0, (40)
=1

and (38) is altered accordingly.

The surface-wave problem has an interesting struc-
ture in the present formulation. Given the 8 X8 matrix
Q(p,s) in (24), one forms the corresponding eigenvector
matrix E(p,s). From E(p,s) one selects a 4 X4 submatrix
whose determinant vanishes at the surface-wave poles
p=7p- Real values of p, correspond to pure surface
waves; complex p, produce “leaky” surface waves.

DISPERSION RELATION IN HETEROEPITAXIAL
STRUCTURES

Consider now a general piezoelectric film 0< 2, < H,
on a piezoelectric substrate H <2<, and let the
region — = <x,<0 be occupied by vacuum or air. In
the film we have

dwr/dx:=Qrwp, (41)
and in the substrate,
6w,g/6x2 = QsZUs . (42)

The eight eigenvalues of (41) are complex functions of p
and a linear combination of the eight corresponding
eigenvectors yields a solution in the film of the form

wr=2_ A;wri (p) exp{s[t+pri—nri(p)x.]}

=1
4
+_Zl Biw pit(p) exp{sLi+pait+r(p)x1}, (43)

where #r;(p) is defined by

'FIFJ'(P)=~"7F'(J'+4)(Z>): j:1727 3,4. (44)

PIEZOELECTRIC WAVE

PROPAGATION 1453

In the substrate we have

Ws =§ c;Wsi(p) exp{s[i+pri—nsi(p)=1}, (45)

where Re [nSJ'(P)];(L j: 1, 2,
growth of wgasxy, — .

The boundary condition at the interface x,=H,
between the film and the substrate, is simply wr=wsg,
and when applied to (43) and (45) yields a set of eight
homogeneous equations in the 12 unknowns 4y, - - -, 44,
Bl, cey B4, and C1y ***y Cy4

The remaining four homogeneous equations are pro-
vided by requiring continuity of ¢ and D, across the
vacuum-film interface x,= 0, and vanishing of the stress
on x,=0. These equations are

-+, 4, to prevent

4 4
Z AJGj_+Z BiGit=0 ;
=1 =1

(46)
4 4
> AT+ BiTrit=0,
=1 j=

where

Gi*= Dypi*(p)+neospd ri=(p) , (47)

The set of 12 homogeneous equations in the 12 unknowns
A;, B;, and ¢; consists of (46) and the eight equations

j=1,2,3,4.

4 4
> Awr exp(—snrH)+ X Biwrit exp(siriH)

=1 =1

4
—Z CJ‘WS]'_ C.\p(—S‘r]sJ‘II)=0, (48)
=1

J=

generated by the condition wp=wg at x,=H.

The required dispersion relation is obtained from the
condition that the 12th-order determinant of the system
(46)—(48) be zero.

PROPAGATORS FOR GENERAL PIEZOELECTRIC
HETEROEPITAXIAL STRUCTURES

Consider a structure having many layers of piezo-
electric material, generally of different symmetry and
layered in the x, directions. Assuming solutions of the
form

w=w(a) exp{s(i+ par)} (49)

one obtains
W/ dxy= Q(x2,0,5)W (50)

for the determination of the amplitude w(x;). The
matrix P(xs,x,") is called a propagator for the structure
if it has the property that when w(x.’) is a solution of
(50) at point x,’, then w(x;), given by

W(x2) = P (22,2 )W (x2") (1)
is a solution of (50) at x,.

In order to construct the propagator P we need only
find eight linearly independent column vector solutions



1454 EDGAR
w of (50). Tf these form a nonsingular 8 X8 matrix
[(x,), then the propagator P(xs,x2") is given by

P(xg,e )= B E ('), (32)
as may be verified by substitution of (31) and (52)
into (50), remembering that each column of FE(xa)
satisfies (50).

The point to note is that the propagator from any
point x,’ can be calculated immediately by matrix
inversion once eight linearly independent column
vector solutions of (50) are known.

REMARKS ON INPUT-OUTPUT PROBLEM

Energy is introduced into the layered structure by
cither electrically or mechanically exciting the vacuum-
film interface. Electrical excitation can be accomplished
by placing a pair of parallel line source electrodes on a
free surface a distance A apart with their axes along the
x3 direction. When these electrodes are connected to a
generator which puts out a potential ¢(¢), the horizontal
component of electric field between the electrodes is
approximated by

I (e, 07,0 = —¢(ON'[H (xs4+-7/2) = I (x1=N/2) ], (53)

and from (34), the vertical component of electric dis-
placement on the vacuum side of the free surface is

(54)

Equation (54) fixes D, as the vacuum-film interface is
approached from the interior of the film and (54) leads,
after Fourier transformation, to a corresponding modi-
fication of (47).

Mechanical excitation of the heteroepitaxial structure
can be accomplished by placing an electrically driven
mechanical transducer, such as a BaTiO; or quartz
crystal on the vacuum-film interface. 1f the transducer
generates a stress component along the x, axis acting
normal to the free surface at the origin, then the ap-
propriate boundary condition is

To=190= —F(I)B(xl)é(xa) )

Dg = ﬂéuE](xl,O_,[> .

(35)
where F(f) is the time dependence of the applied stress.
Equation (55) introduces a modification of the boundary
conditions in the second set of (46), to account for the
applied stress at the vacuum-film interface x,=0. For
either electrical or mechanical input, the boundary
equations (46)—(48) form an inhomogeneous set of
algebraic relations for the field amplitudes. These
amplitudes become infinite at the normal modes of the

system defined by vanishing of the 12X 12 determinant
of (46)—(48).

RELATION TO OTHER INVESTIGATIONS

The description of the problem (1) and (2) in the
matrix form (6) is based on some early investigations of
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Volterra® on systems of linear differential equations.
Volterra’s ideas have been applied by others to elastic
wave and vibration problems in isotropic and aniso-
tropic nonpiezoelectric, layvered media.*~® The present
contribution presents the extension of this matrix de-
scription to include arbitrary piezoelectric coupling as
well as elastic and optical anisotropy effects. Wave
propagation in piezoelectric crystals has been considered
by a number of people and many of their contributions
are discussed in the recent text by Mason.” The excita-
tion and propagation of surface waves on piezoelectric
media is the topic of several recent papers®™'" and
appears to be a subject of increasing interest in view of
potential device applications.!

APPENDIX

The matrices , 8, v, A, u, », and G appearing in (8)
are defined as follows:

a=4A4 3+:’113615324GB264“6y (Al)
B= A — 1361552 Bog > H sgs+ A 13 153, (A2)
v=A13(e1557"* — 153710 B g 10,0, 7123 | (A3)
N=J Bag**H y54, (A4)
u=J Bag240 (AS)
y=J Bug 24005, T12% (A6)
0 o,
G: 1 0 , (1‘\7)
‘0 d;)
where
(0 9 o
A‘l:;: 0 0 0 ) (AS)
0O 0 ()J
0 0 0)
4’113: 0 01 63 ) (‘A())
o d; 03 O)

V. Volterra, Rend. Accad. Lincei 3, 393 (1887); Mem. Soc.
Ital. Sci. 6, 1 (1887).
¢ F. Gilbert and G. Backus, Geophysics 31, 326 (1966).
5 F'. Abramovici, Bull. Seism. Soc. Am. 58, 427 (1968).
¢ K. A. Ingebrigtsen and A. Tonning, Phys. Rev. Letters 23,
A12 (1969).
"W. P. Mason, Crystal Physics of Interaction Processes (Aca-
demic Press Inc., New York, 1966).
8J. J. Campbell and W. R. Jones, IEEE Trans. Sonics Ultra-
sonics SU-15, 209 (1968).
%S. G. Joshi and R. M. White, J. Appl. Phys. 39, 5819 (1968).
1;’61{, M. White, IEEE Trans. Electron. Devices ED-14, 181
(1967).
W H. I'. Tiersten, J. Acoust. Soc. Am. 35, 234 (1963).
(119262- A. Coquin and H. F. Tiersten, J. Acoust. Soc. Am. 41, 921
).
1 H. I'. Tiersten, J. Appl. Phys. 40, 770 (1969).
1 C. C. Tseng and R. M. White, J. Appl. Phys. 38, 4274 (1967).
1 C. C. Tseng, J. Appl. Phys. 38, 4281 (1967).
1¢J. L. Bleustein, J. Acoust. Soc. Am. 45, 614 (1969).
7K. A. Ingebrigtsen and A. Tonning, Electronics Research
Laboratory Report No. TE74, Norwegian Institute of Technology,
Trondheim, Norway (unpublished). ’
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(9)—(17) are defined via the matrices L, M, N, where

L= 61232463264“6 ) (A23)
M = (€125"%%— 125249 Bogs>*%c064'3°) H 13, (A24)
N = (€125123+ €124 Boss**Se264712%) . (A25)

In (A25), €123'%® is the dielectric constant matrix
given by

188
Ci2 Ci4 Cig
01:58°%%=|Cs0 €34 Cs6 ), (AIO)
€3y C34 C36
Co2 C24 (26
Co64’*%= |Coa  Cos  Cos |, (AH)
(G2 Cas Cap
Bags* 4= (c9642%%) 71, (A12)
A=—pJ(a2/0r), (A13)
H 565= c264>*°H 3+ C264'*°H 13, (A14)
0 0 O
1]3: 63 0 O 3 (AIS)
d 0 0)
(0 o, 0
Hyi= 1|0 0 05, (A16)
0 03 01
Hass= (c155**°H 3+ 155" H 13) (A17)
r621 Ca3 C‘z:;
Co641%%= |C1 Ce3  Ces , (AIS)
(a1 Ca3  Cu5)
'Cu C13 Cxa\
c1538%= |c51 Csz €35 ’ (A19)
(631 €33 C35)
’811 €21 831\
e1:3712%= ley; e €35, (A20)
(€13 €23 €33
3
€12 €2 €32
e26s712%= le1s €26 €36, (A21)
(614 €21 €34
0 0 1
J=1{1 0 0 (A22)
010

The matrix elements ¢;; and e;; represent the 21 elastic
constants and 18 piezoelectric constants of an arbitrary
linear piezoelectric solid. The quantities appearing in

s 3
€11 €12 €13
€1231%3= lean € €3 ) (A26)
€31 €32 €33
A 7
and .
€12 Cia €16
€1282%%= |ess €24 €95, (A27)
€32 €31 €36
L
-
€11 €13 €13
€123'3%= |en ea3 €95 . (A28)
€31 €33 €3;)

The vectors L;, M;, Ny, v;, v;, and G; are defined by
Lj=row () of matrix L,
M;=row (j) of matrix M ,
N;=row ( j-) of matri‘x N, (A29)
y;j=row () of matrix v,
v;=row (4) of matrix »,
G;=column (j) of matrix G.

The column vectors V; and W; in (11) and (12) are
defined by

11 Gy v1- Gy
V= TZ‘GI s V2= Vz‘G1 )
L "Gy (A30)
‘Yl‘Gz Vl'Gz
W1= Tz'G2 ) W2= V2'G2 .
‘Ys'G2 Vs'G2

The parameter p is the scalar mass density and all the
quantities necessary for the computation of Q in (7)
have now been defined.



