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Reciprocity, detailed balance, and other symmetry laws for slow-neutron scattering are discussed for the
case of anisotropic media. While Friedel’s law, stating that Z (v — v)=Z(—v — —¥’), may fail for polar
absorbing media, reciprocity as a consequence of time-reversal invariance, and of thermal equilibrium of
the medium, remains valid. The optical theorem helps to derive a reciprocity relation for the total cross
section Z (v) =2 (—v). Similar conclusions are derived for the matrices used to describe scattering of polar-
ized neutrons. The two reciprocity relations lead to a macroscopic reciprocity theorem, expressing a sym-
metry property of Green’s functions of the linearized Boltzmann equation.

I. INTRODUCTION

HE neutron scattering law for any medium in

thermal equilibrium obeys a reciprocity relation,!

which in terms of the macroscopic differential scattering
cross section (per unit velocity space) reads as

ve= AT (v — V) =0/ mRTT (— v — —v). (1)
In most cases Friedel’s law? also holds, stating that

(2)

A combination of Egs. (1) and (2) gives the detailed
balance relation!-3—3

ve TS (v — V) =0/e mHRTY (v — V),

S(vov)=Z(—v—o —V').

©)

In Van Hove’s formalism,*® Egs. (1)-(3) are ex-
pressed as

S(kw)=e**1S5 (x, —w), (1)
S(K,O))=S(—K, w), (2’)
S(kw)=e*MS(—x, —w), 3

where ix=m(v—v’) and #w= im (x*—1"?). In an obvious
way these relations are reflected in certain symmetries
of the correlation functions X(x,f) and G(r,t).
Violations of Friedel’s law have been observed in
neutron scattering by absorbing polar crystals, such as
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! The terminology, with respect to Eqgs. (1) and (3), is that of
J. Blatt and V. F. Weisskopf, Theoretical Nuclear Plysics (John
Wiley & Sons, Inc., New York, 1952), Sec. X 2.

2 R. W. James, The Optical Principles of the Di firaction of X-Rays
(G. Bell and Sons, London, 1954).

3 H. Hurwitz, Jr., M. S. Nelkin, and G. J. Habetler, Nucl. Sci.
Eng. 1, 280 (1956).

4V. F. Turchin, Medlennye Neitrony (Moscow, 1963) [English
transl.: Slow Neutrons (Davey and Co., New York, 1965)].

$D. E. Parks, M. S. Nelkin, N. F. Wikner, and J. R. Beyster
(unpublished).
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CdS.® Cases of this kind are certainly rare and of no
practical importance. Nevertheless, they represent
an incentive to retrace the reasoning behind reciprocity,
detailed balance, and other symmetries in slow-neutron
scattering, and to review the connections with the
underlying basic principles.

II. RECIPROCITY

The subsequent derivation follows that of Hurwitz
et al.,* with a minor generalization to account for a
possible polar structure of the medium. The concept
of the transition operator for a bound target will be
used,’

T=V+V(E-I+ie) 1V,

where V' is the neutron-target interaction Hamiltonian,
E the total energy, H the total Hamiltonian, and
e— 0, ¢>0. The target has a volume U and is small
compared to the neutron mean free path, but large
compared to Ay, =%/ (mkT)V2,

The cross section is expressed by a canonical average
of squared 7-matrix elements’

m3/2m\*
Z(v— v’)=—<———-) 2 Z7e BT (hw+ E;— Ey)
if

Vo\#%
X3 Sl Tlivsl. @)

Here, ¢ and f refer to the initial and final states of the
target, and s and s’ to the spin states of the neutron,
whereas |v) stands for (2r)~%2%imv:r/*, Equation (4)
represents a shorthand statement, and should properly
be written with the left-hand side multiplied by a not-
too-small d%’, and the right-hand side integrated over
the same range.

¢S. W. Peterson and H. G. Smith, Phys. Rev. Letters 6, 7
(1961) ;21. Phys. Soc. Japan 17, Suppl. B-II, 335 (1962); J. Phys.
(Paris) 25, 615 (1964).

" M. L. Goldberger and K. M. Watson, Collision Theory (John
Wiley & Sons, Inc., New York, 1964). See p. 682, Eq. (15a);
p. 171, Eq. (235); p. 55, Eq. (130); and p. 183, Eq. (39).
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1446 I. KUSCER
Time reversibility of the scattering process is ex-
pressed by’

I <S’,V’,_” r] 1‘7"13;)‘
= }('—S) -V, il‘iq‘ifT, _—vl7 _sl): (5)

(for iw+ E;— E;=0), where i” and f7 refer to the time-
reversed states of the target. Since E;= E;r and E;= E;,
expression (4), with the right-hand side of (5) sub-
stituted, again represents a canonical average, but with
the time-reversed states as a basis. We then substitute
E;=E;r—hw, and carry out a relabeling: i7, fT, —s,
—s'— f, 1, ', s. Thereupon, the right-hand side is
recognized as (v'/v)e*/*TZ(—v'— —v), so that re-
ciprocity, Eq. (1), is established. This is seen to represent
an exact and perfectly general consequence of time-
reversal invariance of the neutron-target interaction,
and of the thermal equilibrium of the target.

So far, we have neglected the possibility of nuclear
or atomic magnetization. Time-reversal implies that
magnetization is switched. We then have E;(B)
= E;7(— B), so that the cross sections in Eq. (1) should
be written as Z(v— v’; B) and 2(—v'— —v; —B).
We shall not insist upon this complication in notation,
but rather let the &= B be understood in every reciprocity
relation [Egs. (9), (13), (20)-(22), and (24) below].

III. DETAILED BALANCE

Any element of the point symmetry group of the
target structure is, of course, reflected in a corresponding
symmetry of the 7 matrix and of the cross sections.
In particular, if the structure has a center of symmetry,
Friedel’s law, Eq. (2), is a trivial consequence.

Usually* detailed balance, Eq. (3), is not derived as
a consequence of reciprocity and Friedel’s law, but by
an independent argument relying upon the first Born
approximation, where 7= V. The only essential point
is that in this approximation 7 is self-adjoint if V is
real, which obviously is a necessary condition.

After switching to the complex-conjugate matrix
element (s,v,i| 7| f,v',s’) in Eq. (4), and substituting
E;=E;—#w, we carry out a relabeling 7, f— f, i. The
resulting expression is recognized as (v//v)eh/*T
XZ(v'—v), so that detailed balance, Eq. (3), is
proven. By the way, no switching of magnetization is
implied in this manipulation.

For scattering of slow neutrons by nuclei the first
Born approximation, with Fermi’s pseudopotential,

2wh?
J= > a,8(r—r,),
m n
a-J, )
a,=a coh - g,inc

a1
is known to be highly accurate.?® If absorption is absent

8J. P. Plummer and G. C. Summerfield, Phys. Rev. 131, 1153
(1963); G. C. Summerfield, Ann. Phys. (N. Y.) 26, 72 (1964).
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or weak, the scattering lengths ¢,*" and @,™* can be
taken as real.® Detailed balance is, therefore, approx-
imately valid. Friedel’s law then follows from a com-
bination with reciprocity, regardless of any asymmetry
in the structure of the target.

Thus, we have verified that with purely nuclear
scattering violations of Friedel’s law and of detailed
balance can be expected only for media with polar
structure, if either neutron absorbing nuclei are present
or second-order effects become noticeable.

IV. SYMMETRIES IN SCATTERING OF
POLARIZED NEUTRONS

Itis interesting to generalize the above considerations
to cross sections referring to polarized incident neutron
beams and to polarizing detectors for the scattered
neutrons. Two representations can be used for this
purpose: density matrices and the Stokes-Poincaré
representation. The latter has the advantage of avoiding
complex quantities and will, therefore, be preferred
here. It has been invented for describing polarization of
light,’~12 but it applies equally to nonrelativistic
spin-} particles.!3.14

The intensity of a neutron beam is described by a
combination of a scalar and a vector: n= (n¢; #11,1,13).
Herein n, represents the number density, and 3 (1y,724,13)
the spin density of the neutrons, so that (#,,1,,15)/n,
measures the degree and orientation of their polariza-
tion. In other words, this ratio is the average (quantum-
mechanical and statistical) of the Pauli-spin vector,

nu/1o={(o,), wp=1,2,3.

It will be convenient to include also the scalar compo-
nent (u=0) by using o, to denote the unit matrix.

The determination of, say, n, and n3, requires two
measurements, with the polarizing device oriented along
+2z and —z. The sum of the readings (or a reading
without polarizer) gives o, and the difference #s. Four
independent observations are required for the four
values n,, u=0, 1, 2, 3.

Let a parallel neutron beam of velocity v be scattered
by a target of volume V. The components N,(v’)
describing the intensity of the scattered beam (per
unit d%’ and at some distance 7) depend linearly upon
n,. Hence,

V 3
v’N,,(v’)=—q 2 mZu(v—ov), »=0,1,2,3. (6)

7 u=0

This defines 16 components of the cross-section matrix,
corresponding to 16 possible independent observations.

 R. J. Glauber, Lectures Theoret. Phys. 4, 571 (1962).

©S. Chandrasekhar, Radiative Transfer (Oxford University
Press, New York, 1950).

WH. C. van de Hulst, Light Scattering by Small Particles
(John Wiley & Sons, Inc., New York, 1957).

21, Ku$cer and M. Ribari¢, Opt. Acta 6, 42 (1959).

3 U. Fano, Rev. Mod. Phys. 29, 74 (1957).

4 W. H. McMaster, Rev. Mod. Phys., 33, 8 (1961).
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The cross-section matrix is seen to be composed of one
tensor (components with u, v=1, 2, 3), two axial vectors
(Zo1,202,203) and (Z10,220,230), and one scalar (Z¢p).
The latter is just the ordinary cross section (v — v’),
as measured with an unpolarized incident beam and
a nonpolarizing detector.

An expression for the cross-section matrix, in terms
of the 7 matrix, can be derived along with Eq. (4). We
first notice that the spin state of the neutron scattered
in the transition |z,v)— | f,v’) is described by >_./|s’)
X{s' v, f| T|i,v,X), where |X) denotes the arbitrary
initial spin state. The Stokes-Poincaré parameters
after scattering are then determined from

(@< Tr((vyi| T [i¥))on(¥ fI Tli,v)p). (T)

Here (v',f| T]7,v) is a 2X 2 matrix, with elements as in
Eq. (4), whereas p represents the initial neutron-spin
density matrix, p= | X)(X| in the present case. Any such
matrix is a linear combination of the o,; in fact,'?

3

P 2% Z (”ﬂ>|’°’u .

The coefficients relating the ({c,); to the {(s,); are
therefore proportional to expressions like (7), with p
replaced by o,. With all the proportionality factors
inserted, the final result for the cross-section matrix is

m3/2m\*
2 (v > ) =—("> T 27 B8 (ot Ei—Ey)
2O\ i f

X% Tr((v,i! FI’flf,v’)a, v,)fi Tl 1',V>0,‘) . (8)

For u=0, »=0, this equation is the same as (4).

When applying time-reversal invariance to Eq. (8),
phase factors for the neutron-spin states must be taken
into account. They are given by’

—37= D).

Otherwise, the procedure is the same as before, and
leads to the following reciprocity relation:

11\ 1\
i%)T=_l_f))

ve—mﬂ/szEM(v — V')
=(—1)8/ e mHNTY (—y' — —V) )

where A=8o,+8¢,. That is, minus signs are found with
the vector components of the cross-section matrix.
This must be so, since they belong to axial vectors of
the same kind as angular momentum.??

When 7 is self-adjoint, as in the Fermi approximation
with real scattering lengths, we may switch to complex-
conjugate matrix elements in Eq. (8). In the same way
as before, a detailed balance relation follows:

vemMATE (v — ) =ylemmHRTT (v — ),

(10)
No minus signs appear here.

16 S. Watanabe, Rev. Mod. Phys. 27, 26 (1955).
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If the target structure has a center of symmetry
(which implies that there is no magnetization), we
consider mirrored states to derive a generalization of
Friedel’s law:
Sp(vo v)=Z,(—v—o —V). (11
Again there are no minus signs, since axial vectors are
invariant under such transformation.

Because of the factor (—1)2 in Eq. (9), Friedel’s law
and detailed balance no longer follow from each other
in combination with reciprocity, as was the case with
the scalar component 2. Rather, if all three laws are
valid, we derive that the vector components Zy,, etc.,
must vanish, as we should have expected.

The Fermi approximation implies the further simpli-
fication that the neutron spin enters only through a o-J
term (o L coupling is noticeable only at higher energies).
This allows us the liberty of representing neutron
and nuclear spins in a coordinate system different from
the one used for neutron velocities. If the nuclei are
in no way polarized, the cross-section matrix must be
invariant against rotation of the spin-coordinate system.
This is only possible if the vector components =g,
etc., vanish, and if the tensor part of the matrix is
isotropic,

2p(v=v)=2'(vo> V), u=1,23.

(12)
There are then all together only two independent
differential cross sections, Z(v— v’) and 2’(v— v’).16
In this most common and most simple case, the orienta-
tion of the polarization vector (o) is never changed in
scattering. The degree of polarization |{e)| remains
unchanged if Z=2’) or it diminishes if 3’<Z. The
difference £—3’ is known as the depolarization or
spin-flip cross section.4

V. RECIPROCITY FOR TOTAL CROSS SECTION

Whenever Friedel’s law, Eq. (2), holds, integration
over @’ leads to a corresponding symmetry relation
for the integrated scattering cross section Z,(v). In such
case, the same symmetry is expected to apply for the

absorption cross section Z,(v), and therefore also for
the total cross section.

Z(v)=Z(—v). (13)

[t turns out that this reciprocity relation is always
valid, even for polar absorbing media where Friedel’s
law fails to hold, and where it may happen that =,(v)

18It may be mentioned that the indicated reduction of the
cross-section matrix to two scalars can be interpreted in terms of a
broader mathematical theorem. We have to use the density-matrix
representation, where the cross sections form a 2X2X2X2
matrix, i.e., a fourth-order tensor in spin space. According to
that theorem a general symmetric isotropic fourth-order tensor
is described by two scalars. The elasticity tensor furnishes a well-
known three-dimensional example. See” H. and B. S. Jeffreys,
Methods of Mathematical Physics (Cambridge University Press,
New York, 1956), Chap. 3.
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#Z,(—v) and Z,(v)#Z4(— v). The proof is based upon
time-reversal invariance and upon the optical theorem.
According to this theorem,”

T(v)=— (87r3/'0h'u)z J—1¢—EilkT
X3 Im((s,v,i| T]4,v,5)). (14)

In view of time-reversal invariance, the matrix element
here equals (—s, —v, 7| T|iT, —v, —s). Any phase
factors cancel, because both states are the same. After
a relabeling, —s, 17 — s, 7, the right-hand side of Eq.
(14) is seen to represent =(—v).

A macroscopic analogy will help to understand the
reciprocity property of the total cross section and the
possible dissymmetry in Z,(v) and Z,(v). Consider an
asymmetric object painted white on one side and black
on the other. We place the object into sunlight, with the
white side on top. The total cross section, as measured
by the size of the shadow, is predominantly due to
scattering, and less to absorption. When the object is
turned upside down, the size of the shadow is again
the same, but absorption then dominates over scattering.

If polarization effects are to be described, a scalar
= (v) will suffice only if the attenuation rate of a neutron
beam is known to be independent of the polarization
state. Although this is the common case, a well-known
exception is provided by ferromagnetic crystals, where
an effect analogous to dichroism is observed. In such
cases, we need a tensor Z,,(v), and the attenuation of a
parallel monochromatic neutron beam is described by

3
dn,=—3 w2, (v)ds, v=0,1,2,3. (15)
u=0

In order to investigate symmetries of this tensor, we
try to express its components by aid of the optical
theorem, as this was done for the component Zg(v)
=2(v) [Eq. (14)]. We notice that the four components
of the matrix Im({v,7| T|%,)) can give no more than
four of the components Z,,(v). This is understandable,
because the optical theorem originates from a particle-
current argument. It can therefore yield only the
components Z,(v), determining the attenuation of the
density of the beam.

The rest of the matrix Z,,(v) is derived from an
extension of the optical theorem based upon spin
currents. For a state |¥*) of the system, the four
neutron currents are

Bv=—(ih/m)(¥*|a,V|¥), »=0,1,2, 3.
We insert |¥)=|i,v,X)4-scattered waves, expressing
the amplitudes in terms of the 7" matrix elements, and
then integrate over a large sphere. The term of first
order in 7 describes the (negative) total attenuation
of the incident neutron currents. This term is evaluated

KUSCER AND G. C.
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as
(2/h) Im[Tr(0,(v,i| T14,v)p) ]

With the same substitution for p and the same argu-
ments as in Sec. IV we then have, for a target in thermal
equilibrium,

Zuw(v)=—(873/Vhv)Y Z le EilkT

XIm[Tr(ov,i| T|1,v)o,.)]. (16)

For u=»=0, this is the same as Eq. (14).

After cyclic permutation of the matrices in Eq. (16),
we carry out the multiplication s,0,. It becomes obvious
that all diagonal components of the total cross-section
matrix are equal,

E““(V)=E(V), v=0,1,2,3 (17)
that both vectors are the same,
20#(V)=2u0(v)) “=1’ 2)‘3 (18)

and that the off-diagonal part of the tensor is antisym-
metric, thus again representing an axial vector:
—Egg(V) =232(V) EQ]/‘D ,

etc. (19)

We see that this matrix contains at most seven
independent parameters: one scalar (Zq), and two
vectors. One of them (Z¢1,202,Z03) obviously describes
selective attenuation of polarized neutrons (dichroism).
The meaning of the other vector (Q) becomes clear if
Eq. (15) is rewritten in vector notation.  is seen to
represent a precession frequency. [For a magnetic field
in a vacuum, Eq. (16), with 7=V = —pu,o- B, indeed
gives the correct value for the Larmor precession. ]

Time reversal leads to

Zu(v)= (—I)AE,“(—V),

which is an obvious generalization of Eq. (13).

In the Fermi approximation, and if magnetization
and nuclear polarization are absent, we apply the same
symmetry reasoning as in Sec. IV. Clearly, all but the
diagonal components Z,,(v)=2(v) must vanish, so
that the matrix becomes equivalent to a scalar.

(20)

VI. MACROSCOPIC RECIPROCITY

The reciprocity relation (1) and Eq. (13) are neces-
sary and sufficient for the derivation of a reciprocity
theorem!™=% for the Green’s function of the Boltzmann
equation. According to this theorem, the average

7K. M. Case, Rev. Mod. Phys. 29, 651 (1957).

18 B. B. Kadomtsev, Dokl. Akad. Nauk SSSR 113, 541 (1957)
[English transl. : Soviet Phys.—Doklady 2, 139 (1958)].
®L. M. Biberman and B. A. Veklenko, Zh. Eksperim. i Teor.
%‘115613)% 88 (1960) [English transl.: Soviet Phys.—JETP 12, 64

» I Kuder and N. J. McCormick, Nucl. Sci. Eng. 26, 522
(1966) ; I. Kuscer, Kernenergie 10, 265 (1968).
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neutron distribution due to an instantaneous mono-
kinetic unit point source in a nonmultiplying medium
with uniform temperature and time-independent
properties obeys the relation

e mN2TG (1 Vo 1, V; 1)
= mURTIG(r, —v,— 1y, —Vo;1). (21)
This may be regarded as a generalization of relation (1)
to macroscopic systems which are no longer small with
respect to the neutron mean free path. The essential
distinction is that G in Eq. (21) describes probabilities
for transitions in phase space of the neutron, whereas
Eq. (1) concerns only transition rates in velocity space.
The theorem (21) can be specialized in many ways.
Integration over ¢ gives the corresponding relation for
time-independent neutron distributions. As a special
example, we may quote the reciprocity property for the
reflectivity of a flat layer. By the substitution G(v — v’)
=P(v— v')/v./, we introduce the probability density
P(v— V') for a neutron of initial velocity v to be
reflected with a velocity around v’. (The vectors v and
v’ are directed towards the layer and away from it,
respectively, and v, and v, denote the magnitudes of

the normal components.) We find

0,67 URTP (v — V) =1 /e TP (—y — —v), (22)

There is actually no need to derive Eq. (22) from
the Boltzmann equation, because it also follows directly
from time-reversal arguments. Indeed, the reasoning
used in Sec. II applies equally well to targets of any
size. We notice that A4 (v,/v)P(v— V') represents the
differential cross section of a macroscopic flat layer of
an area A. This is expressed in terms of the 7" matrix,
and time reversal is invoked. Equation (22) immediately
follows.

Such a direct derivation also appears feasible for
the more general relation (21). A prerequisite would be a
quantum-mechanical definition of the neutron phase-
space density, presumably by a Wigner distribution
function.

The reciprocity theorem (21) can be generalized to
include polarization effects. Equations (6) and (15)

IN SCATTERING OF SLOW NEUTRONS
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show how to write the appropriate Boltzmann equation:
a

<~—+v- V)G,o..,(ro, Voo T, V; )
ot

3
== Z vG'o-ﬁl(rO: Vo—™1I,V; t)zlﬂ’(v)
u=0

3
+ X | Gryau(ro, Vo— 1, V/; )2, (V — v)d%’
=(
’ 8 (r—1)B(v—va)3(D). (23)

We assume that there are no neutrons incident from
the outside.

Proceeding as in the proof of Eq. (21),2° we consider
the function

(_1)5“3m(rbulz)/szGn—w(rly Vi— I, —V; tl_t) )

and show that it satisfies an equation adjoint to (23).
We then multiply Eq. (23) by this latter function, and
the adjoint equation by G,,-, from Eq. (23), integrate
over all variables and also sum over », and substract.
The result is immediate:

e"’"‘u’lﬂkTG,,_.,,(ro, Vo—TI,V; z)

= (—1)8cmU%IG, , (r, —v—> 19, —Vo; ). (24)

Most of what has been said so far is not specific for
neutrons, but applies equally well, or with little mod-
ification, to scattering of any particles by systems in
thermal equilibrium. For instance, Eq. (22) also applies
for the reflection of monatomic gas molecules by a wall.?!
We should notice, however, that here the reflection
process cannot be described by any Boltzmann equa-
tion. Therefore, in this case, we can use only the direct
derivation of Eq. (22) from the symmetry (5) of the
7 matrix.
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