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Electronic Contribution to Lattice Dynamics in Insulating Crystals*
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The electron contribution to the phonon spectrum is formulated in terms of the microscopic response
function. The long-wavelength behavior of the lattice vibration is then investigated, with due attention to
the Iong-range Coulomb interaction. An important quantity which emerges is the eA'ective charge of the
vibrating nuclei, which is shown to obey a sum rule. l'rom this follows the existence of long-wavelength
acoustic phonons. The infrared optical constants are also exl)ressed in terms of the microscopic response
function.

I. INTRODUCTION

'T has been widely recognized that, in the lattice
~ - vibration of insulating crystals, the influence of the
electronic motion is not negligible. & arious models, such
as the shell model and the deformation-dipole model,
have been constructed to account for the electron
contribution to the lattice dp namics. For references on
these topics, see the paper by Sinha. ' Ho~ever, the
values of the parameters in such models obtained by
fitting to the experimental measurements do not agree
with the physical interpretation of such parameters in
some instances. Therefore, it is desirable to examine the
role of electron ds namics in the lattice vibration from a
more microscopic consideration. One approach is to
write down first, in terms of electron response, its
contribution to the lattice motion, "-4 and then either to
calculate the response in terms of the electronic band
structure of the perfect crystal, ' or to construct models
more appropriate to the electron dynamics of the
particular crystal, such as the covalent bond-charge
model of Phillips' for the covalent crystals, or even to
deduce the shell model from the microscopic basis. ' 4

In this paper, we shall be concerned with the deriva-
tion of the long-wavelength behavior of the lattice
vibration from the microscopic formulation of the
lattice motion in terms of the ions and the response of
the electrons. ' 4 It is of interest to see whether from
this microscopic formulation follows the usual long-
wavelength behavior, ' such as the existence of acoustic
modes (frequency proportional to wave vector), the
Lyddane-Sachs-Teller relation for the optical modes, '
and the appearance of the Szigeti charge in the infrared
dielectric response. ' The proof of these results is not as

* Supported in part by the National Science I oundation.' S. K. Sinha, Phys. Rev. 177, 1256 (1969).
2 I.. J. Sham, Proc. Roy. Soc, (London) A2N, 33 (1965).
'"' R. Pick, M. H. Cohen, and R. M. Martin (unpublished' ).

Quoted by R. M. Martin, Phys. Rev. Letters 21, 536 (1968).
4 L. J. Sham, Modern Solid State Physics (l'ol. II):Phonons and

Their Interactions, edited by R. H. Enns and R. R. Haering
(Gordon and Breach, London 1969), p. 189.' J. A. Young and A. A. Maradudin, Bull. Am. Phys. Soc. 12,
690 (1967).

s J. C. Phillips, Phys. Rev. 166, 832 (1968); 168, 917 (1968).' M. Born and K. Huang, Dynamical Theory of Crystal Lattices
(Clarendon Press, Oxford, England, 1954) ~' R. H. Lyddane, R. G. Sachs, and E. Teller, Phys. Rev. 59,
673 (1941).' B. Szigeti, Proc. Roy. Soc. {I.ondon) A204, 51 (1950).
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trivial as might appear at first sight because of the
long-range Coulomb interaction between the particles
in the insulating crystal. In a metal, the perfect screen-
ing of an ion by the conduction electrons renders the
effective force between two ions to be short-ranged. It
is then straightforward to see that there are acoustic
modes with linear dispersion relation at long wave-
length. For the point-ion model of an insulating crystal,
the long-range interaction between the ions can be
explicitly dealt with by the Edwald transformation and
the long-wavelength behavior deduced. ' Kith the
inclusion of the electron response to the lattice vibration
in an insulator which does not completely screen out
the long-range Coulomb force between two ions, a
careful investigation is needed. Indeed, Cohen et at. '

were also aware of this problem but preferred to use the
existence of the acoustic modes as the wave vector
tends to impose certain conditions on the electron
response in the insulator, which they called "sum rules. "
One of the results of this paper is a proof of such sum
rules.

Another result of this study of the long-wavelength
lattice vibrations is the formulas for the macroscopic
optical constants (near infrared frequency) and the
Szigeti charge (strictly speaking, the Born effective ion
charge") in terms of the microscopic quantities.

In Sec. II, the microscopic formulation of the
dynamical matrix in terms of the electron response is
included for the ease of following discussions. In Sec.
III, an investigation of the small wave-vector limit of
the formula for an insulator is given. Certain steps
leading to the sum rule are more plausible arguments
than rigorous, so as to make the physics involved easier
to understand. A more rigorous proof is deferred to the
Appendix. In Sec. IV, the results of Sec. III are utilized
to express the macroscopic infrared optical properties
in terms of microscopic quantities.

YVe shall restrict our consideration to normal in-
sulators (as opposed to, say, excitonic insulators) for

'" M. H. Cohen, R. M. iMartin, and R. Pick, Symposium on
Inelastic Neutron Scattering (International Atomic Energy Agency,
Vienna, 1968), Vol. 1, p. 119. Note added in proof. The same
authors have given a proof of the sum rule similar to ours given
here LPhys. Rev. (to be published) j."M. Bass, Physics of III-V Compounds, edited by R. K.
Willardson and A. C. Beer (Academic Press Inc. , New York,
1967), Vol. 3, Chap. l.
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which the dielectric properties derived by perturbation
theory of the electron-electron interaction" are valid.
An interesting extension of this work is to the lattice
dynamics of crystals with touching conduction and
valence bands, such as grey tin, "which possess unusual
dielectric properties. "In spite of the diRerent dielectric
properties, Sherrington" has been able to show the
existence of the usual acoustic modes in grey tin using
the method developed here.

tion we shall adopt. For example, the interaction
between two electrons at a distance r apart is

s,(r) = e'/r, (2.6)

s,(q) = 47re'/q' (qA0)
=0 (q=0). (2.7)

where —e is the charge of an electron. Its Fourier
transform is

II. DYNAMICAL MATRIX

Let the equilibrium lattice vectors be xg and the
equilibrium nucleus positions be x&1, =x&+xI,. Let the lk

nucleus have charge Z~e and mass MI„and let its
displacement from equilibrium be denoted by U~I, ~

In the adiabatic and harmonic approximation, the
force in the A, direction on the lk nucleus caused by the
displacement U~ I, ), of the l'0' nucleus is linear in U and
can be written as~

where the coefFicient C is known as the force constant.
Then, the equation of motion for the lattice vibra ion
at frequency cv is given by

2 C'w, (lk, l'k')«i i =~i~'&ii)
l'k'X'

(2.2)

From the infinitesimal translational invariance of
the crystal, 7 we have

Q C ii (lk,0k') =0.

It follows that q=O acoustic modes, i.e., modes for
which the displacements of nuclei in the same cell are
in phase, have zero frequency ~.

Ke must make a careful distinction between q=O
modes and small but nonzero q modes. The electrons
and nuclei that make up the crystal interact with each
other via the Coulomb potential. Its Fourier transform
4w/q' diverges as q-+0. However, because the charged
particles form a neutral system, the average interaction
potential may be regarded as zero. This is the conven-

'~ L. J. Sham, Phys. Rev. 150, 720 {1966)."S. H. Groves and %'. Paul, Phys. Rev, Letters 11, 194 (1963).
'4 L. Liu and D. Brust, Phys. Rev. Letters 20, 651 (1968};

D. Sherrington and W. Kohn, Rev. Mod. Phys. 40, 767 (1968)."D. Sherrington (private communication).

From the lattice translational symmetry, we have

C),i.(lk, l'k') = C„„(l—l'k, Ok'); (2.3)

hence, we can analyze the lattice vibration into normal
modes of wave vector q. For the normal modes with
wave vector q, the frequencies are determined by the
dynamical matrixv

Ci&,.(q kk') =(N&M&. ) '" Q e *q'*'C», (lk Ok'). (2.4)
I

In considering the small q limit of any quantity involv-

ing the Coulomb interaction, we shall be careful to bear
this in mind.

To write down the formula for the force constants
C'ii (lk, l'k') or the dynamical matrix Cii (q, kk'), we
separate it into two contributions, (i) from the direct
Coulomb interaction between nuclei, denoted by 4»,
and (ii) from the direct interaction via the electrons,
denoted bv CE.

The construction of Cl by Kwald's method is well
established. ' Su%ce it to write in the form

C M, '(q kk') =e"&*' *"'&(ZgZ-i e')/(MiMi, )'"'

«q), gx
X —— —Qu, (q,kk')

Qo

+~kk Z (A"/A)Qii (O,kk"), (2.8)

Qo being the volume of a unit cell. %hen the crystal is
subjected to a distortion of wave vector q, the most
singular part of the dynamical matrix C~, due to the
long-range Coulomb singularity as q

—+0, is isolated in
the first term in the square brackets. Q&, &, (q,kk') con-
tains the rest of the response from the bare nuclei, "
including Bragg-difI'raction-like contributions, and is
continuous at q=O. The dynamical matrix for the zero
wave vector (q= 0), by our convention, does not possess
the first term in the square brackets of Eq. (2.8). The
third term in the square brackets is a consequence of
the inhnitesimal invariance relation for the force con-
stants due to the bare nuclei only and it in turn
guarantees zero contribution to ~' for the acoustic
modes at q=O.

In the adiabatic and harmonic approximation, the
force constants between nuclei due to the mediation of
electrons are derived from the eRective nuclear potential
energy due to the presence of electrons of second order
in nuclear displacements U~l„-. These are due to the
deviation of the electron-nucleus potential from the
perfect crystal potential and consist of two types of
terms'. (i) the second-order contribution from the
deviation of the electron-nucleus potential of the first
order in U, and (ii) the first-order contribution from the
deviation of the second order in U.

' Reference 7, p. 254.
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Thus, the electronic contribution to the force
constants is

C », , e(lk, l'k') =

a& (r —x&g, k)—&&«&&i&- Q X(r,r')

properties possessed by C', we see that the total
dynamical matrix will give zero frequency for the
acoustic branches at q= 0.

Fourier transforming Eq. (2.9), we obtain the part of
the dynamic matrix due to the electrons,

4 », , e(q, kk')

=(M,.M, .)-«2 2 LX», (q+Gk, q+G'k')
G, G'

—~„.. P X» (Gk, G'k")], (2.15)

di (r' x&-„,"k".)
X—,(2.9)

where we have denoted the interaction between an
electron at r and the nucleus at x~I„.+UEq by

&&(r—x&i —U&i,
.k) = Z&,e—' (~ r —-xra —

U&&,
~

(2.10)

and the static electron density response function by X.
The first term on the right of Eq. (2.9) is of type (i)

mentioned above. The force on the nucleus is due to
the redistribution of the electron density as a linear
response to the distortion of the lattice. If we do not
want to use the adiabatic condition, the density response
function X is then the real part of the dynamic response
function at the normal mode frequency co. For a more
detailed discussion, see Ref. 4. In the adiabatic approxi-
mation, we take or=0 in the response function and
neglect the phonon contribution to X.

The second term on the right of Eq. (2.9) is of type
(ii) mentioned above, which should be, accordingly,

&'&« f &,i drn '"'(r) &1'& (r x«, k)(—Br&,dri. , (2.11)

n&"(r) being the electron density distribution for the
perfect crystal. Now, if the whole crystal in moved
bodily through a distance U, then the first-order change
in the electron-nucleus potential is

Bi(r x&&„k)—
(2.12)

where 6 and 6' are the reciprocal-lattice vectors and

Xiii(q+ Gk, q+ G'k')

=0,—'e'«+ o&*&&&(—q —G;k)(q+G)i
&«(q+ G, q+ G')~(q+ G', k') (q+ G')'

ye&&g+o & za' (2 16)

i'(q+6; k) being the Fourier transform of the electron-
nucleus potential &&(r;k). A formula of this form was
first given in Ref. 2 with the Hartree approximation for
the density response function. The more general form
was written down independently in Refs. 3 and 4.

Equations (2.8) and (2.16) together give the dy-
namical matrix for a lattice vibration in terms of the
interactions of its most fundamental constituents.
These form the starting point for the discussion of small

q behavior that follows.

III. ACOUSTIC PHONONS AT LONG
WAVELENGTH

The expressions for the dynamical matrix written
down in the last section apply to both conducting and
insulating crystals. We now wish to examine the limit
of the dynamical matrix for long wavelength, i.e., small
but nonzero q for insulators, which, for our purpose,
include intrinsic semiconductors at low temperatures.

In order to extract any singular terms in Eq. (2.15),
we first review the behavior of the response function at
long wavelength for an insulator. "The density response
x(q+ 6, q+ 6') is the sum of all polarization diagrams.
I.et x(q+ G, q+ G') denote the proper polarization
part. ' In an insulator at zero temperature, for small q,

and the first-order change in electron density,

—U Bn&"(r)(&&r.
Hence,

c1n &"(r)

(-' 13)

(2.14)

x(q, q) = &ii&&~i "&qi +O(q'), (3.»)
x(q, q+G) = qi&&&, «&(O,G)+O(q'), (3.1b)

&&(q+6, q) = xi&'&(G,O)qi+O(q'), (3.1c)

x(q+ G, q+ G') = &&(G,G')+O(q), (3.1d)

and combining with Eq. (2.11) gives the second term
on the right of Eq. (2.9).

It is straightforward to show from Eq. (2.9) that the
force constants C~ satisfy the translational symmetry
relations (2.3) and (2.5). Together with the same

where the summations over repeated Greek indices are
understood and G,G' are nonzero.

To isolate the leading term in X for small q, we follow
Ambegaokar and Kohn" in defining P(q+G, q+ G') to

'7 L. J. Sham and W. Kohn, Phys. Rev. 145, 561 (1966).
'8 V. Ambegaokar and M/. Kohn, Phys. Rev. 117, 423 (1960).



be the sum of all polarization diagrams not containing
the Coulomb line &).(q). Then, for small q, I' has the
same behavior as x, listed in Eqs. (3.1). It is a simple
matter to express the full polarization X in terms of I'
and thus to obtain the leading term for small q. For
example,

where

«» q) = f'(q q)/Ll —~.(q)f'(q, q)l
=(q'/4~") [1/p. (q) —1j,

p„(q)= 1 47—re'q), P),), &')q.), ,

(3 2)

(3.3)

using Eq. (3.1a) with I' in place of x. q stands for the
unit vector in the direction of q. As we shall see in the
next section, p„(q) is indeed the macroscopic dielectric
constant due to the polarization of electrons in a
perfect and rigid crystal. The subscript ~ means the
response at frequency higher than where the lattice
vibration will contribute.

Similarly, keeping only the leading terms, we have
for small q,

x(q, »+G)=q, P, ' '(O,G)!„(q),
&(q+ 6, q)=»"'(6,0)q./p-(q),

(3.2')

(3 2/I)

+ [A&),„—Z),„l(k)]
Qpp„(q)

x(q+6, q+6')~x(6, 6')+1'),&'&(6,0)
XA[«s'ip-(q)lqx» "'(0,6'), (3 2'")

where the coefFicients of I' are dehned in the same way
as in Eqs. (3.1).

Knowing the leading terms of the response function,
we can separate the irregular part of the electronic
contribution to the dynamical matrix from the regular
part, and by Eq. (2.16) write

Q X),), (q+Gk, q+6'k')
G, G'

4~e ~I~~ q) qx
eiq (xk—xk:t)

Qp q'-

tric screening of the insulating medium. In the extreme
tight-binding limit, Z),b»), —Z»q(k) is just the ionic
charge and p„(q) is unity for the rigid ions.

The last term on the right of Eq. (3.4) is the regular
part. As q

—+ 0, Sq),.(q, kk') tends to

Sx) (O,kk') = Q X),g (Gk, G'k').
G, G,

(3.6)

where

T&), (q,kk') = —Z):Z&.e'Q), ),.(q, kk')+Sq), (q, kk'), (3.8)

which is continuous at q=0. Thus, we have separated
the long-range interaction between the ions from the
short-range part. In the former, the lk nucleus carries
an effective charge matrix eZ),b»), eZ»), (k)—in the
dielectric medium with dielectric constant p„(q).The
last two terms on the right of Eq. (3.8) obey the infinites-
imal translational invariance relation and contribute
terms of the order q' to co' of the acoustic modes as

q ~ 0. No contribution to aP of the order unity comes
from the long-range part, if and only if the follow sum
rule holds:

g Z„),(k) =Q ZkI)„),. (3.9)

A proof which will also exhibit the physical meaning
of Z»), (k) more clearly is as follows. Expanding, in
powers of q, the Fourier transforrti,

x(q, q+6) =0 ' dr dr'e *p'x(r, r')e'«+ "' (3 10)

Putting all the previous results together, we can
write the total dynamical matrix in the form

4'), ), (q,kk') =(M),M)„.) ))2e'P

4xe"-

X —[ZA~. —Z~, '(k))q»q»
Qpq'p„(q)

X [Z), &), ),
—Z. ), (k') j+T),i (q,kk')

q q»'
X Z& &»), Z„),k') +S)). . q, kk'— , 3.4 0 being the volume of the crystal, we have

where

Z (k)=+P "'( 6) (G,k)G
G

(3.5)
x,&))(O,G) =Q-) drdr'( ir),)x(r,r'—)e'o ". (3.11)'

The 6rst two terms on the right of Eq. (3.4) are ir-
regular since they depend on the direction of q as
q —+ 0. They are equal to zero if q =0, by our convention,
Eq. (2.7). The erst term exactly cancels the irregular
term in the direct nuclear part of the dynamical matrix,
Eq. (2.8). The matrix Z»), (k) in the second term is the
effective charge acquired by the nuclei due to the drag
of electrons by the displacement of the nuclei. The
appearance of p„(q)here shows the macroscopic dielec-

It may be questionable whether the expansion, under
the integral on the right of Eq. (3.10), in powers of
q. (r—r') is valid. For a large crystal with periodic
boundary conditions, we regard r as a position operator
with the same boundary conditions. This can be de-
6ned either using the %annier or the Bloch represen-
tation. '9 In the Appendix we shall give an alternative
proof of the sum rule (3.9) without using this expansion.

"E. I. Blount, Solid State Phys. 13, 306 (1962).
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where the inverse diel. ectric matrix is given by'7

e-&(G,G') = bo, o +&&,(G)X(G,G') .

Hence, from Eq. (3.5),

Z„&,(k) = Q x„&'&(O,G)e '(G, G')
G, G'

(3.13)

From the definition of the polarization part
P(q+G, q+G'), we have

P "'(0 G') =Q X & "(O,G)e '(G G') (3.12)

(polaritons). We shall restrict "long wavelength" to
mean that the wave vector q is small compared with the
Brillouin-zone boundary but large compared with &d/C,

C being the speed of light. Having obtained the optical
phonons for such wavelength from our microscopic
formulation, we can simply follow Huang'0 to include

the eHects of the transverse electromagnetic fields.
The secular equations for the normal modes are"

Q Cp&, (q, kk')8'&, (O'I q j) =co,A}V&,(k l qj), (4.1)

~here
yr(G', k)G, 'e-' ' *' (3 14) C„„,(q,kk') = 4„&,.(q,kk')e '&'&*' *"' (4.2)

—a& (r' —x„;k)
drdr'r„X(r, r') P-

Bf)

=.V—' drr„bn&,(r,k),

(3.15)

3, being the number of cells in the crystal.
If the sublattice of k-type nuclei is moved bodily

through a small distance U, by the same reasonings
as those leading to Eq. (2.14), we see that the change
in electron density distribution is just bn&, (r,k) U&, .
Then, —eZ„&,(k)U&, is the dipole moment of the dis-
placed electron charge. e)Z&,b„&, Z„q(k)]—is the eHective
charge associated with the k-type nuclei when their
sublattice is moved bodily relative to the rest of the
crystal. "Equation (3.14) is the formula for this effec-
tive charge if we wish to calculate it from the band
structure.

If the whole crystal is moved slowly through a small
distance, then the shift of the electron distribution is
given by Eq. (2.13) and hence

and H &, (kl qj) and cuq, are the polarization vector and
frequency of the (qj) mode. Summation over X' on the
left-hand side is understood.

%hen the crystal is vibrating with a small wave
vector q, the microscopic electric field excited in the
crystal has components q+6 for all reciprocal-lattice
vectors G. Ke follow Horn and Huang in defining the
macroscopic electric field as the q component, "given by

&&,= (4~q&,q~ (—q")P&;, (4 3)

where P is the macroscopic polarization (dipole moment
per unit volume). The contribution from the bare
nuclei per unit amplitude of the normal mode qj is

P&,' 00 'p Zke——H &,
(—k

l
qg)M&, '". (4—.4)

The q component of the first-order change in electron
density distribution is

n&"(q) = iso 'p—X(q-,q+G)e *o *'
kG

&(v(q+G; k)(q+G) W(kl qj)M&„"-'. (4 5)

P Z», (k) =
&

' drn&"&(r)b„&= P Z&b„z. (3.16) Keeping only the leading term for small q by using the
&fc results in Sec. III, we obtain

IV. INFRARED OPTICAL PROPERTIES —
&,no&(q)= iq P~—, (4.6)

In the microscopic formulation of the dynamical
matrix, we have separated the irregular and the regular
parts as a function of the wave vector q, and have shown
that the frequency of the acoustic modes tends to zero
linearly in q as q~o. However, to hnd the sound
velocity, we would need to carry the expansion of the
electron density response function in powers of q
further than in Sec. III. Ke would not gain much by
doing so until we are ready to evaluate these formulas.
On the other hand, the expansion in g which has
already been made is su%cient to yield information on
the long-wavelength optical modes.

XVe shall not include the retardation efiect for a long-
wavelength optical mode'0; thus, we shall not obtain
the hybrid mode of optical phonons and photons

2' K. Huang, Proc. Roy. Soc. (London) A208, 352 (1951).

Hence
&&if'„(k

l
qq)M;«r. (4.7)

—P Lz,b„,—Z„,(k)]n, (k
l qj)M ~'-'. (4.g)

Doe„(q) &

For the acoustic modes, fV&, (k l q j)M& "' is independent
of k, and from the sum rule (3.9) follows the reasonable
conclusion that no macroscopic polarization is induced.

From Eq. (3.7) for the dynamical matrix, it follows
that the secular equations (4.1) can be written in the

"See Ref. 7, p. 249.

where the electronic contribution to the macroscopic
polarization is

P„x= ef4 &P—(Zg-b„g—[Z&b„&,—Z„g(k)$/e (q) }
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form unit cell. The "high-frequency" dielectric constant is

~o'll'k(k
I qj) =2 C» (q,kk') ll" (k I qj) ~„=I —4ze'P, (4.21)

and the infrared dielectric constant,
e[—Zkf')k„Z—k„~(k))Mk '"—E . (4.9)

+p f(kh, u) uk(k) L„——,
'

f(Xkk) RkE„. (4.10)

From this density, follow the equations of motion and
polarization which can be compared with Eqs. (4.8)
and (4.9), whence we obtain the identification

f(kX,k'V) = Ckk (O,kk')

(%krak,

) ')'/Qo, (4.11)

f(kh, ki) = e[Zkbk„—Zk„(k))(—Qo, (4.12)

f(lid) = —e'Pk„&'). (4.13)

These relations are the extension of similar ones given
by Born and Huang" for the rigid-ion and polarizable-
ion models to general electron redistribution.

As a consequence, Ckk. (O,kk') determines a set of
normal modes with frequencies co, and polarization
vectors e(kl j), three of which have zero frequency
(the acoustic branches). The macroscopic dielectric
tensor, as a function of frequency, is given by

3I„(j)~„t(j).& )=&.—& (~')'""'+x &4)4)
G7 —

COj

where the electric dipole moment iV), (j ) is given by

Mk(j) =Do '"e g [Zkl)k„—Zx„(k)g

Now Horn and Huang ' have given a treatment of the
optical properties starting from the macroscopic energy
density

U=-,' Q f(kX,k'ii')uk(k)uk (k')

o(o)) = o„+4ore'(Zi—»)'/QoM(&do' —oo') . (4.22)

The appearance of (Zi —zi)e in the expression of the
dielectric constant shows that it can be regarded as the
dynamical charge of the ions in the sublattice k = 1.The
sum rule (3.9) ensures that the dynamical charge on the
other sublattice is equal in magnitude and opposite in
sign. It follows easily that, for the diamond lattice, the
dynamical charge is zero, i.e., it is not infrared-active.
From Eq. (4.9), we have the longitudinal-optical mode
frequency,

(4.23)h)g= 6p E '"Mp.

This constitutes a microscopic proof of the I.yddane-
Sachs- Teller relation. '

)k„k(r)= e'""u„k(r). (Al)

APPENDIX: PROOF OF THE EFFECTIVE-CHARGE
SUM RULE

M'e shall give here a more careful proof of the sum
rule (3.9). This involves a more careful consideration
of the coeflicient X„&"(O,G) of the power expansion in

q of the proper polarization part, although the under-
lying physical meaning remains the same, namely, that—eZ„k(k) is a measure of the electric dipole moment
per unit displacement of the k sublattice. Ke do this
by examining the complete perturbation series of the
proper polarization part in terms of the electron-electron
interaction, following closely the method of Kohn. '4

Let the zeroth-order single-particle state of the insu-
lator have the wave function

XMk ')'e„(k
I j). (4.15) The proper polarization part may be written as

In particular, let us record the results for the impor-
tant class of diatomic crystals with tetrahedral sym-
metry, which includes NaCl, ZnS, diamond, etc. By
symmetry, "we have

x(r,r')= 2 f, k(r)4.*k*(r)
vl je 1 ~ ~ v4k 4

xx„„., „...„,, „,k,)k„,k, (r')p„,k,*(r'), (A2)

and the Fourier transform, from Eq. (3.10), isQkk (O,kk') = hid X4or/3flo,

Ski (O,kk') = hkk s,

krak'

(4.17) x(q, q+G)=f1 ' 2 Z(k.*k-.le *"l|k.-)
vl ' 'v4 Ie]k3

(4.18)Zk„(k)= &k„zk,

i k,"'=&k„P
Xx k, k —,k " k +.(&k.4kk+. I

e"o+o) "I &k.oko) (A3)
(4.19)

Hence, the transverse-optical mode frequency is given
by

&ook= M i[s—(4ireo/Mo)ZiZog, (4.20)

Now we expand each of the three factors in the sum-
mand in powers of q. From the properties of the Bloch
waves" we have"

where W is the reduced mass of the two nuclei in the

"Reference 7, p. 265 ff.
"Reference 7, Appendix VI.

(& k .Ie ""I& k)=~" -+(1 ~. ")
x (u„...I

q. Bu„,k, /Bk, )+o(q') (A4)-
"Q'. Kahn, Phys. Rev. 110, 857 (1958).
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and q+6

+(q 43u„,k, /eikzlj e*G'lu„,k,)+O(q'). (AS)

The zeroth order of (A3) is, therefore,

X(01G) ~ 2 2 vlk'1 "lkl "333 "413
vlv3v4 klk3

X (p.,k, l e""'
l 4" kz&, (Afi)

FIG. 1. Random-phase ap-
proximation for the proper
polarization part.

I
Ir k+q 33 3& Irk

I
Ir k+q I& 4( yk

vk
Brooch Electron Propogotor

Coulomb [nteroctlon

which vanishes" '-'. The first-order term q&Xk&r (O, G)
consists of three types of terms, each composed of the
product of a first-order term from one factor and
zeroth-order terms from the other two factors.

If the whole crystal is moved through a small dis-
tance u, then the change in the lattice potential has the
Fourier transform

where p is the momentum operator i&—/&r T.he suni
rule (3.9) would be proven if we could show the equality
of Fq. (A14) with Eq. (A9), to terms linear in q.

The first term in Eq. (A14) is the sum of two types
of terms:

(11) 0 1 Q (1—6.„)(z..k! q err„k rik)b»„„k,, (A15)
vv'k

iiv(G) =Q z(G k){—iG u)e-'G * {Ai )

and the change in the screened self-consistent field is"

where the first-order change in the one-particle density
matrix due to a displacement u of the whole crystal is
given by

&q(G) =2 e '(G, G')~z(G').

From Eq. (3.14), we have

(A8~
srr„„k=(rf„kl—u (& iir+ii, &r')n'(r, r')lp„k), (A16)

(V) fI-1 p [q il/13kz„z„k7iP(„'Iki upi zf'. k) . (A17)
vv'k

i Q q—„z„„(k)ur,——P q„x„'(o,G)ilk3(G) 1 (A9)

which is the sum of three types of terms:

Ke shall prove that

{I)= (I&'),

(II)= Ã),

(A18)

(A19)

(t) 11 rg Q (1-—S„,){«l„,
l q azr„„,ak, )

v4 klk3

and
(III)=0. (A20)

X Xl'1k 1, l 3 r.v343. v433(ki v41'3 ~ ri
I Itv vlkz) 1 (A II&)

8
(II) Q-1 P P q

vlv3v4 % 1k 3 Bk 4 8k,

(lII) is of the same form as x((),G) in Eq. (Ari) and
vanishes for the same reason. '-"-'

%hen the whole crystal is moved through a small
distance u the change in the one-particle density
matrix is'7

X vjky, vykp)v3k3, v4k4

—k2=kI, k4=k3
v3v4k3

x„k„„„,k, „,k, (rfr, „,k, l
43 rp l If'„,k,) . (A21)

Equation (A18) follows from this equation and Eq.
(A16).

Before we go on to the rather involved proof of Eq.
(A19), let us illustrate the preceding steps by verifying
the sum rule for the lowest-order contribution to the
proper polarization part (namely, the Hartree or
random-phase approximation), as represented by the
time-ordered Feynman diagrams" in Fig. 1.

(III) & p g Xvlkl, vlkl, vzk3, likz
VIV3V4 klk3

X (q. zizz„kk3!erks l~4I'k., I zz„zk3) . (A12)

(A13)
X(q,q+G) =II '2 (k,kle *"ltd, k+.)

n(r, r') = P rfr„k(r)n,„krfr„k*(r'),
vv'k

vv'k

On the other hand, using the one-particle density
matrix,

we have

-'I 'Z(~t" IL' » "'7'4. +.»--
vv'k

iq uQ ' —P &r., k+O(q')

= —iq u—P Zk+O(q '), (A14'-)
Q

X(p, I eirlr+G). r ~p )

X (».k rr;k+, ) (e,k e;.+,)—, (A22)—
where n„kand e„kare the occupation number and energy,
respectively. In this particular case, since the electrons

"J.M. Luttinger, Phys. Rev. 121, 942 (1961),
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VI kl+q
q----- v& k

VI kl

q+ qI+ G2

vl kg+q~

«+GI I«3 k3

To prove Eq. (A19), we introduce the one-electron
Green's function for the Bloch electron in the self-
consistent field «v(r), given by"

G(r, r'; &) =P P„(,.(r)lf, »*(r')G„«-(&)

q+ qlkG&

Vi k)+ q

v kl-q
iI, V~ k)+q

and the vertex part Y given by

1
+vlk Pq, r gk v3k v4k'+q =

27ri

X 1v««+q. :2« .~ «»'. ~ i»'+ s(BG~|»'(k)G~ ««'+v(h) «(A23)

VL kI+ q

qkql+GZ

ql
l««V)

V6 ksI —
ql

where the contour of integration over the complex
energy variable f is Re]=»«, where»» is the chemical
potential, " plus a large semicircle closing to the left.
The vertex part is slightly different from the usual one"
because the Green's functions used here are not fully
dressed.

XVhen the whole crystal is moved through a small
distance u, the change in the one-electron Green's
function is given bv

O'IG. 2. A typical term for the proper polarization part.

and holes which are polarized belong to different bands,
there are no contributions to (II), (III), and (V). Hence,

&~vk ~-'v'J;

(I) =f1-'g (u„~q a»I.„,, ak&- -(p„».IS» 'p„»&

«- »(6) = G.»(E)(0.» -I ~~
I 0"»&G"»(6) = (O'I —»u pI 0".&

XG, »($)+G.»($)(P.»I in pIP, »&. (A26)

1
(1 l) =— d&Q-' Q P q —+

2lri vlv3v4 klk3 &9k') I9k4

vv'k &vk &v'k

=0-'Q (u„»lq r)u. » '«)k&(II„« »„I,)(p„»l—iu p,'p, »-)
vv'k

X 1V«»'«, I'«» «, V3»3, V«»4($)G&g» 3(l )
—kg=kI, k4=k3

= (ll'&. x(l|„«,l —Iu pl&„»«,&+ q —+——
ok~ ok 4

X«ul»'2, vl»'l, l'3« 3, v»»4(k)Gv«»4($)
—I, g=I I,k4=k3

XQ„,«,
'

iu p,'P„,».,) . (A27)

VIG. 3. A.nother perturbation
term for the proper polarization
part.

An example of the perturbation terms that contribute
to (II) is given in Fig. 2(i). The diagram is evaluated
to the first order in q by the usual rules except that the
electrons or holes transferring crystal momentum q
are in the same band (v«) and that the vertex containing
the self-consistent potential 5p has no change in crystal
momentum. By Eq. (A27), Fig. 2(i) is the sum of Figs.
2(ii) and 2(iii), where the vertex with iu p (or —iu p)
means the matrix element with this operator as in
Eq. (A27). Similarly, the diagram Fig. 3(i) can also be
broken up into Figs. 3(ii) and 3(iii). We note that the
sum of Fig. 2(ii) and Fig. 3(ii) gives the same term as
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each except that the vertex with the wavy line has a
factor

&0" ~
I
L«.p e*"'+o"'ji4 ~ — )

= Q„,r, ~i n(q, +G,)e*«+o &'~t/„,~, „).(A28)

, R, , R,

II 9

It is a general property that for every diagram with a
vertex iu p acting on the outgoing propagator there is
a diagram with the same vertex associated with —iu p
acting on the incoming propagator and that their sum
is a vertex like (A28), which we shall just denote by a,

wavy line in Fig. 4. The only exception is at the vertex
q, where we do not use Eq. (A28).

For diagrams such as Figs. 4(i) and 4(ii), the external
interaction line with momentum q can be attached at
A, 8, (, or D. The sum of all these contributions to
(II) is zero, leaving only the two diagrams given in Figs.
4(iii) and 4(iv), which give the corresponding term in the

Fic. 4. Perturbation contributions to the effective charge.

perturbation series for (U) in (A17). In the same way we
can consider other terms in the perturbation series of

g and prove Eq. (A19).
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Formation of E,+ Centers in KI
ALExANDER KDUVALIs AND HERBERT X. HERSH

Zenith Radio Corporation, C/Iicago, Illinois 60639
(Received 2 June 1969)

N'hen undoped KI is x-rayed at 130'K and then irradiated with F light at 275'K, the M, R, and %centers
are formed. Subsequent irradiation at 78 K with F-aggregate light or R2 light results in the formation of
an optical-absorption band at 1125 nm at the expense of the R bands. Studies suggest that it is associated
with F&+ centers (formerly called R+), which are formed at 78 K by (1) V+F3+hvar —+ V +F3+ (where
Ave represents light absorbed only by the R bands) and destroyed by x rays at 78'K by (2) V +F&+
+ (x rays) ~ V+F&, where V is an electron center containing a halogen (V) center core. F~+ centers may
also be destroyed at 78 K by F light, by (3) V +F&++F+hvz ~ V +F3+a. The F3+ and V centers
are also formed thermally by heavily x-ray coloring the crystal at 130'K and by warming it to room tern-
perature in the dark. The suggested mechanism which involves the mobility of n (not F) centers is (4a) F
+F —+of+e+F ~ F&++e ~ F2 (by diffusion), (4b) F&+F —+ F2+e+a, (4c) V+e ~ V, (4d) F2
+o. —+ F3+. (4a) is in. accordance with Delbecq's mechanism. Studies show that the F3+ is not formed opti-
cally as a result of Vl; excitation but only by direct ionization. The formation of F3+ centers in x-rayed
crystals seems to depend on the existence of V centers which act as special electron traps. Thus far, Fg+
centers have not been found in additively colored crystals.

I. INTRODUCTION

'~T is well known that F-band irradia. tion of alkali
~ - halides near room temperature results in the forma, —

tion of M, E, and X bands. The M, R, and sY bands are
called F-aggregate centers and are formed on the longer-
wavelength side of the F band. ' Van Doom and Haven'-'
first suggested that the M center is an F. center com-
posed of two nea, rest-neighbor F centers lying along a,

(110)lattice direction. The model of the M center seems
to be well established. The R center is supposed to be an
F3 center consisting of three nea, rest-neighbor F centers

' J. H. Schulman and 8. D. Compton, Color Centers in 5olids
(The Macmillan Co. , New York, 1962}.' C. Z. Van Doom and Y. Haven, Philips Res. Rept. 11, 479
(1956).

in a plane. ' The Il center, according to Pick, is a,n F.I
center consisting of four (aggregated) F centers, aggre-
ga, ting in two distinct way s, to give rise to 3'~ a,nd cV2
bands. Although these centers are now interpreted as
aggregates of F centers, the mechanism of coagulation
F centers is not well understood.

The various F-aggregate centers so far mentioned are
electrically neut ra, l clusters of anion vacancies a,nd
tra, pped electrons. If additional electrons are trapped
(by F-aggregate centers), one would have F', F~', and
F,~' centers (where the prime denotes an additional elec-
tron) having an effective negative charge. 4 On the other

3 H. Pick, Z. Physik 159, 69 (1960).' M. Hirai, M. Ikezawa, and M. Ueta, J. Phys. Soc. Japan 17,
1483 (1962).


