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A general expression for the frequency-dependent dielectric constant of a molecular-crystal model, which
has been derived in a previous paper by the author, is analyzed in an improved two-state model for the
individual atoms or molecules. This expression includes explicitly the effect of quantum dipole fluctuations
and is used to perform a detailed study of their role in various other properties. First, we obtain a simple
expression for the correction in the polarizability of an individual atom arising from these fluctuations.
This result agrees roughly with dielectric-constant measurements for the rare-gas crystals. Secondly, we
derive detailed expressions for the effect of the dipole fluctuations on the energies of the long-wavelength
tight-binding exciton modes. In addition to the usual longitudinal and transverse single-exciton states, a
new class of cooperative double excitons is found, and their oscillator strength is determined. The double-
exciton modes result directly from the dipole-fluctuation mechanism. All the effects which are calculated—
corrections in the polarizability and in the exciton energies and oscillator strength of the transverse double
excitation—appear to be quadratic in the refractivity. Except for the correction in the polarizability, these
fluctuation effects are all fairly large. For example, the oscillator strength of the transverse double-exciton
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mode ranges between 1 and 159, of that of the single-exciton mode in the case of the rare-gas solids.

I. INTRODUCTION

N recent vears the theory of excitons in insulators
and especially in molecular crystals has been of con-
siderable interest, as exemplified by the extensive re-
views which have been published.!'* Two extreme exci-
ton models, valid in opposite limits, are generally con-
sidered and are known conventionally as the Frenkel-
and Wannier-type excitons, respectively.

The Frenkel tight-binding model is the one which is
appropriate for describing the excited electronic states
in molecular crystals. These crystals are bound essen-
tially by van der Waals forces, and the overlap between
the wave functions of neighboring atoms (molecules) is
weak. A molecular crystal can thus be described in first
approximation as a collection of individual atoms which
do not overlap, even in the lowest excited states. An
exciton is then viewed as an electronic excitation in
which the excited electron is essentially localized on an
individual atom while the excitation itself proceeds
from lattice site to lattice site as a result of the Coulomb
and exchange interactions. Such an exciton corresponds
to a stationary state of the crystal, and its wave func-
tion has the form of a translationally invariant linear
combination of wave functions describing excitations
localized on different atoms.

In detailed treatments of this extreme tight-binding
exciton model, it is found necessary to resort to simpli-
fied models®~!? to describe the individual atoms them-
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selves. The simplest such model, the so-called Drude-
Lorentz model, represents the electron cloud in a real
atom as an effective bound charge which oscillates har-
monically about the charged core. This model is partly
justified quantum-mechanically in the sense that the
polarizability of an isolated atom can be written as
a sum of contributions of a set of independent oscillators
with appropriate frequencies and oscillator strengths.
(In fact, some improvement over the original Drude-
Lorentz model results if instead of just one oscillator
one introduces, for each atom, a whole set of oscillators
with frequencies corresponding to the atomic transi-
tions.?) A better model, which seems to be valid for a
number of organic molecular crystals as well as for the
heavy rare gases, consists in describing the atoms effec-
tively as two-state systems. However, except for a
recent study by Mazo,® this model has always been
treated approximately in a way which makes it effec-
tively equivalent to the Drude-Lorentz model,!! at
least as far as the final results are concerned. In the
framework of these models and with the further ap-
proximation of replacing the Coulomb interaction to
lowest order by a dipole-dipole interaction, the excitions
acquire quite interesting properties. They can be inter-
preted as independent Bose-type elementary excita-
tions, i.e., as true eigenstates of the (harmonic) Hamil-
tonian. As was first observed by Hopfield,* ¢ the binding
energy of the crystal is then simply given by the sum of
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zero-point energies of these normal modes for all wave
numbers in the first Brillouin zone.

However, the Drude-Lorentz model has some short-
comings which show up very simply if one studies the
dielectric constant, by considering the effect of an ex-
ternal applied field. It turns out that, for this model,
the polarization induced on any individual atom is ex-
actly described by the classical Lorentz local field effect,
in which the polarizability of an individual atom (and,
in particular, the polarizability which enters the local
field expression) is replaced by the free-atom polariza-
bility. Thus, in this model, the quantum-mechanical
fluctuations of the individual dipoles do not affect the
dielectric constant, nor any related quantities like the
exciton energies. These fluctuations can be thought of
as taking place about the average classical dipole mo-
ments induced in the presence of the external field, and
they are coupled through the dipole-dipole interaction.
The quantum dipole fluctuations in the absence of an
external field give rise to the van der Waals interac-
tions, as is well known. When the field is present, the
matrix elements which describe the quantum fluctua-
tions are perturbed, and therefore one expects that for
real atoms (as opposed to Drude oscillators), these
fluctuations will in general lead to corrections in the
polarizability as well as in the exciton energies. In a re-
cent paper, henceforth referred to as I,'2 we have studied
this problem and derived a general expression describ-
ing the effect of dipole fluctuations on the polarizability
for real atoms. Like the van der Waals interaction, the
correction in the polarizability has the form of interac-
tions between pairs proportional to R, to lowest order.
We have shown also that it represents a purely anhar-
monic effect, being expressible in terms of various an-
harmonicity parameters of the atoms. There is thus a
qualitative difference between this effect and the van
der Waals interaction, since the latter exists even when
the atoms are treated effectively as harmonic oscillators
(Drude model).

The purpose of the present paper is primarily to
study the long-wavelength exciton modes in molecular
crystals by examining the singularities of the general
expression of the frequency-dependent dielectric con-
stant (and of its inverse) obtained in I. The theory is
made tractable by analyzing this expression in a two-
state model for the individual atoms. This model is
similar to the two-state model discussed above, except
that here it is used without any further approximations,
so that its inherent anharmonicities appear to be prop-
erly handled. However, the detailed analysis reveals the
presence of a certain matrix element which implicitly
requires the consideration of the effect of all the higher
excited states as well. Thus, in reality, our model is
intermediate between an exact anharmonic two-state
model and the one which describes the real spectrum of
an atom.

12 J. Heinrichs, Phys. Rev. 179, 823 (1969), referred to as I.
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As usually, the excitons separate into transverse and
longitudinal modes. In the Drude-like models the exci-
ton frequencies (more precisely, the squares of the fre-
quencies) involve only corrections linear in the refrac-
tivity, which correspond to the Lorentz field effect. In
a monatomic crystal, the refractivity z is defined by

z=41Nay(0), (1)

where &V is the number density of individual atoms and
ao(0) the static polarizability of an isolated free atom.
The dipole-fluctuation effect gives rise to significant ad-
ditional corrections which are quadratic in the refrac-
tivity to lowest order. On the other hand, since the terms
describing the fluctuation effect in the polarizability
involves resonance denominators at frequencies equal
to excitation energies of pairs of atoms, it leads to the
existence of cooperative double excitons, which corre-
spond to the simultaneous excitation of two neighboring
atoms in the crystal. The oscillator strength of the
transverse double exciton is quadratic in the refractivity
and becomes, in fact, fairly large in certain cases. Thus
the quantum dipole fluctuations provide a well-defined
and effective mechanism for cooperative excitons in
molecular crystals. Similar double excitons have been
observed recently,!*1* and have been discussed theoreti-
cally from various points of view for molecular crys-
tals.’=20 Double-exciton transitions have also been
studied for Wannier excitons and the results have been
applied to alkali halides.?!2* Finally, with the present
model the correction term in the polarizability itself
assumes a very simple form, which seems to agree with
experiment for the rare gases.

Section IT starts with a general derivation of the ex-
pression of the frequency-dependent dielectric constant
at finite long wavelengths in terms of an effective polari-
zability. This derivation is followed by the discussion of
the basic expression for the dipolar-fluctuation effect in
the polarizability, although the details are given in an
Appendix. In Sec. III the energies and oscillator
strengths of the long-wavelength single and double
excitons are determined and a brief discussion of retar-
dation effects is also presented. Numerical results and
discussions are given in Sec. IV.

II. DIELECTRIC CONSTANT
We begin this section with the derivation of a general

expression of the frequency-dependent dielectric con-
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stant of a crystal, at finite long wavelengths, in terms of
an arbitrary effective polarizability of a constituent
atom (ion or molecule). This derivation clarifies certain
points which, apparently, have not received sufficient
attention before. We find it thus useful to discuss this
derivation in some detail, although we shall not make
use of all the results later on.

The macroscopic dielectric tensor is defined by the
equation

P(q,w) = (1/4m)[e(q,0) —1]-E(g,w], )

where P(q,w) and E(q,w) denote the Fourier components
of the macroscopic polarization density and of the
Maxwell field at wave number q and frequency w. By
solving the complete system of Maxwell’s equations for
plane waves, one is led to the familiar equation?23.24

¢{[¢-E(q,0)J§—E(q,w)}

= (w2/02)[E(qyw)+4"rP(q’w)]

= - (wz/(;?)c(q;w) : E(q:"") ) (3)
which enables us to find the dispersion equation for the
excitations in the crystal as well as to express E(q,w) in

terms of P(q,w). For the Maxwell field we thus obtain
the standard relationship

E(q,0) = Ecx(q,00)

wZ
—4"[@' g

PP —w

(1—¢q>]-P(q,w>, @)

2

where we have added an arbitrary external field with
Fourier components Ee.(q,w). Here §=q/q, ¢¢ denotes
an outer product, and 1 is the unit dyadic. The square
bracket in (4) splits the polarization into its longitudinal
and transverse components, the latter being smaller
than the former by the factor w?/c%? at low frequencies.
Now in a monatomic crystal with N atoms per unit
volume having effective polarizabilities a(w), we have,
in the local-field picture,

P(g,0)= Ne(w)[Eexi(q,0)+ (1/N)®(q,0) - P(q0)],  (5)

where ®(q,w) is the Fourier transform of the retarded
dipole interaction tensor. Using a modification of
Ewald’s summation method, Mahan? has recently

shown that
w2
®(q.0) = —T(@+4rN———(1—40)+0(ua/c), (6)

P’ —w

T(q) being the familiar lattice sum involved in the non-
retarded (instantaneous) local field:

T(@) =X e™Ty,, O

AF0
1 RyRy
Th.= [1~3 ——
~ Ie)\,,3 R)\“z

% V. M. Agranovich and V. L. Ginzburg, Usp. Fiz. Nauk 76,

], Ry.=R—R,. (8
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Since a denotes the lattice parameter, it is apparent that
(6) is certainly valid in the optical frequency region and,
furthermore, that the last term can be neglected com-
pared to the second one for wavelengths large compared
to a. This is, in fact, the same condition as that which is
required for the definition of macroscopic fields in
Maxwell’s theory itself. In this approximation we now
combine Egs. (2)-(6) to obtain

4rVa(w)
e(qw) =1+ :
14+0(w)T(q) — 47V a(w)dd

9)

In an isotropic nongyrotropic medium and, in par-
ticular, in a cubic crystal in the long-wavelength limit
(or at any wavelength in directions parallel to symmetry
axis), the principal axes of €(q,w) are purely longitudinal
and transverse, and we have?

2(q,0) = el(gw)gd+e(gw)(1—49) (10)

as well as

T(q)=T:(9)gg+T(9)(1—43), (11)

where the quantities with indices / and ¢ denote longi-
tudinal and transverse principal values. After some
simple algebra, one finds from (9)-(11)

() =14+ 47N o(w) (122)
B Tl—l—oz((.u)Tz(q) —4rNa(w) ’ ¢
(gw)=1+ dryele) (12b)
e @)
Since
1i_r}ll) Ti(g)=(8w/3).\,
lim Tg)=—4n/3)N,
one finally has
41 Va(w)
e(w)=e0,w)=€0,w)=1+ (13)

1—(4r/3)Na(w)

which is the familiar Lorenz-Lorentz equation.

We now observe that expressions (9) and (12) for the
dielectric constant at finite long wavelength appear to be
independent of retardation or magnetic effects, to the
extent that these effects do not affect a(w) itself (a point
to be discussed shortly). However, our derivation shows
that these equations are valid in the presence of elec-
tromagnetic retardation effects as well, provided only
that ¢ is sufficiently small that the term O(wa/c)? can be
neglected in comparison with the other retardation term
in (6). The traditional and simplest way to discuss the
effect of retardation on the excitations in the me-
dium?®#:25.24 is to use the dispersion equation which fol-
643 (1962); 77, 663 (1962) [English transls.: Soviet Phys.—Usp.
5,323 (1962); 5, 675 (1963) 7.

2 M. Born and K. Huang, Dynamical Theory of Crystal Lattices

(Clarendon Press, Oxford, England, 1954).
% G. D. Mahan, J. Chem. Phys. 43, 1569 (1965).



1422

lows from (3), with the additional simplification of
replacing the dielectric constant by its limiting infinite-
wavelength value (13). The validity of this approxima-
tion is supported by the fact that the singularities of
£(q,0) and of £7'(q,w), which determine the exciton en-
ergies, do not vary strongly with q, especially at long
wavelengths.?® With these assumptions, Eq. (3) leads
to the dispersion formulas

€(w) =0,
2/ wr=e(w),

since the electric field E(q,») never vanishes identically.
The first member of (15) defines, of course, the square
of the refractive index #. It thus follows that the longi-
tudinal modes are unaffected by retardation and that
the nonretarded transverse modes, which correspond to
the electrostatic approximation, are given by the poles
of e(w).? These results express the well-known fact that
only the transverse electrostatic modes are effectively
coupled to the electromagnetic field.

We now proceed with some general remarks about
Eq. (13), which should be kept in mind in the course of
later application of this equation. We note that the
exact expression of the real part of ¢(w) is of the general
form

(14)
transverse modes [ E(q,w) Lq] (15)

longitudinal modes [E(q,w)||q]

1"0,”
Ree(w)=1+w,? -, (16)

m m(]2 —w?

which results from applying the Kramers-Heisenberg
dispersion formula (at ¢=0) in the representation of the
exact eigenstates of the crystal, whose transition ener-
gies and oscillator strengths are denoted by 2,0 and
Fom, respectively. Here P denotes the Cauchy principal
value and w,? is an effective plasma frequency. Now in
Eq. (5) from which (13) is obtained, we have assumed
that a(w) is real, which is correct at low frequencies.
However, the polarizability exhibits resonances which
correspond to the atomic transitions between the ground
state and the various excited states when a(w) is chosen
to be the free-atom polarizability, for example. Near
such resonances, a(w) becomes complex through the
appearance of infinitesimal imaginary parts +is in the
energy denominators. This feature arises as a result of
switching on the external field adiabatically from the
infinite past to a time ¢, by means of the usual exponen-
tial factor e*. The complex dielectric constant of the
crystal is then obtained by inserting this expression of

% If more accurate results were needed at finite small ¢ values,
one could include the effect of the g dependence of £(q,w) by taking
advantage of the numerical results for the eigenvalues and eigen-
vectors of T(g) which have been recently determined in another
context: J. Heinrichs and A. Lucas, Bull. Soc. Belge Phys. 4, 55
(1964); A. Lucas, Physica 35, 353 (1967).

*"The considered excitations are also called “polarization
waves,” which refers to their connection with a nonvanishing
electric polarization in the crystal. In the crossover region of the
excitons and virtual photons in the (w,q) plane, one refers to the
no(x;mz;l) modes of the coupled system as “polaritons” (see Refs. 5
and 23).
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a(w) in Eq. (13), so that after reduction the resonance
denominators in a(w) are replaced by resonance de-
nominators in e(w) itself, with infinitesimal imaginary
parts of the form isg(w). (An example which can be
easily worked out in detail is the case of harmonic oscil-
lators.) By going then to the limit s — 0, one is led to an
expression of Ree(w) of the form (16), where principal
parts are now taken at the resonance energies of the
crystal.? In practice, of course, the same result is ob-
tained by adding a principal-part symbol in front of the
fraction in Eq. (13) and using for a(w) the low-frequency
expression. The imaginary part of e(w) can be found in
a similar way but it is usually more expedient to obtain
it from the Kramers-Kronig formula

1 1
11116((‘0):—*/ (lw'[Ree(w')—l:]P(—A/). (17)

™ w—w

Since the present theory does not take into account any
damping effects (such as radiation damping or other
decay processes like exciton-phonon interaction, etc.),
the exciton energies are real and will thus be given by
Egs. (14) and (15), where e(w) is replaced by Ree(w).
In order to carry further our analysis of the electronic
excitations in molecular crystals, we need a detailed ex-
pression of the polarizability a(w), which we shall now
examine. As discussed in the Introduction, the model for
the crystal is that of an array of nonoverlapping atoms.
The interaction between the atoms is approximated by
the instantaneous dipole-dipole interaction, which is the
lowest-order term in the multipole expansion of the true
Coulomb interaction. The Hamiltonian is then

H=3% Ho+3 2 pxTru by,
X

ANEp

(18)
where H ) is the Hamiltonian of an individual atom and

h=— M 2 (ra—Ry)

=1

(19)

is the dipole moment operator of the n-electron atom A.
Since we are interested in the electronic excitations of
the crystal, we may disregard the phonons, because their
energies are much lower, and assume that the nuclei are
held fixed at the lattice sites.

In I we have presented a detailed analysis of the
dielectric response of this system in a uniform external
field E=j(Eoe“*+c.c.) of frequency w. The correspond-
ing interaction term in the Hamiltonian is —3 ) p»-E.
The classical Lorentz field effect was diagonalized ex-
actly in a first step. This enabled us to study, in a sec-
ond step, the effect of the quantum fluctuations of the
induced dipole moments, as discussed in the Introduc-

8 It would be incorrect, of course, to take the limit s — 0 in
a(w) itself and then substitute the result in Eq. (13). This is be-
cause the induced polarization is sensitive to the resonances in the
crystal and not to those in the isolated atoms, which are in a sense
irrelevant.
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tion. The details are given in I and it is shown that the
net effect of the dipole fluctuations is to replace the
polarizability ag,\(w) of an isolated atom X by an effec-
tive polarizability

an(w)=ag(w)+Aar(w) , (20)

where Aay(w) represents the correction due to the fluc-
tuations. The expression of Aa)(w) has been derived in I
in the general case of a real spectrum of excited states
for the individual atoms. However, this expression ap-
pears to be too complicated to handle in detailed appli-
cations. Therefore, we shall attempt to simplify it here
by using a much simpler model for the individual atoms.
This model seems to describe adequately the essential
features of the fluctuation effect for the rare gases (as
well as for the electronically similar alkali-halide ions),
and the indications are that it leads to quantitatively
correct results.

As explained in the Introduction, we shall use a two-
state model, assuming that the atoms can be treated
effectively as systems having only one excited state.
However, we shall see that this model must be somewhat
amended in order to obtain a consistent treatment. For
definiteness and in view of an application to the rare
gases, we consider the important case where the first
excited state of an atom X\ is a triply degenerate P state
denoted by |1;\) (i=x, y, z), while the ground state is
an S state |O,\). We relegate, however, to the Appendix
the details of the reduction of the general expression for
Aar(w) in this approximation, mainly because this is
a technical and somewhat involved question, as a re-
sult of the complexity of the starting expression of I.
Before discussing the final result some further remarks
are in order.

In addition to assuming that the ground-state distri-
bution of an individual atom is spherically symmetric,
so that

O 2a2[ON) =3O 12 ON), (21)
we also assume that
O] papr | ON)=(ON| pr?| ON) - €, (22)
as well as
(L e[ 1;,0)=0. (23)

Here the components of the dipole moment operator are
labeled with an index 7, and e; is a unit vector in the ¢
direction. Equation (22) follows from the fact that the
polarizability tensor reduces to a scalar for spherically
symmetric atoms. Equation (23) is just a special case of
an assumption which has been used throughout in I,
namely, that the dipole moment operator is diagonal
with respect to any subset of degenerate excited states.
Its justification, in the case of many-electron atoms,
relies on Laporte’s rule according to which dipole tran-
sitions in an atom take place only between states of
different parity.?® Now, with these assumptions the

2 G. Herzberg, Atomic Spectra and Alomic Structure (Dover
Publications, Inc., New York, 1944).
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general expression of Aax(w) reduces in the two-state
approximation to an expression involving two kinds of
ground-state expectation values: (O,\]|pa%/O\) and
O] P22 ON)=31(O,\| pr*|O,\). The z component and
the magnitude of py in this expression originate, respec-
tively, from the external field term and from the dipole-
dipole term in the Hamiltonian. It is important to
recognize that while (O,\| p.22|0,\) is uniquely expressed
in terms of the transition matrix element (O,\] p.a| 1:,\)
by (O,\] pa2]ON)=| (O] p.a| 1:,0)| 2, a similar reduction
of (O\] pa2p2|O\) in the two-state model is not fea-
sible. In fact, such a reduction would not be unique,
since by using (21)-(23) one could generate two
different approximate values, ((O,\|p22|0\))? or
3((O,N] 2| O,N))2, for (ON] pa2pa2|O,\) by considering
the two different possibilities for inserting the complete-
ness relation. This reflects the importance of the higher
excited states in the value of (O,\] p.22p22|0,\) and com-
pels us, for consistency, to leave this expectation value
in its present form. We then conclude that our model is
in reality intermediate between a strict two-state model
and a model describing the actual spectrum, since
Aan(w) includes terms depending on (O,\] pa2pr2|O\),
whose value cannot be approximated by using a two-
state model. We introduce the parameter

= (0))‘[ pl)\zp)\g [ O,)\)/((O,)\ l PZ)\2 [ O7>\>)2’ (24)

whose direct determination will be discussed later. The
appearance of the parameter »), through which enters
the effect of higher excited states, shows that the gen-
eral expression for Aax(w) is not completely defined in
the limit of a two-state model. This is not surprising
since, in evaluating it explicitly for the case of linear har-
monic oscillators (for which it must vanish), one finds
that not only the first two but rather the first three
states contribute effectively to the final result. The de-
pendence of Aa)(w) on this parameter was already noted
in earlier theories of the dipole fluctuation effect,30:3!
whose validity has, however, been questioned.!?

The expression of Aa(w) is obtained by applying (A5)
to the case which we are considering, namely, that of
a monatomic crystal. It is convenient to express the
result in terms of the refractivity (1) and to introduce
the quantity

B=AE© fwr,, (25)
where AE©® is defined as minus the van der Waals pair
interaction energy per particle. In the case of a cubic
monatomic crystal, AEy® reduces to

1({0]p:2/0))?
AEW=-"""""""Tr ¥ T,  (26)
2 2w B (w0
so that
B>z%/48,

where the last line follows from (1), (A1), and (A3).

30 L. Jansen and P. Mazur, Physica 21, 1933 (1955).
8t R. Yaris and B. Kirtman, J. Chem. Phys. 37, 1775 (1962).
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Using the new variable {=w?/wyy?, we obtain, finally, at
off-resonance frequencies,

Aa(w)
28 (7T—2)12—(35—2v)t+4(16—3v
=_a0(0)_5( )2 — (35— 2v)t+4( )’ 2
3 (1—=6)2(4—1)

where we have dropped the now unnecessary indices
referring to atomic species. In the present notation, Eq.
(A4) becomes

ao(w)=ao(0)/(1—1). (28)

Substituting these expressions in (13) and using (28),
we obtain for Ree(w)

Ree(w) =1+zP
(1—=1)(4—1)—3B(at*—bt+c)
X(1—1)(4—z)(1—%z-:)+(2/9)zﬁ(a:2—bz+c) ’

(29)

where

a=7—2, b=35—2v, ¢=4(16—-3»). (30)
In the next section we proceed with the study of the

collective exciton modes, given by (14), (15), and (29).

III. LONG-WAVELENGTH EXCITON MODES

We consider first the nonretarded or electrostatic
case®2* in which the energies of the transverse modes
are determined by the singularities of Ree(w), i.e., by
the roots of the denominator in (29). To obtain these
roots, it is sufficient to use an iteration procedure. In-
deed, since (27) describes the fluctuation effect to O(8)
only [or equivalent to O(R™®) or O(z%)], it enables us to
determine the exciton modes correctly only to this order.
Our iteration procedure is then as follows. We factorize
the third-degree polynomial in the denominator of the
right-hand side of (29) in terms of its roots ¢, #’, and
""", To determine these roots iteratively, write

tl=to,+t1,+"', t”=t0”+t1"+""
and
tlll=t0/,’+tllll+ e
)

the zero-order values being t/'=1—%z {/'=4, and
t/’=1, and expand the polynomial in its factorized
form to linear order in 8. Comparison of terms with the
same power of ¢ in this latter polynomial and in the de-
nominator of (29) yields a system of three linear inhomo-
geneous equations which determine #/, #", and ,/”.
A similar procedure is also used to find the roots of the
numerator.

With this straightforward calculation, (29) is reduced
to the form

t—1'

Ree(w)=1—2z(1—%aB)P

=)y’ 3D
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where
w¢'2 2

=—=1—334+——
(.:.)102 3(9+Z)

X[3(a—b4c)—(2a—b)z+%az2]8, (32a)

O)g,lz 22

{'=—=4+4+——(16a—4b+¢)8, (32b)
w1o? 9(9+32)

7' =44(2/9)(16a—4b4c)8B. (33)

The longitudinal modes are given by the solutions of
Ree(w)=0, and one finds without difficulty, to first
order in 3,

/
w'?

42— 9(a—b+
ot 3(3—32)(9+z)[ (a=b+0)

+(13a—"T7b4c)z+3(8a—b)32+(4/9)az*]8, (34a)
w2 4z 9422

——=4——(16a—4b+¢)——B.
w10? 27 (3—22)(9+2)

(34b)

We may rewrite (31) in a form similar to (16). Leaving
out terms of O(8%), we obtain

T—2
Ree(w) = 1+z<1 ———22)
72

ft, ft”
me?P(“ + >, (35)
JPmw? ) 2w

[U=30=1/ @+, fi=1—f/

are the oscillator strengths which correspond to the
excitons of energy %w, and #w,” and which satisfy the
usual fsum rule. The prefactor in (35) is interpreted as
a renormalization of the plasma frequency, which is
present in the general formula (16). We also determine
Ime(w) by substituting (36) in (17) and by employing
the integral identity

where
(36)

* dw

- =72§(w; —ws).
—c (w-—w;) (w—wz) ( )

(37)

The result is

7—2
Ime(w) = —%wz(l ~7;z2)w102

X /o) b(w—w!) =8(wtw)]
F( /! ) [8(w—wi") = 8(wtw)]} .
We also note that an alternative form of (35) is
(0 —wi?) (w?—w/"?)

(@ =/ (Wt —w/"2)

(38)

Ree(w)=P

(39)
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By inserting (30) and the definitions (25) and (26) into
Egs. (32) and (34), we obtain the following final results
for the exciton energies (A=1):

2

2
12—l (1—=12)4——
@ w“’(( RAETY

><[Z36(3——»)+(21+2v)z+(7—M%z’]), (40a)

23
wl;12=4w102<1—(u—1)‘~——~> , (40b)

24(9+2)

Z2

2 = i (14-22)+
“ w“’(( )t o201

X [108(3—») —6(15+4v)z+ (14/3)(3 —2v)z2

+(4/9>(7—2»>z3]), (41a)

w1/'2=4w102<1+T1§(V_1)33 (41b)

22 >
(9—22)(9+32)/

The terms of O(z) in Egs. (40a) and (41a) are propor-
tional to the Lorentz local fields which are associated
with transverse and longitudinal excitations, respec-
tively (in a Drude model, they correspond to the con-
tributions of these fields to the restoring force), while
their difference z corresponds to the depolarizing field,
which exists for a longitudinal excitation but not for a
transverse one. The remaining terms in these equations
are the corrections due to the quantum dipole fluctua-
tions. Since the latter effect has been treated only to
O(B) or, equivalently, O(z?), it is apparent, strictly
speaking, that the correction in Egs. (40) and (41), as
well as Eq. (36), are correct only to O(z%). The higher-
order terms which are present in these formulas arise
from a mixing between the quantum and classical terms.
However, we find it preferable to present the equations
in the above more general form, because they describe
exactly the lowest-order result of a perturbation expan-
sion in terms of the quantum effects alone.

The present theory thus gives rise to the usual single-
or one-exciton modes, whose energies are renormalized
by the fluctuation effect. In addition, however, one ob-
tains double cooperative excitons which involve the
simultaneous excitation of two neighboring atoms, and
whose energies are therefore of the order of 2wy, The
double-excitation phenomenon predicted by the present
theory arises as a natural consequence of the dipolar
fluctuations.

The origin of the finite oscillator strength for double-
exciton transitions in our discussion may be made
somewhat more explicitly. The sum M,” of the squares
of the transition matrix elements corresponding to the
various possible double excitations, according to (35)
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and (36), is proportional to
M« (p—1)3,

which becomes, after rewriting it in the original form
of a contribution from interactions between pairs of
separate atoms and using (24),

M < LOXN pa*pr?|ON)
- (<0’>‘ : pz)‘2 t Oa)‘>)2]<01# [ qu2 | O,,U.>
+sym. term A <> p

1(05)‘117&9)\!1.7)‘)‘21 (0;I‘lpulj,#>]2

+sym. term A > pu.

= X

i 70,7 #0

As mentioned previously, the 2 component of the dipole
moment operator which appears in (O\]p.a2p2%| O,\)
arises from the coupling of the atoms to the external
field, which causes the optical transitions, while all
other operators in the above expression originate from
the dipole-dipole coupling between the atoms. It is seen
that an individual term in the above sum describes a
combined process in which successively one of the atoms
of the pair is excited to some intermediate state by
absorption of a single photon and then both atoms are
further excited to a doubly excited final state |7,\)| j,u)
through the dipole-dipole interaction. The symmetric
process in which the dipole-dipole term acts first is of
course also included in the above expression. It follows
from the dipolar selection rules that only those terms
where the pair of states |i,\) and |7,u) have different
orbital symmetries, can possibly contribute to M,”.
This general picture of the double excitation process
indicates, for instance, that two identical two-level
atoms cannot be simultaneously excited by one photon.
However, since the present theory ceases to be valid for
strictly two-level atoms, it does not describe directly
this limiting situation. We note also that, since in the
double-exciton states with which we are concerned the
two atoms are excited to different final states, the
energy of the exciton will generally be different from
2w30, unless all the relevant atomic excited states are
confined in a narrow range of energies of width small
compared to wie. This has been effectively assumed in
obtaining the terms proportional to (O,\ | p,2p2|O,\) in
Aal (w), since the only feature of a two-state model
which can be used for these terms is the assumption
of a single excitation energy. Therefore, in the present
case, the total observable oscillator strength for double-
exciton transitions is represented by the sum of the
contributions from the various possible double-excita-
tion processes.

The foregoing discussion shows that the double ex-
citations considered here are in some respects very simi-
lar to those discussed in earlier treatments.!®!? In the
next section we shall present some numerical estimates
of the oscillator strength for double excitations, as well
as of the corrections in the exciton energies.
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We now turn to a brief discussion of the role of the
electromagnetic retardation effects which we have
neglected so far. We shall not be concerned, however,
with the effect of retardation on the calculation of Aa(w)
itself. Just as in the ordinary van der Waals pair energy,
this effect is significant only for pairs which are sepa-
rated by distances R of the order of an optical wave-
length. The contribution of such distant pairs in Aa(w)
is completely negligible in normal circumstances. When
retardation effects are included, the transverse optical
modes are given by the solutions of (15) rather than by
the poles of Ree(w) as in the electrostatic case. In the
absence of the (anharmonic) fluctuation effect, i.e., for
a Drude-type model, the results are well known and
correspond to the so-called “polaritons,” which have
been studied extensively both in the context of excitons®
and in that of lattice vibrations.? Again, we require the
solution of (15) only to first order in the parameter 8
occuring in (31)—(33). We use an iteration procedure
which is quite similar to the one described above. The
coupling between the electromagnetic radiation and the
nonretarded single and double transverse exciton modes
gives rise to three new modes whose energies have the
following expressions:

w
- o 7'0++[<1117'U+_k1)7'0++ll]

2

w1o”
Tu——4
X— — . (420)
(rot —=7)[16—4(r¢"+707)+ 707707 ]
w2
‘—“=To_—[(h1To_—k1)T0_+llj
w10
To+—'4
X , (42b)
(T[)+—"1'()_)[16—4(7'0++T()“)+To+‘r0_:]
w'?
——2=4+[4(4/11—k1)+11]
w10
1
X , (43)
16—4(rot+70) 7ot 7
where
22
hy=—- 543 —»)—=3(15—4v)z —(T—2v)32], (44
108(9+z)[ B—»)—=3( v)z—(T—2)22], (44)
22

k= 8[54(3—v) = Sv)z—(4+v)z?
1 216(9+z){ [543 —») =3(6+5v)s— (4+»)22]

+[108(3—»)+3(33—100)z+ (7 — 2)52]

X(c%? w1}, (43)
ZZ
= [108(3—»)+3(24 —v)z+ (4+v)2?]
34(9+=2
><<52(]2 wmz). (46)

The frequencies 7o+ are the solutions of (15) in the ab-
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sence of the fluctuation effect, as given by Hopfield®-32:

1 cq?
Toi=‘(1+%z+-——'>
2 wi0?
1 62 2 64(14 1/2
:i:;':(1+%z)2—2(1—§z)~—;+———] . 4"

wi0” wWi0”

The characteristics and physical properties of these
modes are well discussed elsewhere, e.g., Ref. 24. The
additional retardation effects due to the presence of the
dipole fluctuations turn out to be quite small, as can be
seen by expanding the correction terms in (42) and (43)
to O(z?). The result is

w 2= w1 7o+ (3—r)z%/184+0(z%) ],
w-= w1 [re+0(z)],
o= 4o (140G,

which shows that to this order the additional retarda-
tion effect vanishes altogether. Thus the double-
exciton mode itself is completely unaffected by retarda-
tion to O(z2%). In the case of the transverse single exciton,
the retardation effect is quite pronounced, being essen-
tially the same, however, as in the absence of the quan-
tum correction term, i.e., as for the Drude model. Note
that the degeneracy which occurs between the un-
coupled double-exciton and photon energies at the cross-
ing point of the dispersion equations is not removed.
This is not a disturbing result in view of the fact that
the double-exciton frequency does not represent a true
normal mode, but corresponds only to the energy differ-
ence between two eigenstates of the Hamiltonian.

TaBLE I. Comparison between theoretical and experimental
values for the change in polarizability of the rare gases due to di-
polar fluctuations. The theoretical values are based on Eq. (50)
(v=5). The nearest-neighbor distances R and the polarizabilities
ao(0) are taken from Refs. 35 and 36, respectively.

R a(0) Ac(0) /e (0)
(A) (A3) z Theory Expt.s Expt.b
Ne 3.2 04 0.217 —0.0007
Ar 3.83 1.64 0.52 —0.0038 —0.0085 —0.0105
Kr 3.94 2.48 0.72 —0.0072 —0.0064 —0.0129
Xe 4.41 4.04 0.837 —0.0098 —0.02 —0.007

a Reference 37.
b Reference 38.

TasLE II. Results for the dipolar fluctuation effect Aa(w)/ao(w)
at finite frequencies, as given by Eq. (27) (v=35, t=w?/w10s®).

t Ne Ar Kr Xe
0 —0.0007 —0.0038 —0.0072 —0.0098
0.1 —0.0003 —0.0016 —0.003 —0.0041
0.157 0 0 0 0
0.2 0.0003 0.0014 0.0027 0.0036
0.3 0.001 0.0055 0.011 0.0142
0.4 0.002 0.0113 0.0217 0.0292

82 C. Kittel, Quantum Theory of Solids (John Wiley & Sons, Inc.,
New York, 1963). ! Y
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TasLE III. Corrections in the energies of the transverse and longitudinal exciton modes and oscillator strength of the transverse
double exciton (»=35). In the results corresponding to w,” and w;’ the second contribution is the Lorentz field effect and the third is the

quantum correction.

% fwio? w!"[4w1o® wi'?fwi0? "2 /4w 0? — 32 1 1
Ne 1—-0.073—0.005 1-0.0003 140.146—0.007 1-0.005 —0.006 0.01 0.02
Ar 1-0.173-0.022 1-0.003 14-0.346—0.05 1—0.006 —0.03 0.053 0.055
Kr 1-0.24 —0.038 1—-0.007 14048 —0.113 1-0.016 —0.058 0.098 0.109
Xe 1-0.279—-0.047 1-0.01 14-0.558—0.169 1-0.027 —0.078 0.13 0.149

IV. RESULTS AND DISCUSSION

In order to make quantitative predictions with the
present theory, a simple procedure for estimating the

parameter
v=(0[p:*p*|0)/((0]p:*|0))*

appears to be highly desirable. For many-electron
atoms, a direct determination of the numerator, based,
for instance, on a Hartree-Fock approximation for the
ground state, would be a very tedious task indeed. This
which, when expressed in terms of the electron co-
ordinates, involves various sums of #n-particle terms
(n=1, 2, 3, 4). On the other hand, it is not clear at
present whether the results of such detailed calcula-
tions could be expected to be significantly more accurate
than those obtained from the much simpler procedure
which we shall use below.

For hydrogen atoms, the parameter » can be deter-
mined exactly, its value being 7.5. For He atoms, using
a Slater determinant for the ground state and Slater
one-electron wave functions, one finds v=6.25.3° The
heavier rare gases are the simplest real systems to which
we may attempt to apply the present theory since they
seem to behave more closely as two-state systems.
Another reason for studying the rare-gas crystals is that
their refractivities are well known.?? As far as the deter-
mination of » is concerned, the heavy rare-gas atoms,
which have closed electronic shells, seem to be ade-
quately represented by the charge distribution of quan-
tum harmonic oscillators

p(r)=[¥o(r)|*= (av/m) %=1, (48)

i.e., by Gaussians. Formally, the use of this model in an
approximate evaluation of the fluctuation effect is rather
natural, since it is known that a zero-order approxima-
tion, which neglects this effect altogether, is precisely
equivalent to the use of a Drude-Lorentz oscillator
model for the atoms. If one uses (48), the result for » is
independent of a and one finds*

y=35. (49)
We shall use this value in the following estimates for

# In some respects, however, the localized tight-binding exciton
model which we are considering seems to be better suited for cer-
tain organic molecular cystals (crystals of aromatic molecules)
than for the rare gases. It appears indeed that charge-transfer
processes (overlap effects) between neighboring atoms do play an
important role in the rare-gas crystals (see Refs. 1 and 2).

# L. Jansen and A. D. Solem, Phys. Rev. 104, 1291 (1956).

the rare gases. It is quite clear, however, that this de-
termination of » is not unique, since it is based on a
highly simplified model. Thus a truly reliable test of its
validity must still rely on comparison between theoreti-
cal and experimental results, although the accuracy of
(49) is certainly much better than order-of-magnitude.

Along with the values of nearest-neighbor distances??
and free-atom polarizabilities,*® from which the refrac-
tivities z are calculated, we present in Table I the re-
sults for the fractional change in the static polarizability
obtained from (27):

Aa(0)/ao(0) = — (16 —3v)22/72. (50)

Our theoretical values are in rough agreement with
recent experimental results for the variation of the
Clausius-Mossotti function with density,37:3¢ as deter-
mined by the difference between the values of this func-
tion in the solid and dilute gas phases. These results are
shown in Table 1.3 This agreement provides a check on
the validity of the Gaussian model for the determination
of the parameter » and justifies its use for making further
detailed predictions concerning the excitons. Finally, we
note that our expressions (27) and (50) for »=35 differ
from those of Mazo’s theory,!® which is based on an ap-
proximate Green’s-function treatment of a second-
quantization Hamiltonian, which is itself an approxima-
tion of (18).40 Mazo’s final result does not include any
frequency dispersion effect and may be reduced to the

form
(Aa(w)) 22
aolw) / ar 24
We believe that our results are more accurate, since

they are based on an exact treatment of the Hamiltonian
(18). We note, incidentally, that (51) coincides exactly

(51)

# C. Kittel, Introduction to Solid State Physics (John Wiley &
Sons, Inc., New York, 1956).

36 A. Dalgarno, Advan. Phys. 11, 281 (1962).

% R. L. Amey and R. H. Cole, J. Chem. Phys. 40, 146 (1964).

88 A. C. Sinnock and B. L. Smith, Phys. Letters 284, 22 (1968).

% The refractivities computed with the density values corre-
sponding to the Amey Cole measurements near the triple point
differ only slightly (by 107 on the average) from those which are
listed in Table 1.

40 As was noted in I, a factor 2 is missing in Mazo’s final expres-
sion, so that values in Ref. 38 which are based on Mazo’s theory
should be multiplied by 2. In a strict two-state approximation,
such as that used by Mazo, there are two possible values for » (1 or
3), as discussed in Sec. II. For the rare gases the best choice would
then correspond to »=3. According to (50), this would lead to a
correction of —2.62%; for Ar, which is much larger than the cor-
rect result of Table I.
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with the contribution of the first term in (A2), which
represents the effect arising from the difference of the
polarizabilities of the two states of the atoms.

Some typical results at finite frequencies obtained
from Eq. (27) are given in Table II. These are relevant
to the Lorentz-Lorenz equation for the refractive index,
which is now

3 n2—1

4w n?+2

(32)

i Ac(w)
=N ao(w)[l—}-——————] .

[£3}) w)

We note that (27) predicts some peculiar behavior
at higher frequencies: Aa(w) vanishes at ¢=0.157
(w=0.4w1) and becomes positive above this value,
while being negative below it.

The most interesting results of the present study are
probably those concerning the renormalization of the
exciton energies, Egs. (40) and (41) ,and the oscillator
strength of the double-exciton mode, Eq. (36), as com-
pared to that of the ordinary single exciton. Numerical
results for these effects are listed in Table III. For com-
parison we have listed separately the numerical values
of the classical and quantum contributions in the ener-
gies. To lowest order in z the correction term in both
(40a) and (41a) is [(3—»)/18]z2= —332, whose values
are also given in Table III. The effect of the quantum
fluctuations on the exciton energies appears to be quite
significant. It is, in fact, of the same order of magnitude
(but of opposite sign) as the effect which arises from
short-range overlap forces, which has been studied re-
cently by Doniach and Huggins,*®*' using the shell
model of Dick and Overhauser. This seems to suggest
that the small observed shifts of the uv absorption fre-
quencies in the solids from their gas values might be the
result of a strong compensation between the short-range
forces effect?®:4! on the one hand and the Lorentz field
and dipole fluctuation effects on the other hand. How-
ever, in order to test this conjecture in detail the present
theory would need to be generalized in such a way that
overlap effects would be properly included.

The oscillator strength of the double exciton appears
to be quite large for Ar, Kr, and Xe. The result for the
ratio f,'/f/, which ranges between 0.01 and 0.15, is
somewhat larger than the value of about 0.01, which
seems to be expected from the theory of Rice and co-
workers,!7 as developed in their first paper.

In conclusion, the results of this paper indicate that
while the effects of the quantum dipole fluctuations in
the polarizability itself are small (in agreement with the
experimental observations), they are much more pro-
nounced in the properties of the tight-binding excitons.
In particular, the quantum-fluctuation mechanism
leads to the existence of cooperative double excitons of
fairly large oscillator strength. This would then indicate
that such excitations can be created fairly easily and
should be observable in a variety of systems. The large

41'S. Doniach and R. Huggins, Phil. Mag. 12, 393 (1965).
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amount of theoretical evidence now available, com-
pared to the meager experimental results, should be
sufficient to stimulate some further experimental work
on cooperative exciton absorption. Such work will be
necessary in the future in order to prove or disprove
the available theories.

APPENDIX

Our purpose in this appendix is to discuss the detailed
form of the general expression of the fluctuation effect,
Eq. (3.45) of I, in the case where we restrict ourselves as
far as possible to the contribution from one effective
excited state |17,\) of thei ndividual atoms. Since the
expression for Aay(w) derived in I is valid for arbitrary
species of atoms, it is of interest, for future reference, to
carry out the present discussion with the same gener-
ality, in spite of the fact that the main body of the
present work is concerned with monatomic crystals only.
Indeed, in future work, we intend to generalize some of
the results of this paper to crystals with two atoms per
unit cell. This is a fairly important case since it includes
lattice structures such as the alkali halides as well as
tvpical molecular organic solids like anthracene and
naphthalene.

On the other hand, in the static limit it has proved
possible®?#3 to perform detailed calculations of Aax(0),
starting from an approximation which is less severe but
easily related to the two-state approximation which we
want to use here. This is the so-called Lennard-Jones-
Unsold approximation, which amounts to replacing all
energy denominators in the second-order perturbation
formula by a common average excitation energy. The
analogous approximation in I, Eq. (3.45), is to replace all
denominators involving pair excitation energies w; x;o0x
+wj, 0. Dy an average value wy+w, as well as the
excited-state polarizabilities a;\(w) by an appropriate
mean value @ (w). Since in future work it might prove
possible to carry out detailed studies in this “dynamic”
Unso6ld approximation, and also for the purpose of com-
paring the dynamic and static expressions (which is in-
teresting), it is useful here to display the result in this
approximation first. For the present purpose this result
corresponds clearly to a first step in applying the two-
state model. However, we specialize to cubic crystals
and spherically symmetric atoms so that the polariza-
bility is a scalar: ea(w)=[apr(w)+Aar(w)]l, and
ReAar(w) is typically given by the zz component of
Eq. (3.45) of I. We also have in this case

> ThW=iTr X T

u (a#)) b
1

=23 —I~@r\/3)21. (A1)

Au
Furthermore, as discussed in Sec. 1I, we need only the
low-frequency result for Aax(w) [or, more precisely, the

42 J. Heinrichs, Phys. Letters 18, 251 (1965).
*3 J. Heinrichs, Chem. Phys. Letters 1, 467 (1967).
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readily obtained from I, Eq. (3.435), by putting the
infinitesimal imaginary parts in all denominators equal
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to zero before taking the real part. From Eq. (3.45) of I,
using Egs. (3.15), (A2), (A3) of I and the completeness
of the atomic states | 7,\), we then obtain
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Here the expression “sym. term X <> u”” is used to desig-
nate the term which results from the replacement of A
by u in the term which is written out explicitly.

For the reader who is interested in the details of how
(A2) is obtained from Eq. (3.45) of I, the following
hints will be helpful. After having made the Unsold ap-
proximation in Eq. (3.45), we remove summations over
excited states |j,») using the completeness relation,
wherever this is possible. Next we separate all contribu-
tions with denominators involving only energy differ-
ences between the ground state and excited states of an
atom. The terms which are left over are those which
have either one or two denominators with energy differ-
ences between two excited states. The terms whose two
denominators involve energy differences between ex-
cited states can be reduced somewhat further by making
use of the unitarity of the operators U,({) in Eq. (3.39)
of T which served to introduce the Lorentz field effect.
At successive orders in the local field, their perturbation
expansion is of the form

Un(t) = U\ [1 —i(Uy Weiotf [7_ D gia)
—_— (U+)(2)e2iwt+ U_)\(ﬂ)e—2iwl+ U0(2)+ e )](jf)\ﬂ y
U\0= e—iHone
The condition U,(#) Ux'(f)=1 then leads to the relations
Up®W=U_ ot
U@+ U_\@f=_\ oty 0

on(z)‘f‘ Uo)‘(z)’r= U+X(1)TU+)\(1)+ LL)\(I)TU_)\(I) , etc.,
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and the matrix elements of U\(¢) are given in I. After
suitable rearrangements of terms, one finally arrives at
the expression (A2). It is important to note that in re-
ducing Eq. (3.45) of I to the form (A2) no explicit use
is made of the particular assumptions about the spec-
trum of the atoms, i.e., Egs. (22) and (23).

Tt is seen that in the static limit those terms which
involve energy differences between two excited states
vanish identically. On the other hand, for spherically
symmetric atoms the polarizability tensor has no off-
diagonal elements and the static polarizability is simply

10| pov | Ryp) |*
0(()',,(0) = 2 Z —_— .

k Wk ;0,0

(A3)

One thus verifies immediately that in the static case
(A2) reduces to Eq. (17) of Ref. 43.

Now, in applying the two-state model of Sec. II, we
replace first of all &, by &,=w1.,.0,,= E1,,® —F,,©®, the
energy difference between the two states, and &,(w) by

<07VWP3V270)V>
al,,(w) = _Olo,v(w> =—i40 W1, 0,0
wl.u;().vz—w2

(A4)

Furthermore, using Eqgs. (21)—(24) and the complete-
ness relation (as approximated by the contribution of
the first two states), we obtain after some algebra

<0,u i ng ; O)#>(<Oy>‘ } szg i O»X))?

Aar(w)=—3%Tr > T2 —

B (g\)

(wl.)\; 0,)\+wl,u; 0.44)2[:(‘*’1,)\; 0.)\+w1 T 0,‘1)“2 _(.02]((4)1‘)\; 0,)\:z —w2)2

X {4[3‘-01,)\;0,)\_*— (4_V)\)(w1.)\;0,)\+wl.u;U,n)][(‘*’l,)\;0,)\+0~’1,y;0,u>2'—w2](w1,)\; (),)\2—(‘)2)

F4wr 0t @10 3@ a0t @1,450,0) 2 — 207 J(w1,x; 002+ 02) — [ alwix 00 F0) 24 (@12 00 —w)2)

X (@1,3500F @1, u0,0F0) (@15 00Fw1,450,0) 2 sym. term w <> —w |} +sym. term A «<> u.  (AS5)
This is the final result for Aay(w) in the case of arbitrary species of atoms.

As discussed in Sec. II, the parameter vy is not defined in a two-state model. This corresponds to the fact that the
general expression (3.45) in T is itself partly undefined within this model and depends, in fact, rather crucially on
the higher excited states. Therefore, in reducing (A2) one has to be careful not to eliminate any of the inherent in-
determinacies associated with »y, which could happen as a result of choosing arbitrarily one of the possible two-
state values. An exception must be made, however, for those terms in (A2) involving one or two denominators with
energy differences between two excited states. They appear in the last three terms in (A2), and by applying the
two-state-like model in the same way as above, their sum is reduced to

O, 22| 0,) (O X[ P32 O,0)) (1= 1)

(wl,)\;o.x‘f—wl,u;o,u)w

—';1;‘ Z TI‘T)\‘,2

# (u=N)

(@i 0 F01,40,0) (W2 — w13 002+ 2w1 2 0,000) 203
L@ x0aF01,60.0) 2 —w2] (w12 002 —w?)

This contribution must vanish in order for our procedure to be consistent with the general theory, and in particular
with Eq. (A2), in which all excited-state degeneracies at w= 0 are assumed to be properly treated.!? Thus in these
terms, but only in these, we must use the particular two-state value »y=1.

+sym. term A > u.



