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can see from Table I, which gives the values of the con-
stants in Eqs. (1) and (2).

Iv. CONCLUSIONS

In conclusion, the present results provide direct sup-
porting evidence for both the Mitchell mechanism and
the related kinetics of the trapping of photoliberated
holes. The end result of this mechanism is the buildup
of halogen molecules by means of the alternate con-
densation of photoliberated holes and of positive-ion
vacancies, created by the expulsion of positive ions to
interstitial positions. These halogen molecules, in the
present case of volume effect, remain within the
crystal. ~ They constitute the counterpart of the metallic
silver specks obtainable by volume irradiation at room
temperature by the (complementary) alternate conden-
sation of photoliberated electrons and mobile silver ions.

~ L. Bellomonte et al. (to be published).

In addition, the present results provide a new tech-
nique for the study of several types of many-body
interactions (e.g., phonon-plasmon interaction, etc.) as
a function of the number of conduction electrons in the
dark. This new technique appears particularly promising
because it allows the number of conduction electrons to
be varied in one and eke same sample at constant tempera
ture (that is, in one well-defined dxmamical situation of
the crystal). The possibility of using the above results
to make new devices should also be noted. In particular,
one might hope that the permanent photoconductivit&
here discussed could be "erased" bx infrared illumina-
tion. % ork is in progress also in this direction.
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Xeutron-diffraction data on dispersion curves for the rare-gas solids has emphasized the need for an
anharmonic treatment of lattice dynamics. The molecular-dynamic technique is a powerful way of examining
the temperature and volume dependence of phonon properties, since anharmonicity is treated without
approximation. Using a Lennard-Jones potential, classical calculations have been made, at diferent tem-
peratures and volumes, of average phonon properties such as pressure and energy, correlations in velocity
and position, frequency distribution of normal modes, and phonon-dispersion curves. The volume dependence
of the frequency was used to test the Gruneisen approximation. The magnitude of fluctuations in tempera-
ture and in the various correlations were compared with theory. These calculations predict relatively large
shifts in frequency at constant volume as the temperature is raised in the regime where the classical approxi-
mation is valid.

I. INTRODUCTION"EUTR()iV-DIFFRACTIOX measurements have
recently" yielded phonon-dispersion curves for

rare-gas solids at different temperatures, with the
volume held constant, as well as at different densities.
High-precision measurements of this tpye may ulti-
mately provide critical tests of empirical pair potentials,

* Work was performed under the auspices of the U. S. Atomic
Energy Commission.

' O'. B. Daniels, G. Shirane, B. C. Frazer, H. Umebayashi, and
J. A. Leake, Phys. Rev. Letters 18, S48 (1967).'J. A. Leake, %. B. Daniels, J. Skalyo, Jr., B. C. Frazer, and
G. Shirane, Phys. Rev. 181, 12Si (1969).

anharmonic effects and the possible need for 3-body
potentials. ' The ability to measure phonon frequencies
at constant volume over a wide range of temperatures
generates a need for an exact treatment of anharmo-
nicity. As measurements are made at arbitrary densities
anharmonic frequency shifts, as a function of lattice
spacing, are required to make meaningful comparison
of experimental data wi th theoretical calculations.
Further, recent interest in the phonon properties of
extremely thin films and surface eGects demands a

' D. L. Losee and R. O. Simmons, Phys. Rev. Letters 18, 451
(1967); Phys. Rev. 172, 934 (1968); 172, 944 (1968).
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Fro. 1.Temperature response of the system to a perturbation in
which the system is given, initially, additional potential energy in
one mode. At high temperatures the energy is rapidly redis-
tributed among all the modes, and at large times the fluctuations
in temperature are commensurate with the number of atoms. At
low temperatures the crystal behaves harmonically and there is no
noticeable transfer of energy to other modes.

theoretical approach which does not rely on crystal
symmetry. 4

In recent years, there have been a number of calcu-
lationss 6 for the rare-gas solids using a Lennard-Jones
potential with empirical parameters and, for the most
part, making the harmonic approximation. Anharmo-
nicity has been tackled using various types of perturba-
tion approaches; e.g. , the early terms in the perturba-
tion series have been used. ' Alternatively, the self-
consistent phonon approach' is a partial summation of
the even terms of the perturbation series. In addition
most calculations have been made for the ideal Lennard-
7ones interatomic spacing. In order to analyze experi-
mental data at nonideal interatomic spacings and at
high temperature and pressure, use is commonly made'
of the Gruneisen relation between frequency and
volume.

We shall here make use of the molecular-dynamic
technique in calculating the lattice-dynamic properties
of Lennard-Jones solids at a variety of volumes and
temperatures. The advantage of this technique is that
it allows us to treat the assumed interaction exactly
without arti6cally decomposing it into harmonic and
anharmonic contributions of various orders. We calcu-
late the phonon-dispersion curves as a function of
volume and temperature, and compare the volume
dependence with the Gruneisen relationship. In the
high-temperature region, the phonon lifetimes are
calculated from the decay. The over-all phonon-
frequency spectrum and useful thermodynamic quanti-
ties such as pressure and internal energy are also calcu-

' J. M. Dickey and A. Paskin, Phys. Rev. Letters 21, 1441
(1968};Bull. Am. Phys. Soc. 13, 398 (1968).

J. Grindley and R. Howard, in Lattice Dynamics, edited by
R. F. %allis (Pergamon Press, Inc. , New York, 1965), p. 129.' G. K. Horton and J. W. Leech, Proc. Phys. Soc. (London) 82,
816 (1963}.

7 P. F. Choquard, The Anharmonic Crystal (%. A. Benjamin,
Inc. , New York, 1967).

G. Leibfried, in Lattice Dynamics, edited by R. F. %allis
(Pergamon Press, Inc. , New York, 1967), p. 237.

9 N. S. Gillis, N. R. Werthamer, and T. R. Koehler, Phys. Rev.
16S, 951 (1968).

lated, along with various particle correlations. The
small number of particles used in the computer studies,
emphasizes the role of Quctuations and allows quanti-
tative comparison with fluctuation theory. We further
show that the molecular-dynamic technique at low
temperatures yields the results obtained analytically
by Grindley and Howard' using the harmonic approxi-
mation. Using empirical constants appropriate for Ne
and Kr, we compare the present classical calculation
with observations. We attribute the negligible frequency
shift observed in Xe as the temperature is raised at
constant volume to the importance of the zero-point
motion and the dominance of the low-frequency modes.

II. CALCULATIONS

where m is the mass, r; is the position of the ith atom,
and f(r) is the force between two atoms distance r
apart. In subsequent calculations the force will be
derived from the Lennard-Jones potential

V(r) = e((0/r)" —2((r/r)'). (2)

Results expressed in the natural units for the system
(m, e, ~= 1) can be scaled to fit a particular substance
by appropriate choice of these parameters. For con-
creteness, our results are presented in a form relevant
to Kr, which because of its heavy mass, is well de-
scribed by classical mechanics. The values for Kr of c
and 0 have been taken from Grindley and Howard' and
are 165.9'K and 4.13 A, respectively.

By choosing a small time interval b, the di6erential
equations are approximated by difference equations of
the following form

r;(t+8) =r;(t—8)+2r, (t)+P f(r,,)f2.

We chose this equation in preference to the predictor
formula used by Rahman, " since the erst iteration of
the Rahman formula involves an extrapolated position

"B.J. Alder, J. Chem. Phys. 31, 459 (1959)."A. Rahman, Phys. Rev. 136, A405 (1964)."L.Verlet, Phys. Rev. 159, 98 (1967).

Molecular-dynamic techniques as pioneered by
Alder" have given considerable insight into the dy-
namics of solids and liquids. The basic procedure used
in molecular-dynamic calculations, consists of solving
Newton's equations in a difference form for a 6nite
number of atoms, in this case 864. The explicit details of
programming and the form chosen for the difference
equation are given in the papers of Rahman" and
Verlet, "which use molecular dynamics for calculating
the properties of a Lennard- Jones fluid. There are many
different ways of numerically solving Newton's differ-
ential equations of motion.

md'r~/dt2= Q f(r;,),
i+1
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based on earlier trajectories. In certain situations this
artificially puts particles in regions of too-high-potential
energy causing the iterative process to blow up. A small
enough time interval must be chosen to assure both
conservation of energy and minimization of cumulative
errors arising from replacing the diRerential equations
by diRerence equations. %e have found that a time step
of about 10 " sec is adequate for the parameters
appropriate to Kr, the random fluctuations in the total
energy at high temperatures being of the order of 1 part
in 10+".

In applying these techniques to simulate an infinite
solid, periodic boundary conditions are used to eliminate
surface e6ects. The atoms were arranged on an fcc
lattice and brought into thermal equilibrium by several
methods, depending on the temperature. For example,
at low temperatures our system closely resembled a set
of independent oscillators and the system could not,
therefore, on its own attain equilibrium in practicable
times. It was found that the initial distribution of
energy among the modes persisted, and so the technique
of initialization was critical. To simulate a classical
system at constant temperature all modes should have
equipartition of energy. A random-number table was
used to generate random velocities at a series of times
in the history of the system. The resultant energy of the
system could be changed by scaling the velocities to
obtain the desired temperature. This procedure was
effective at high temperatures since anharmonic cou-
pling does quickly redistribute energy among the modes,
as was evident in the independence of the correlations
on the exact method of preparation of a given tem-
perature. The randomization-scaling procedure failed
at low temperatures because of the system's harmonic
behavior, which prohibited redistribution into the
equilibrium state. The harmonic behavior at low tem-
peratures was beautifully demonstrated when in the
calculation of the dispersion curves the initialization
was such that all the energy was concentrated in one
mode which persisted ad iefinitgm (see Fig. 1).In order
to treat the low-temperature case we had to average the
results of several independent random initializations.
The problem of initialization was much more dificult
for a solid than in the earlier work on liquids because of
the possibility of setting up, artificially, a nonequilib-
rium situation, which could persist over times long
compared to the usual computer times.

After initialization, the system was allowed to come
to its equilibrium values of temperature and pressure at
the fixed volume. The temperature, pressure, and
energy of the system were continuously monitored. The
amplitude of vibrations, that is the mean square dis-
placement of the atoms from their rest positions on the
fcc lattice, was also monitored. The temperature 8 was
calculated from the average kinetic energy

8= (1/3X) Q mn;2,

and the pressure I' from the virial expression

P=pkT (p/—61V) P r;,'Bs(r;;)/Br;;, (5)

where S is the total number of atoms in a volume V.
The density p is .V/V.

Equilibrium was determined by comparing the ob-
served fluctuations" ' in temperature, and amplitude
of vibrations, with calculated values. The fluctuations
in temperature are given by the relationship'4

(58'),„/(8),„'= 2 (1—3/2C)/3Ã.

In the harmonic limit, the specific heat C= 3, so

(6)

for the number of particles under consideration. The
system was considered in equilibrium when the fluctu-
ations in temperature and mean-square amplitude were
constant within 30% and were consistent with estimates
of the equilibrium value. The technique of studying the
fluctuations was sensitive enough to enable us to detect
quickly the nonequilibrium aspects of our preliminary
attempts at initialization at low temperature, e.g., if
only one oscillator mode is populated the fl.uctuations
in temperature are 0.5. Some sample average Quctu-
ations, to demonstrate their variation over about 600
time steps, are 4.2, 3.4, 4.2, and 4.0X10 4.

Having established that the system is in equilibrium,
various thermodynamic properties were calculated.
Figure 2 gives the variation with temperature at con-
stant volume of the pressure, energy, and mean-square
amplitude. The slope of the energy-temperature curve
is the specific heat at constant volume, which, classi-
cally, is equal to 3k in the harmonic limit. The molecular-
dynamic calculation gives the classical harmonic result,
with a barely perceptible curvature at high temperatures
resulting from anharmonicity. The eRect of anharmo-
nicity is more apparent from the pressure curv- for
harmonic forces the pressure would be constant. The
density was that for which an ideal Lennard-Jones solid
would be in equilibrium at O'K. Since the forces are
treated only to second neighbor distances this gives a
slight displacement in the absolute magnitude of the
pressure and energy. The lattice constant was 5.67 A.
Using the melting curve given in Pollack" we would
estimate the melting temperature of Kr at this density
to be about 200'K. Most of our calculations were per-
formed at three temperatures; a very low temperature
of 2.51'K for which the harmonic approximation should
be valid, a temperature of 1815'K just below the esti-
rnated melting point, and a temperature of 91'K about
half this value. Further calculations were performed at
an expanded volume with a, lattice constant of 5.80 A,

"L.D. Landau and E. M. Lefschitz, Statistical Physics (Addi-
son-Wesley Publishing Co., Inc., Reading, Mass. , 1958)."J.L. Lebowitz, J. K. Percus, and L. Verlet, Phys. Rev. 1Q,
250 (1967).

» t". L. Pollack, Rev. Mod. Phys. 36, 748 (1964).



1410 J. M. DICKE Y AX D A. PASKI X 188

O
ye
O

-500

EP
IL'
laJz
LaJ

-IOOO

I I

Ioo 200
TfMPf:RATURK ( K)

Having described how we initialize and calculate
thermodynamic properties, it must be cautioned that
such calculations are no more valid than the potential
used to simulate the system. The Lennard-7ones
potential is the most frequently used potential to
approximate the properties of rare-gas solids. The
advantage of the molecular dynamic technique is the
ease with which any potential can be used. We have here
used a I.ennard-tones potential because we can first
check the reliability of the numerical techniques
against more conventional calculations in the harmonic
limit. As the phonon properties are sensitive to the
derivatives of the potential, it is not surprising that
parameters determined from other thermodynamic
properties, usually in the gaseous state at high tem-
perature, do not completely coincide with those chosen
from essentially low-temperature solid-state properties.
Therefore, in this work, we mainly emphasize changes
in the lattice properties. We would expect that the use
of better empirical potentials"' would improve the
agreement with experimental data. A further con-
venience to using the Lennard-Jones force is that in the
fcc configuration there is a negligible contribution of
3rd- and higher-neighbor interactions. Therefore, only
1st- and 2nd-neighbor contributions were considered.
Again, this is not a limitation of the technique as with
the CDC 6600 used in these computations it would have
been practicable to include as high as 5th-neighbor
interactions.

III. AVERAGE PHONON PROPERTIES
I'IG. 2. Temperature dependence of the thermodynamic proper-

ties at a constant volume corresponding to a lattice parameter of
5.67 A, . Anharmonic effects show most clearly in the noncon-
stancy of the pressure.

for which the pressure was approximately zero. The
compressibility was found from the data at these two
different volumes to be 0.6X10 '0 dyn cm 2. Combining
this value with the slope of the pressure-temperature
curve gives a coeKcient of expansion of 0.9X10 ' 'K '.
These values may be compared with experimental data
for Kr provided one uses data from a high-temperature
region where classical statistics obtain. At 80'K, the
compressibility of Kr '" is 0.5X10 ' dan cm 2 and the
coefficient of expansion is 1X10 ' 'K ', which are very
close to the values for our system. Using the Cruneisen
equation of state, "

I'v+ vsU, /a v= &L,-,

where Uo is the static potential energy, Ey is the vibra-
tional energy, and the Gruneisen constant p is 1.8. In
Sec. III, this constant is determined more directly, from
the phonon-dispersion curves, and is about 3.0 indicat-
ing an inconsistency in the simple Gruneisen equation
of state.

'6 J. C. Slater, Introducrzon to Chemical Physics (McGraw-Hill
Publishjng Co., ge~ York, 1939).

Most earlier work on the thermal properties of solids
has been concerned with such average properties as
specific heat, Debye-%aller factor, thermal expansion,
compressibility, distribution of normal modes, and zero-
point motion. In order to test the accuracy of the
molecular-dynamic technique, we have calculated
classically several of these quantities at very low tem-
peratures, where comparison can be made with the
numerous calculations in the harmonic approximation.
As many thermal properties can be expressed as
moments of the phonon-frequency distribution, it is
apparent that matching the frequency distribution
implies that our method of calculation is as accurate as
the exact harmonic treatments. Having established the
accuracy of our technique, we then calculate similar
properties at high temperatures to demonstrate the
effects of anharmonicity.

The usual method of calculating the frequency
spectrum involves finding the frequencies associated
with a large number of wave vectors and using these to
construct a histogram. In the molecular dynamic
simulation of the motions in a system this information
is contained implicity, and can be extracted by a suit-
able analysis of the correlations in the motion. For
example, this can be demonstrated by analyzing the
velocities of a collection of harmonic oscillators. Con-
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sider a collection of classical harmonic oscillators with
frequency distribution f(&o) analogous to a solid where
each normal mode wave number k has a characteristic
frequency co, that is, f(co) is the number of oscillators
with frequency co, normalized so that

f((u)Cko=1.

For one oscillator, with amplitude .0, phase q, fre-
quency cu

x=A cos(cvt+q),

i=Ace sin((at+ q),
where x is t.he position, v the velocity, m the mass, and
the total energy is mA2/2cv2. For a classical oscillator at
temperature T,

I.O
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mA'(d'/2= kT. (12)

The velocity correlation function y(t) is defined to be

7(t) = (Zv'(t) v (0))/(Zv*'(0)), (13)

where the summation is over all the oscillators, and is
averaged over a suitable ensemble. For the above
collection,

-0.2-

%.6 200 400
TIME (IQ s~) 600

y(t) = (P A'ar' sin(ad+ &p) sing)/(P A'sP sin'p) (14)

= (P sin(&0t+ p) sing)/(g sin'q ), (15)

using Eq. (11).If the averaging is over an ensemble with
random phases y, then

(sin'q )= 2,
(sin(ddt+ y) sing)= —,'(coscA —cos(cot+2q)) (16)

=
2 coRvf.

Hence,
'r(t) = iV ' Q cosh&t.

Using the function f(id) defined earlier and converting
to an integral

y(/) = f (a&) comtdt,

hence the Fourier transform of &(t) gives directly f(id).
The velocity correlation y(/) that enters into f(cd)

was obtained by approximating the ensemble averages
by taking a series of difI'erent origins in the time evolu-
tion of a system —essentially invoking the ergodic
hypothesis. In choosing the difI'erent time origins, the
interval used was large enough so that most of the
correlations with the previous time origin have dis-
appeared. In Fig. 3, we show three typical velocity
correlations at diHerent temperatures. The time interval
between origins corresponds to about 10 " sec. The
final average y(t)'s, used in obtaining f(co), were ob-
tained using this procedure on a number of indepen-
dently initialized systems. It might be noted that the top
curve, corresponding to a low-temperature crystal, has

Fxo. 3. Velocity autocorrelation at 2.51, 91, and 186'K, going
from top to bottom. At low temperatures correlations persist for
a number of vibrational periods, whereas at high temperatures the
correlations rapidly disappear.

oscillations in the velocity correlation that persist for
many vibrational periods, whereas the higher-tempera-
ture correlations vanish rapidly. Ke suspect that
persistence of the oscillations at low temperature re-
flects the inadequacy of our statistical method. For an
infinite Debye model, the asymptotic decay of y(t) 'r is
3(coDt) ', where coz& is the Debve frequency. For the
largest time value shown in Fig. 3, this would cor-
respond to 0.04. From our definition of y(t) fEq.
(13)], it follows that the asymptotic fluctuations in y
are equal to the fluctuations in a velocity component.
We estimate the asymptotic fluctuations of p for a set
of X harmonic oscillators to be of the order of 2(A') '"

0.07. This is consistent with the low-temperature
asymptotic behavior of y(/). For high temperatures, the
phonons have a lifetime, and y(/) decays over some
average lifetime, rapidly obliterating the statistical
fluctuations.

To establish our accuracy, we compare in Fig. 4 the
distribution of normal modes obtained by transforming
y(t), for a, I.ennard-Jones potential with ideal lattice
spacing, i.373760., with the histogram derived by
Grindley and Howard' using conventional harmonic
analysis. The Grindley-Howard results are based on a
sample of 108 000 points in the Brillouin zone, with the
interaction extended to all neighbors. In the present

"B.R. A. Xijboer and A. Rahman, Physica 32, 415 (1966).
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subsequently be demonstrated more clearly in the
dispersion curves, and the peaks are considerably
washed out. At high temperatures the shape of the
frequency distribution is smeared and looks more like
the distribution of a liquidlike material ii, i8

For comparisons with thermodynamic information it
is more convenient to give the moments of the frequency
distribution. As thermodynamic data is often quoted
using Debye parameters, the moments are given in

FIG. 4. Comparison of our frequency spectrum at low tempera-
ture (dashed curve) with the histogram of Grindley and Howard,
based on the harmonic approximation. The units used are those
adopted by Grindley and Howard.

10

TABLE I. Temperature and volume dependence of moments of
the frequency distribution expressed in terms of the equivalent
Debye frequency. The last row contains the average Gruneisen
constant deduced from the 6rst and fourth rows.

Lattice Temperature
constant A. 'K

Equivalent Debye w in 10'4 sec

& )
5.67

5.80

2.51
91

186
2.52
1.8

0.089 0.088 0.088 0.094
0.100 0.097 0.093 0.094
0.108 0.103 0.096 0.096
0.073 0.073 0.074 0.078
3.1 2.9 2.7 2.9

calculation, we Fourier transform a velocity correlation
for a finite interval of time. Because our y(I) is trun-
cated, its Fourier transform has spurious ripples which
we have smoothed out in the drawing. A combination
of truncation errors and statistical fluctuations in our
small sample would obscure sharp discontinuities.
However, we do duplicate the major portion of the
frequency distribution. The truncation limitation
becomes less significant at high temperatures where
anharrnonicity smooths singularities. The e6ect of
temperature is shown in Fig. 5 which shows how the
frequency distribution is smeared in going from low

temperature to high temperature at constant volume.
Figure 5 clearly demonstrates that anharmonicity is
important at high temperatures. The maxima of the
transverse and longitudinal modes are shifted, as will

io

0.05 O. I

~(IO' sec)

O. I 5

FiG. 5. Phonon-frequency spectrum at 2.51, 91, and 186'K,
going from top to bottom. The broadening and frequency shifts at
high temperature are evident. The high-temperature smoothing
would remove any singularities.

Table I in terms of the equivalent Debye frequency
coD, rather than our computational units. For example,
the zero-point energy equals i2h(co) and the zero-point
amplitude equals h(&0 ')/2m. The low-temperature
moments are well approximated by a Debye model,
albeit the shape of f(co) is clearly different. The very
small change in the lower-order moments shows that the
major change in f(co) is broadening, rather than any
systematic shift. This explains why corrections need not
be made to zero-point properties at constant volume,
although the finite amplitude of the zero-point motion
does bring in anharrnonicity. One further sees that the
large excursions at high temperature mainly serve to
broaden the frequency spectrum, whereas the main

+ Value from the Gruneisen equation of state. ' A. Paskin, Advan. Phys. 16, 223 (2967).



188 LATTICE DYNAM I CS OF SOLI DS 1413

eRect of volume change is to change the average forces
and thereby shift the frequencies. This explains the
paradox of why the quasiharmonic approximation
works so well in a crystal with a large degree of an-
harmonicity.

Figure 6 shows f(cd) at low temperatures for two
different volumes, in the lower diagram the lattice
parameter is expanded by about 2%. The frequency
shifts are apparent and can be used to calculate a
Gruneisen parameter. An average Gruneisen parameter

y= dbuon/din V, (l~)

and is listed in the bottom row of Table I. The explicit
frequency dependence of the Gruneisen parameter is
examined subsequently. We have not calculated f(id)
for a series of volumes since a number have been pub-
lished in the quasiharmonic approximation" and
further a good approximation to f(cd) at different
volumes can be obtained using the Gruneisen relation.

20

where r; is the position of the ith atom and l; the
appropriate lattice site, and is familiar from its appear-
ance in the Debye-&aller factor. Its temperature
dependence is illustrated in Fig. 2. The slope of the
square amplitude gives directly the value of (1/uP)
listed in Table I. Its frequency dependence suggests
that fluctuations in of should likewise depend on mo-
ments of the frequency' . An explicit evaluation of
(ha'-), „ in terms of temperature fluctuations yields the
rela, tion

(~o'&-/(o'&-= ((~~'&-/(~')-) (~ ')/(~ ')' (2l)

Thus, it is not surprising that the fluctua, tions in n
diRer from the fluctuations in temperature. The diS-
cult& in estimating this ratio of the moments is apparent
from a consideration of the continuum Debye model
where the average (co ') is divergent. However by
replacing the numerator by a sum, and the denominator
by a Debp e model, we estimate the ratio to be about 2
for our s& stem. The observed fluctuations range about
2—4 times the temperature fluctuations, but no detailed
comparison could be made because of poor statistics.
Kith good statistics the moment-dependent fluctu-
ations would seem to be an interesting area for further
study both theoreticall& and experimentally.

The position autocorrelation P(f) is defined as

P(t) = (r, (r'(t) —r'(o))'/&&/2( )- (22)

I

O

l0
The normalization is chosen so that p(t) asymptopically

0
3

20

IO
i st

0
0

I'IG. 6. Phonon-frequency spectrum at a low temperature but at
two diferent volumes corresponding to lattice constants of 5.67
and 5.80 A, for the upper and lower curves, respectively, In con-
trast to Fig. 5 the shape is not changed to first approximation.

i l

j
1

n =Q (r;f(t) —1;)'/it', (20)

"B.R. A. Nijboer and F. W. deWette, Phys. Letters 17, 256
(1965).

Ke have discussed fluctuations in some correlations
and a.verage phonon properties. In certain instances the
fluctuations can be related to frequency moments.
Fluctuations in the mean-square amplitude of vibration
illustrate this point. The mean-square amplitude o. is

I0 !

I 00
I l

200 300
TIME (IO sec)

400

FIG. 7. Position autocorrelation at 2.51, 91, and 186'K going
from top to bottom. At low temperatures correlations persist for
a number of vibrational periods, whereas at high temperatures the
correlations rapidly disappear.
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FIG. 8. Time evolution of a normal coordinate. The lower curve,
corresponding to a low temperature, is approximately harmonic;
this shows the independence of the phonons and justihes the
harmonic approximation. At high temperature, upper curve, the
motion is no longer harmonic, and energy is transferred to and
from the mode.

the curve is similar to the sinusoidal form that would be
expected in the harmonic approximation, showing that
there is little mixing of frequencies, and the modes
defined by Eq. (24) are nearly independent. It is thus
possible to obtain easily the frequency associated with
a given wave vector. At high temperatures, because of
anharmonicity, the coordinates defined in Eq. (24) are
not independent, and so Eq. (25) for the time de-
pendence does not hold. At higher temperatures, one
finds that the amplitude and frequencies are continu-
ously changing as shown in Fig. 8. It would require a
long run to obtain a statistically reliable frequency. In
addition to the dispersion relation, one can also obtain
the spectral line shape by Fourier analyzing a long
run —the time required must be much greater than the
lifetime, which makes this method impracticable.

A more convenient method was to introduce a small
perturbation with a particular wave vector and examine
the response of the system. The perturbation consists of

l.0

goes to unity for large large time. The temperature
variation of P is illustrated in Fig. 7. The averaging was
performed in the same manner as for the velocity
correlation. This correlation is of interest in that an
asymptotic nonzero slope would indicate self-di6usion.
In contrast to the behavior of the velocity correlation,
one sees that fluctuations in P are less temperature-
dependent over the same time interval. For large
times, such that the positions at t and 0 are uncor-
related,

P(t) ~ (n(t)+n(0)) j2(a), . (23)

For the small number n of origins used in calculating the
average in Eq. (22) the asymptotic fiuctuations in P are
similar to those of o, scaled by m '".
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IV. DISPERSION CURVES

n, =Q r; e, cosq I;, (24)

One of the advantages of the molecular-dynamic
technique is the ease of extracting dispersion curves to
compare with neutron-diRraction results. In principle,
there are a number of ways of Fourier analyzing the
atomic motions to find the frequency associated with a
driven wave vector. In the harmonic approximation the

~ ~ ~ ~

normal coordinates of a periodic crystal o., are given by.

"0.5—

—I.o—
I

I 00
TlME ((0 + 5eg)

200

n, (t) =a,' cos(cd, t+ p, ) . (25)

In Fig. 8, the time evolution of n~ in high- and low-
temperature regions is illustrated. At low temperatures,

where c~ is the polarization and]; is the lattice site, and
their temporal evolution is simply

FIG. 9. Time evolution of a normal mode when, initially, excess
energy has been concentrated in this mode. Curves (a), (b), (c),
and (d) correspond to an excess energy of about 2, 5, 10, 20, re-
spectively, times the ambient energy in the mode. All curves have
been normalized to an initial value of unity. It can be seen that
the frequency and the decay of the excess energy is independent
of the magnitude of the initial perturbation provided that this is
larger than the background noise. Curve (a} is directly comparable
to the upper curve in Fig. 8 and the statistics are too poor for the
frequency to be meaningful.
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I'iG. 12. Amplitude of successive peaks is plotted on a semilog
scale, for a disturbance such as that shown in Fig. 10. The ex-
ponential decay of energy is apparent and the slope is a measure
of the lifetime. The left-hand curve corresponds to a temperature
of 186'K and the other curve to a temperature of 91'K.

At 8 0', our frequencies are in agreement with the
harmonic calculations of Grindley and Howard, which
demonstrates the accuracy and reliability of our tech-
nique. Our results are identical to theirs within the
accuracy of reading their figure so a dispersion curve at

0' is not repeated here. At high temperatures with
their corresponding large excursions from equilibrium,
the frequencies change even at constant volume, and
the resultant frequency shifts are shown at two tem-
peratures in Fig. 11~ It might be noted that the fre-
quency shifts are dependent on the mode, and in the case
of the transverse, also on the wave vector and polari-
zation. The frequencies of the longitudinal modes
increase with increasing temperature and are relatively
insensitive to wave vector. The transverse mode fre-
quencies initially increase as the temperature is raised,
but at the higher temperature, in some instances, the
frequencies have decreased and may even fall below the
zero-temperature values. This is in marked contrast to
the longitudinal modes, where any systematic trends
are barely discernible within the error, and we would
estimate the average frequency shift for all modes to be
about 0.1% per 'K for Kr.

In Ne, it was observed' that there was a slight increase
in the frequency (2.3&2.4%) for the longitudinal (100)

mode. Our calculations qualitatively show the same

trend as these experimental results. A simple physical
argument can be made which explains these results. In
the longitudinal mode, atoms come into contact with
each other and the frequency of the mode mainly
depends on an average of the steep repulsive part of the
potential. As the temperature is increased the distance
of closest approach of atoms decreases as the atoms
sample the ever more steeply repulsive potential. This
leads to a stiffening of the average force and an increase
in the frequencies. For the transverse modes, the planes
of atoms have sliding motions and sample less of the
repulsive forces and more of the attractive forces. At
higher temperatures, the fluctuations in position and
the decrease in the eRective size of the atoms tend to
;.liow the atoms to more easily slide alongside of one
;.nother, and thus result in a lowering of the frequency
associated with the transverse mode. Our results have
been quoted in terms of parameters appropriate to Kr.
In order to compare our classical system with the experi-
mental results for Ne, care must be taken to take ac-
count of the eRects of the quantum statistics on Ne. Since
Xe has a small mass, it has a relatively large zero-point
energy, and over the temperature range of the measure-
ments of Daniels et al. , a large amount of the remaining
energy is distributed over the low-frequency modes. For
example, in these experiments, the temperature is
raised from 4.7 to 25'K, which is about -', the Debye
temperature, yet the total energy is increased only by
about 20%. As the distance of closest approach of
atoms is determined essentially by the energy stored in
the system, we would expect that, for the longitudinal
modes the anharmonic eRects be proportional to the
energy change. Scaling the previous figure for Kr, we
would estimate a frequency shift for the longitudinal
modes of Ne, at the two temperatures used, to be about
5 the classical value, that is about 2%. The transverse
modes depend less on the repulsive interaction and more
on the attractive interaction. In a quantum system at
low temperatures there is a larger relative proportion
of transverse than longitudinal modes, because of the
lower frequencies of the former. Thus one would expect
that trends observed on our classical system, to be
exaggerated in a quantum system. The decrease in the
(100) mode observed for Ne is compatible with the
softening trends observed in our classical system. It
would be very interesting to see if our prediction of the
softening trend increasing in the more closely packed
directions is borne out by experiment.

Another consequence of the anharmonicity is the
finite lifetime of the normal mode. At low temperatures,
there is little anharmonicity and the amplitude of the
perturbation is constant, Fig. 10; as the temperature is
raised, the amplitude falls more rapidly. One can calcu-
late a lifetime 7- from the ratio of adjacent maxima
Ag, A2

(28)
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TABLE II. The Gruneisen constant for sample wave vectors. 20

Direction Polarization

(Oloj
t 101j
t 100j

I.
T2

T

3.1
2.9
2.8

The accuracy of an exponential decay is shown on
Fig. 12 where the maxima are plotted on a log scale and
are approximated by a straight line. At high tempera-
tures the lifetime is of the order of a few oscillations.
The lifetimes obtained in this manner do not depend on
wave vector within the errors. So we quote the average
lifetimes which are 0.23 and 0.55 periods, at 91' and
186', respectively, scaled for K.r. These are much less
than that observed for Ne. This may be attributed to
the quantal behavior of Ne, but may also indicate the
inaccuracy of the Lennard-Jones potential in the re-
pulsive region, which determines the lifetimes. Our
results are probably more reliable for changes rather
then absolute values. It might be noted that such short
lifetimes have been observed for some heavy metals
(at high temperatures, e.g., Pb), and are not in them-
selves unreasonable.

In addition to the lifetimes, one could also get the
spectral line shape, by Fourier analyzing the response
to the perturbation. This involves a Fourier transform,
which we find to be sensitive to truncation and the
accuracy of the data at long times. In order to get
reliable results, the computing time would be increased
considerably. In Fig. 13, we show typical lines at two
temperatures which complement the plot in Fig. 12.
While the temperature broadening is demonstrated in
the line shape the half-width is not exactly the same as
that deduced from Fig. 12, because of truncation errors.
We believe that the former technique is more reliable
with the limited computing time available.

Since theoretical calculations of the dispersion curves
are usually made at some fixed density, in order to
compare with the experimental neutron-difI'raction
curves, which may be at a diferent density, the theo-
retical curves have been scaled using an empirical
Gruneisen constant. ' The Gruneisen constants yI, are
defined as

&,=af~, /afn V

and, in general, depend on the wave vector k. Two
typical curves, to illustrate the dependence of frequency
on volume, are shown in Fig. 14. It can be seen that the
Gruneisen approximation is valid over volume changes
up to about 8'%%uo. Sample values of yq are given in Table
II which illustrates that yk is somewhat larger for larger
wave vectors. An average value of y can be found from
the moments of the frequency spectrum, Table I. The
value found from the higher-order moments, which
weight the upper end of the frequency spectrum, a.re
slightly larger than the y found from (a& ') which
weights the lower frequencies. While p& does vary from
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Fio. 13. Spectral line shapes obtained by Fourier transforming
a disturbance similar to that shown in Fig. 10.The upper curve at
186'K has a greater width corresponding to a shorter lifetime than
the lower curve at 90'K.
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Fro. 14. Variation of frequency as the lattice is expanded at a
low temperature. The upper curve corresponds to the I 100]
longitudinal mode and the lower curve to the $100j transverse
mode. The curves are approximately linear near lattice spacing
=ap, the ideal Lennard-Jones spacing, showing the validity of
using the Gruneisen approximation to scale each frequency with
lattice spacing. (The base of the logarithms is 10.)

mode to mode, use of an average y is a good approxi-
mation in calculating a, small correction. Other values
of y, are not given here since values found using the
quasiharmonic approximation' " have been given
elsewhere.

Having established the validity of using the Grun-
eisen relationship to convert phonon-dispersion curves
to any desired density one can make use of the previous
curves to compare with experimental data. Ideally, one
uses the Lennard-Jones parameters, chosen to fit other
thermodynamic properties, to scale the dispersion
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curves; then calculates the deviation of the real lattice
parameter from the ideal Lennard-Jones lattice param-
eter, and uses the Gruneisen relation to find the con-
sequent frequency shift. In the case of K.r, this pro-
cedure gives good agreement with experiment as
previously shown by Daniels et al.2 using the curves of
Grindley and Howard. At the low temperature at which
this experiment was performed, anharmonic effects are
small and our calculations yield similar agreement. It is
only at. considerably higher temperatures that one could
detect differences in the harmonic dispersion curves of
Grindley and Howard, and the present calculations.
Turning to Ne with its large zero-point properties one
encounters a number of difFiculties in choosing appro-
priate Lennard-Jones parameters. It is well known'"
that the parameters chosen in a classical approximation
of a quantum property differ appreciably from param-
eters chosen from a quantum approximation. Therefore
high-temperature (classical) L ennard- Jones parameters
should not be expected to match low-temperature
properties for a crystal with large quantum effects. Such
inconsistencies in the Lennard-Jones parameters com-
plicate the matching procedure and obscure the physical
significance of comparing theory and experiment. I.cake
et al. ' find a set of parameters which fall outside the
range of high-temperature values, but do reproduce the
Ne dispersion curves within experimental error. It
would appear that one can find a Lennard-Jones para-
metric fit even to quantum systems such as Ne. But the
physical significance of such a fit is lost, if the param-
eters do not, also, fit other unrelated properties. And so
one should be cautious in applying the results of
classical calculations like the present one to quantum
systems such as Ne.

V. CONCLUSION

The present study using molecular-dynamic tech-
niques to calculate phonon properties of solids may be

20 B. J. Alder and M. Van Thiel, Phys. Letters 7, 3j.7 (1963}.

analyzed in terms of the advantages and limitations of
the technique, and the validity of the Lennard-Jones
potential in describing rare gas or other solids.

The major advantage of our technique is that any
force law may be treated exactly. As large-scale high-
speed computers are now commonplace, it is possible to
calculate (using reasonable computer times), phonon
and thermodynamic properties of an assemblage of
about 1000 atoms. Such calculations reproduce calcu-
lations made in the appropriate harmonic regions, and
allow for extensions into high-temperature high-pressure
regions, which have hitherto been inaccessible to theo-
retical calculations. The limitation of the calculation is
that it is classical. Moreover, the use of periodic bound-
ary conditions with a small number of particles
excludes the study of phenomena dependent on large
numbers of particles such as critical effects. Replacing
the differential equations by difference equations re-
quires the use of time steps, short compared to the
frequency of vibration, thus computer studies are
limited to phenomena whose relaxation time is less than
about 1000 atomic vibrations.

In order to compare theory with experimental data
one requires an accurate pair potential. For the rare-gas
solids a Lennard-Jones potential is apparently a 6rst
approximation. There are a variety of more exact
empirical potentials which can be used to explain the
properties of rare gases from the gaseous to the solid
state. As more exact measurements are made such
potentials should be used. It is only by using the best
empirical pair potentials that the need for a three-body
potential can be assessed. The agreement of the
Lennard-Jones potential with the data of Kr suggests
that phonon properties will not require a three-body
potential. Lennard-Jones potentials are reasonable
approximations for classical properties of rare-gas
solids. In addition, they may also be used to study
relative phonon properties in metals, such as the
dependence of frequency spectrum on geometry in thin
films and small particles. 4


