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absorptions. The inability of the approach taken in
this work to obtain a good fit of the theoretical
transmittance curves to the experimental transmittance
curves, besides predicting the frequencies of maximum
absorption, is not unexpected. In all powdered materials
the particles may be expected to vary in shape about
some average, with some average shape factor g.
Variations in shape cause line broadening which would
be extremely difIicult to take into account quanti-
tatively, and the effort probably would not be justified.
Size variations may result in the occurrence of absorp-
tions of both the surface-polarization and bulk-crystal
type in the same spectrum. We have semiquantitatively
accounted for the effect of shape variation on line-
width by virtue of the fact that both scattering theory
and the Frohlich relation predict the presence of
absorption at frequencies all the way from the bulk-

crystal TO frequencies to the LO frequencies for ex-
treme variations in particle shapes.

The success of our effort to interpret absorption
spectra of particulate materials in terms of size and
shape makes abundantly clear the danger of reporting
absorption spectra of powdered polar materials without
taking into account the effects of particle size and
shape. On the other hand, with care such spectra may
be interpreted and then used in support of other data.
In some cases powder spectra may provide supple-
mentary information when it is not readily available
by other means. For example, when suHFiciently large
single crystals are not available for low-frequency
reflection studies, or in the event that one or more
frequencies are too low to measure with available
equipment, the polarization-shifted frequency may be
measurable.
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Localized vibrational modes of plane defects in crystals can be studied by using the scattering matrix
originally introduced by Saxon and Hutner for a one-dimensional crystal model. The method is generalized
and illustrated for a (001) defect plane in the rocksalt structure with general first-nearest-neighbor forces.

1. INTRODUCTION

HE scattering matrix provides a simple method
for studying localized states due to impurities in

crystal lattices. It was first used by Saxon and Hutner
in the study of localized electronic-energy states in
linear lattices' and applied by Fukuda to localized
modes of vibration in a linear chain with isotopic
defects. ' Hori and Asahi applied the method to study
the localized modes of vibration in monatomic and
diatomic linear chains, with isotopic impurities at the
free end. ' They have also studied surface modes of
vibration in a diatomic linear chain and a two-dimen-
sional lattice with isotopic impurities at one edge. '

It is the purpose of this paper to show that the
scattering-matrix method is more useful than has been
generally recognized so far. It is simpler than the
Green's-function method, in that the complete eigen-
value problem of the unperturbed system need not be
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solved beforehand. It will be shown that this method
can specifically be applied to (.V —1)-dimensional
"plane" defects in E-dimensional crystal lattices; how-
ever, this domain of applicability indicates at the same
time the limitation of the scattering-matrix method.

The present paper describes the generalization of the
scattering-matrix method to three-dimensional crystals
in the harmonic approximation. An application to the
study of the localized vibrational modes in a simple
cubic diatomic lattice containing a plane of isotopic
impurities is made. For the special case of equal masses,
this study yields the same result as obtained by Lengeler
and Ludwig4 by a diR'erent method. The correct equa-
tion for surface modes of vibration are obtained for a
(100) surface of the rocksalt structure with general
nearest-neighbor forces, first considered by Takeno. '

A subsequent paper will deal with the application of
the scattering-matrix method to the study of surface
modes in a semi-infinite ionic crystal.

4 W. Ludwig, in Theory of Crystal Defects, edited by B. Gruber
(Academic Press Inc. , New York, 1966).' In Ref. 2, dealing with the local vibrational modes of a one-
dimensional crystal, there is an error in the definition of the
S matrix. Although Fukuda uses the incorrect definition through-
out his derivation, he arrives at the right condition for localized
modes, namely R»=0.
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In the following, a generalized formulation of the
scattering-matrix method for two-dimenisonal plane
defects in three-dimensional crystal lattices will be
presented. Consider a three-dimensional lattice with a
defect formed by one or several adjacent layers of
impurities, or by a free surface, or both. The perturba-
tion extends on either side along the normal of the
defect plane up to a distance corresponding to the range
of the interatomic forces. The slab consisting of this
perturbed region forms the scattering unit. Instead of
the conventional description, a larger unit cell will be
chosen, with one base vector parallel to the slab normal,
and its length equal to the slab thickness. This is labeled
as the 3-direction. The other two base vectors are chosen
so as to provide a primitive two-dimensional unit cell
in the plane of the defect. Let s be the number of
atoms in the new three-dimensional unit cell. The
position vector of the atoms will be denoted by
X(my) =X(m)+X(p), where m is the vector with integer
components labeling the unit cells, and p=1, , s is
the index of the atoms within a cell. Periodic boundary
conditions will be assumed in the two directions in the
defect plane.

A plane wave propagating through all sublattices of
the crystal will be scattered by the defect slab. The
scattering matrix S;,"o(pv) relates the amplitudes
n, o(v) of incident waves in the vth sublattice (on both
sides of the defect) to the amplitudes P;"(y) of waves
scattered into the pth sublattice (i, j= 1, 2, 3;
p, v=1, 2, . . . , s):
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Defect Slab

Fzo. 1. Incident and scattered waves at a plane defect slab.

sional one. The directions of the wave vectors of all four
kinds of waves present follow from the condition that
the components parallel to the defect plane are con-
tinuous across the defect plane and are not a6'ected by
the scattering, that the normal components should
represent standing waves, and that the scattering be
elastic. This results in the "reAection law" shown in
Fig. 1, the wave vectors satisfying the relations kf/ k, f'

and k~= —k1.'. Although the scattering process involves
only k3, the scattering matrix depends on all three
components of k, with the components k~ and k2 in the
defect plane entering as parameters.

Localized modes are obtained from the condition
that all elements of the scattering matrix be infinite' '
(resonance condition) as this corresponds to outgoing
waves of finite amplitude without incoming waves.
Further, the component k3 of the wave vector in the
direction of the plane normal must be imaginary, since
otherwise the impurity would represent a source of
outgoing waves, which is physically impossible.

ed modes can be
R, relating the
one side to the

scattering unit':

P,'(p) =Q [S;,"(pv)n, '(v)+S;,"(pv)ni'(v)],

P,"-(p) =P [S;,"(pv)n, '(v)+S;;"(yv)n, '(v)].

It is easily shown that the two matrices are inter-
related as follows:

[R22(v )] '
(3)

The indices A, 8= 1, 2 denote the two regions on either An even simpler condition for localiz
side of the slab. Figure 1 shows the relation between obtained in terms of a second matrix
incident and scattered waves. Because of the periodic amplitudes of the two plane waves on
boundary conditions in the two directions in the defect two plane waves on the other side of the
plane, a plane wave propagating in a direction lying in
the defect plane will not be scattered. Further, for a
plane wave propagating in an arbitrary direction, the
component of the wave vector in the defect plane will
not be affected. As far as the component k3 in the
direction of the defect plane normal is concerned, the
problem, therefore, reduces essentially to a one-dimen-

S"(pv) S"(yv) —P [(R"(Xp)]
—'R2i(xv)

S"(gsv)S' (iiiv) R"(pv) —P R' (per)[R2'(xo)] 'R"(Xv) P R (po)[R' (vo')] '

(4)

Each of the four matrix elements S"o and R"o (A,8=1,2) is a square matrix of rank 3s. Because of
the factor [R"(Xp)] ' in Eq. (3), the condition S= vo now reduces to the condition that for every i,j

det(R '(pv))=0.



TABLE I. Coupling parameters in the plane m3 ——0 according to Lengeler and Ludwig. '

4;;(mi, m2, 0, p, , ml~ 1, mq, 0, v) 4;, (mI, m, 0, p; ml, m &1,0, v) @'„(mI, m2, 0, p', m1, mq, &1, v) 4;;(0,0,0,p,0,0,0,v)

—a" 0 0
0 —p" 0
0 0

(a)
p// 0
0 —o"
0 0

Impurity atoms in the plane m3=0

0 —p' 0 0
0 0 —p' 0
9( 0 0 —o,

'

2 (o."+p"+p') 0 0
0 2 (~"+p"+p') 0
0 0 2o.'+4p"

—a 0 Wb
0 —p 0

0

—p 0
0 —a
0

(b) Free surface at m3 =0
0 —p 0

0 —p—p 0 0

2a+3p
0
0

0
2a+3p

0

0
0

o.+4p

a Reference i.

Ihis is the proper generalization of the condition given

by Saxon and Hutner' for the electronic states of a
one-dimensional crystal. '

While the S matrix is unitary, the R matrix has only
the property that det(R) = 1.

As can be seen from Eq. (2), R'-'-' rela. tes the ampli-
tudes o,:'(p) and P, &-(v), each of which has a spatial
dependence of the form e '~ "( &). The elements of R"
are, therefore, obtained by substituting in the equations
of motion displacements of the form

I (m&)
—.o (&)e&[w& R ~ x&mp&l—

and collecting coefficients of n;(p). The determinant of
these coefficients is the determinant required in Eq. (4).
It should be remembered, however, that the component
I;3 is purely imaginary for these modes, k~=- —iq&, where

q~ is an attenuation constant.
Since the displacement. s according to Eq. (5) must be

eigenstates of the unperturbed lattice, they satisf& the
equations of motion of the unperturbed crystal for
imaginary values of A 3. Thus, both the frequency cu

and the attenuation constant q3 can be obtained from
the simultaneous solution of the condition (4), and the
secular equation of the perfect crystal for imaginary
value of k 3. This is much simpler than the Green's-
function method, and the solutions can be obtained
graphically.

The simplicity of the scattering-matrix method arises
from the translational symmetry within the defect
plane, and it is, therefore, obvious that it is applicable

0 o 0
0

0

to (~' —1)-dimensional plane defe&:ts in X-dimensional
crystal lat tices.

3. APPLICATIONS

("onsider first the localized vibrational modes in a
rocksalt-type crystal with general first nearest-neighbor
forces, containing a (001) plane of impurity atoms. It
will be shown how the correct equation for surface
modes of vibration for the system first studied by
Takeno' can be obtained. It will also be shown that in
the limit of equal masses the results obtained b&

Lengeler and Ludwig' for localized modes are
reproduced.

Let the plane of impurity atoms be at m3 ——0 (Fig. 2).
The site (mim'mi) is occupied by the heavier mass Mi
or the lighter mass M2, depending on whether
(mi+m +m,,) is even or odd, respectively. Let M&' and
M2' denote the impurity masses. The nearest-neighbor
coupling parameters are shown in Table I.The condition
of rotational invariance' requires that P'=- P and 28= P.
The necessary modifications will be made before pre-
senting the final results for the various examples under
study.

First, we present the general equations which are
applicable to a lattice containing extended defects, such
as a plane of impurities. ' There is no translational
invariance of the lattice in a direction perpendicular to
the defect, although it is still present in a direction
parallel to the plane of impurities. In two directions
parallel to the plane, periodic boundary conditions
are applied.

The time-dependent equations of motion are in the
harmonic approximation

M„ra'-«, (mp) =Q 4;,(mp, nv)u, (nv),
vng

0
Q o

o Q

where 4;,(mp, ng) are the second-order coupling param-
eters. Because of the periodicity in the two directions
parallel to the plane, one can write

I (mp) L (m,g)e,R'.Rp™
m3

2

FIG. 2. (001) plane of impurities in the rocksalt structure.

' $. Takeno, Progr. Theoret. Phys. (Kyoto) 30, 1 (1963).' B. Lengeler and %. Ludwig, Phys. Status Solidi ?, 463
(1964').
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where
R,(m) = miai+m, ae t (8a)

kp ——2rr(bt&t+b, ks) . (8b)

The symbol " indicates that the corresponding coe%-
cients are different from those in the perfect lattice.

Writing the solutions in the form

bg and b2 are the base vectors of the two-dimensional
la, ttice reciprocal to at and as. Substituting (7) into the
equations of motion gives

Mpro 'U,'-(msfk) =Q radii" (mifk, nsv)L;, (rrsv),

where

(m +) —
& t(+)eikpmpa+p t(+)e—ikrmsa m (()

(12)
U (m )k)

—p 2()r) ei kmpra+ rr.-( ))kp
ikp—mpa ms) ()

the continuity condition at m3= 0 requires

())+0'())= ''())+0 ()), ~=1, 2 (13)

After substituting from (12) into the equations of
motion (11)the condition det(R;is'()rv)) = 0 for localized

- ~ 11-'l 12
=0

2 tt ——(M, e* 'kr~ M'-') oi—'-'ii —
kf "p(11,11)e"-"'"

+g;pk p(01,01) .M toi' U;(11)

The coeScients%' represent the force constants between
sublattice planes' in the presence of the wave of wave

withvector k, . Accordingly, the equations of motion for the
atoms in the layers m3= —1, 0, 1 are

=Q [)f ""'(11,11)U, (11)+i',rkp(11, 12)U;(12)

+it" p(11,02) U, (02)+)f ""p(11,22) U, (22)],

M,oi'U (12)

=Q [f,ikp(12, 12)U, (12)+p;rap(12, 11)L', (l 1)

+it;rkp(12, 01)U, (01)+)f;,kp(12, 21) U, (21)],

M t'oi'-'U;(01)

=Q [(t;ikp(01,01)U, (01)+it;ikp(01,02}L', (02)

+l(;isp(01, 12)U, (12)+it,isp(01, 12)L', (12)], (11)

M. 'oi'-'U, (02)

=p [)( ""p(02,02) L', (()2)+it;rkp(02, 01)L, (()1)

+t(;)"p(02,11)Lr„(11)+g;ikp(02,11)L', (11)],
M toi'-L';(1l)

=Q [if' p(11,11)U,(11)+p""p(11,12)U, (12)

-its= —p p(11,12)e'-'k'p —)f " (p12,21)e*' kr

+g;rk p(02, 01)+g "p(02",11)e'k'p (lo)

(f, kp(11 12)eirkpp p kp(11 22)easkrp

+if' ""p(01,02)+ ((;rk p(01, 12)e'k'

-&r = (Mrs*'k" —M ')co'8 —(t "p(12 12)e""
+g;rk p(02, 02) .

lf the lattice is monatomic, condition (14) reduces to

(Me'rkp~ —M')oi'-'$ "—p kp(1 1)eiskpp —)(, .kp(1 2)e~skp~

+ i7 "p(0,0)+g;,k p"(0, 1)e'kp p= 0. (16)

This can be shown to reproduce the results obtained by
Lengeler and Ludwig in their analysis of localized modes
in a simple cubic lattice with extended defects. ' For
example, for i= j= 1, Eq. (16) is equivalent to

(Mes"kpa M )~- (f, kp(1 1)eiskrp )(, tkp(1 2)eiskpa

+)f ttkp(0, 0)+if, tkp(01)e'ki =0. (17)

The sum of the first three terms in Eq. (17) is equal
to )t ttkp(01)e'kr" —M'or'-'. Hence (17) reduces to

[)1ttkp(0, 1)+tfttkp(0, 1)]e*'"+0 "(0o) —M'~'= o (18)

For the surface modes of this model, Eq. (18) is equiva. -

lent to

+g;rkp(11, 02) U, (02)+P;,kp(11,22) U, (22)],

M.oi'U, (12)

=Q [)( "p(12,12)U, (12)+P "'(12,11)L, (11)

+j;ikp(12,01)U, (01)+)(;rkp(12,21)L', (21)].
'The two-dimensional Fourier transform based on Eq. {7)

leading to the coefficients tti in Eq. (10) has been used before by
I'euchtwang and is the basis of his lattice theoretical treatment of
semi-infinite crystals PT. E. Feuchtwang, Phys. Rev. 155, 715
{1967);155, 731 {1967)j.

—Moi'-'+ (2rr+ 3P) —2n cosh ta
—2P cos1&,a Pe""= 0. —(1'))

This is the sante as Eq. (2.7) given by Lengeler and
Ludwig. However, this is inconsistent with the con-
dition of rotational invariance, as has been pointed out
in Ref. 7. But Eq. (16) is quite correct, and will involve
nondiagonal terms. The above digression had as its
purpose only the reproduction of results formerly
obtained by Lengeler and Ludwig. ' The condition for
surface modes in a semi-infinite diatomic simple cubic
crystal is obtained by setting M&'=M&,
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and noting that the surface is free g;P~(01,12)=g;P~(02, 11)=07. The condition det(R;P'(vii))=0 can again be
written in the form (14), but with

2» ——M,~'(e"»~ —1)b "—iP "~(11,11)e"'"+g P ~(01,01),
A» —— p—~(11,12) e""3' p—p~(12,01) e"»~+tf p~(02,01),
.4 2i —— f;P—n(11,12)e""" P—;P ~(?1,02)e"""+P "~~(01 02)

A g =M2cu'(e""& 1)b— P",P—~(12,12)e""'+g; P~(02, 02) .

(20)

This will give the correct solution to the problem 6rst considered by Takeno. ' As indicated earlier, a simul-
taneous solution of Eq. (14) Lwith the matrix elementsg iven by Eq. (20)7 and the secular equation of the
in6nite crystal,

P;P&(11,11)—Mi(a'b"
det

P~P'(12, 11)+2/;P'(12,01) coshq, a

P~P'(11, 12)+2P,,"&(11,02) cosh qua

P ""'(12,12)—M~'8;;
=0 (21)

would yield both the frequency and the damping con-
stant q3 (defined by ka=iq3) of the surface modes of
vibration. The solution can be obtained graphically by
plotting the two functions a&(k3) defined by Eqs. (14)
Lin connection with Eq. (20)7 and (21) along the
imaginary k3 axis.

The model of the rocksalt structure considered here
corresponding to general 6rst-nearest-neighbor forces is
not applicable to real materials, since it follows that the
relation ci2= —c44 must hold for the elastic constants.
As @44 must be positive in view of the stability criterion
this implies that c~2 is negative. Xo cubic material with
this property is known, however.

For UC, the Cauchy relation c» = c44 is approximately
fulfilled, ' "suggesting that a model with central forces
between first- and second-nearest-neighbor interaction
might be adequate. For ZrC and TiC the Cauchy
relation is not fulhlled' and both c~2 and c4~ are positive,
so that the simplest adequate model would consist of
general first-nearest-neighbor and central second-
nearest-neighbor interaction. For ionic crystals, such

'L. J. Graham, H. Nadler, and R. Chang, J. Appl. Phys. 34,
1572 {1963)."R.Chang and L. J. Graham, J. Appl. Phys. 37, 3778 (1966).

as the alkali halides, the model becomes, of course,
inadequate because of the long-range Coulomb forces.
The application of the scattering-matrix method to
ionic crystals demands a more elaborate treatment and
will be made in a subsequent paper. The simple Grst-
nearest-neighbor model considered here was chosen
only to illustrate the simplicity of the scattering-matrix
approach and to reproduce and correct the results of
Lengeler and Ludwig~ and Takeno, ' respectively.

4. SUMMARY AND CONCLUSIONS

The scattering-matrix method has been generalized
to extended plane defects in polyatomic three-dimen-
sional crystals, and has been applied to the study of
localized modes in the rocksalt structure with general
nearest-neighbor forces containing a plane of im-
purities. The results agree with those obtained by
Lengeler and Ludwig' in the limit of equal masses for
the atoms. In addition, the correct solution for the
surface modes of vibration for a free (001) surface of
the rocksalt structure is obtained. The approach based
on the scattering matrix turns out to be much simpler
than the Green's-function method, but is limited to the
study of localized modes only.


