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Mean-Square Amplitudes of Vibration at a Surface*
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The ratios of the mean-square amplitudes of vibration at a surface to those in the bulk have been studied
in detail for model crystals whose particles interact through a Lennard-Jones potential. %'ithin a quasi-
harmonic approximation, the ratio for a particular surface and direction of vibration is approximately a
universal function of T/O~D, where T is the temperature and OD the bulk Debye temperature. The ratio
increases rapidly with T for T &$0& and then is nearly constant. Three factors increase the ratio above
the value it would have in a simple force-constant model: (i) a temperature-independent decrease in the
force constants at the surface relative to those in the bulk, (ii) a further temperature-dependent decrease,
and (iii) anharmonicity. These factors may account for the tendency of experimental values of this ratio
to be larger than values calculated with force-constant models.

ITHIN the past few years, low-energy electron

~

~ ~

diGraction has proved to be a useful tool for
studying a number of surface properties. One subject
of investigation has been the vibrations of atoms (or
ions) at a surface. These vibrations determine the
Debye-%aller factor, '—~ the one-phonon scattering, 9

and the multiphonon scattering. "" The measured
quantities which are most directly related to the surface
vibrations are the mean-square amplitudes of vibration,
which can be determined from the temperature de-
pendence of the Debye-%aller factor.

In this paper, we report a study of the surface mean-
square amplitudes of vibration in a model crystal which
has an fcc structure and which is composed of particles
interacting through a Lennard-Jones (LJ) potential,

Here r is the distance between the interacting particles
and c and 0 are the potential parameters.

There are two ways of regarding the use of the LJ
potential. The first point of view, emphasized else-
where, "—"is that it can be used for quantitative cal-
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culations in the case of the noble-gas solids. The second
point of view, emphasized here, is that it can be used
for general, qualitative studies of surface properties in
monatomic crystals. The LJpotential has the advantage
of yielding results which, when expressed in dimension-
less form, are independent of the atomic mass M and
the potential constants e and 0,' i.e., the results depend
only upon the shape of the potential. This convenient
feature is not present in other potentials, such as the
Morse and Buckingham potentials, that have the same
general shape but yield results which depend upon
particular values of the potential parameters.

Previous calculations'~23 of the mean-square ampli-
tudes of vibration at a surface have been based upon
the use of force-constant models. '4 The advantage of
using a potential is that a number of sects can be
studied which are beyond the scope of a force-constant
model. Among these are (i) the displacements of surface
atoms from the positions they would have in the bulk,
(ii) the effect of these displacements on the force
constants and on dynamical quantities such as the
mean-square amplitudes, (iii) thermal expansion at the
surface and its eA'ect on the dynamical quantities, and
(iv) the importance of anharmonic eGects at the surface.
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TABLE I.The ratios (u'}surface/(un~) bu)g (o.'= x', y, or z) at T=O'I
for densities given by a/a=1. 30, 1.28, 1.26, and 1.24.

3.0

Surface Component 1.30

(100) (u ') 1.30
(u.&)

(111) (u ') 1.10
{u.&} 1.58

(110) (u, ') 1.24
1.68

(u, ') 1.61

1.28

1.30
1.60
1.10
1.56
1.24
1.68
1.61

1.26

1.30
1.58
1.11
1.54
1.24
1.68
1.61

1.24

1.31
1.56
1.11
1.51
1.25
1.68
1.61
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In the quasiharmonic approximation, the surface
mean-square amplitudes of vibration (I '),„,f„, (a =x,
y, or s) are given by"

A

(Na )surface= Q ~ fa(qrp) ~
surface

2VM e, 2

coth(Ara„(q)/2ks Tj
X . (2)

~.(q)

Here T is the temperature, k~ is the Boltzmann con-
stant, X is the number of surface atoms, ru„(q) is the
vibrational frequency for the mode labeled by p and
the two-dimensional wave vector q, and

~ & (q,p) ~,„,q„,'
gives the amplitude of vibration at the surface as-
sociated with this frequency. (The prime on the sum-
mation indicates that the three zero-frequency modes
associated with uniform translations are to be omitted
from the summation. ) The method for calculating
ru„(q) and

~ $ (q,p) ~,„~„,' is described in Ref. 12. The
bulk mean-square amplitude (u ')b„&z is given by an
equation similar to Eq. (2)."

Ke begin by considering the dependence of the ratio
(u '),„,q„,/(I ')bun, upon the density. It is convenient
to represent the density by the dimensionless quantity
a/a, where V2u is the nearest-neighbor distance. In
Tables I and II, calculated values of (I 2),„,q „/(I ')b„~q
are given both at O'K and in the high-temperature
limit for densities corresponding to a/a=130, 1.28,
1.26, and 1.24. Since the a/a ratio for argon is approxi-
mately 1.284 at O'K and 1.247 at the melting tempera-
ture (if the values of e and a are taken to be those
given by Horton"), this is a rather extreme range of
densities. It can be seen, however, that there is only a
small variation in (u '),.„ga«/(uu2)bus, (less than 10%
in all cases).

The smallness of the variation can be understood as
follows: The Griineisen parameter y„(q) can be defined
by

&„(q)= —d 1nra„(q)/d ln V,

where V is the volume of the crystal. When y~(q) was

» A. A. Maradudin, E. W. Montroll, and G. H. Weiss, Theory of
Lattice Dynamics in the FXarnsonic 3pproximation (Academic
Press Inc. , New York, 1963), p. 237.

~II G. K. Horton, Am. J. Phys. 36, 93 (1968).
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FIG. 1. Temperature dependenCe Of (u+')surface/(ua )bulk fOr

(100), (111),and (110) surfaces.

TABLE II.The ratios {u ')surface/(u )bu}4 in the high-temperature
limit for densities given by ~/a = 1.30, 1.28, 1.26, and 1.24.

Surface Component

(100) (u, ')
(u,2)

(111) (u ')
(u,')

{110) (u ')
(u.')
(u.')

1.30

1.79
2.35
1.24
2.30
1.56
2.70
2.42

1.28

1.80
2.32
1.24
2.25
1.56
2.68
2.40

1.26

1.80
2.28
1.25
2.19
1.57
2.67
2,39

1.24

1.80
2.24
1.26
2.12
1.59
2.66
2.38

2 To remove ambiguity, we take OD to be the Debye tempera-
ture determined from speci6c-heat measurements as T -+ 0.

calculated for crystals with surfaces, ' it was found,
for all values of p and q, to be approximately equal to
the average Griineisen parameter calculated for the
bulk. As the density changes, therefore, the frequencies
for a crystal with surfaces change in proportion to the
frequencies for the bulk.

Now suppose that the ratio 2'//O~n, where On is the
Debi e temperature, " is kept 6xed as the density
changes. Since 0&~ represents a characteristic vibrational
frequency ran(On=bean/ka), the ratio kca~(q)/2ksT in
Eq. (2) then remains nearly constant, while ca„(q) is
multiplied by a factor which is nearly the same for all
frequencies. Consequently, (u '),„z„,/(u ')b„n, remains
approximately constant with respect to changes in

density.
We thus have the result that the ratio (u '),„,&„,/

(u ')bun, is a universal function of T/On, except for
variations of a few percent with extreme changes in
density. The functional dependence for the (100), (111),
and (110) surfaces is shown in Fig. 1. (The results of
Fig. 1 were obtained by carrying out calculations for
a/a=1. 28 and taking the dimensionless Debye tem-
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TABLE III. The ratios (u ')s&rf&«/(u ')hU&k calculated in the
high-temperature-limit approximation (valid for T))OD). Four
methods were used: (a) simple force-constant model, with force
constants at the surface equal to those in bulk (SFC). (b) Quasi-
harmonic approximation, changes in surface force constants
determined at O'K (QH, O'K). (c) Quasiharmonic approximation,
changes in surface force constants determined at ~ the melting
temperature T~(QH, $T~). (d} Molecular dynamics computer
experiment at $T~, with all effects including anharmonicity
taken into account (MD, &Tu).

Com-
Surface ponent SFC QH, O'K QH, ~T.yy

(110)

(u ')
{ul')
(uP}
(u.2)

&uu')

(u, ')
(u ')
(u2J )

1.46
1.46
1.87
1.30
1.30
1.86
1.50
2.14
1.83

1.66
1.66
2.17
1.34
1.34
2.09
1.60
2.49
2.20

2.03
2.03
2.77
1.45
1.45
2.85
1.78
3.21
3.03

2.23a0.17
2.21%0.18
3.07~0.15
1.27 +0.07
1.22&0.11
3.48a0.18
1.89&0.20
4.99a0.65
3.57a0.25

's For Ar, Kr, and Xe, the experimental values of the dimension-
less Debye temperature at 0 K are respectively 26.3, 26.7, and
27.4. The values of cr/a are 1.284, 1.289, and 1.292. (These values
were obtained from the values for ~, g, and O~ given in Ref. 26.)It is therefore reasonable to take the dimenpjonless Debye tem-
perature to he equal to 26.0 for cr/a=1. 28,

perature (ka/b) (Mo'/e)'"OD to be equal to 26 at this
density. "

The main features of the temperature dependence of
(u~s)«d, «/(u~')b„~q are a rapid increase up to about
half the Debye temperature and then a leveling off to
a constant asymptotic value. This behavior can be
explained as follows: At O'K, the summand in Eq. (2)
is proportional to

~ $ (q,P) ~»ds«'/to, and in the high-
temperature limit is it proportional to

~ $ (q,P) ~,„d,«s/tv'.
Therefore, as the temperature increases the lower fre-
quencies are weighted more heavily. There are surface
modes of vibration present, and these modes have
low frequencies"; consequentl~, the large values of

~ j (q, P) ~„.„,t,«s associated with the surface modes are
weighted more heavily at high temperatures, and so
(u'), „„„r,,

/( u')b„tq increases with temperature.
The results presented up to this point were obtained

with the use of two assumptions: The first is the validity
of the quasiharmonic approximation, which takes into
account changes in density, but not truely anharmonic
effects. The second is the assumption that thermal ex-
pansion is uniform throughout the crystal. In fact,
however, it was found in Refs. 12 and 13 that both
anharmonicity and differential thermal expansion at
the surface are of importance at su%.ciently high
temperatures.

In Table III, we give results in the high-temperature
limit (T&)On) for the ratio of surfa, ce to bulk mean-
square amplitudes calculated with four different
methods. The Grst column was obtained with a simple
force-constant model. (By a "simple force-constant
model" we mean a model in which the force constants

at the surface are equal to those in the bulk. ) This
model differs from that of Clark, Herman, and %allis20

only in that an all-neighbor interaction was used. The
second column of results was obtained with the changes
in the force constants at the surface determined at
0 K.' At higher temperatures it is assumed that the
surface region expands in proportion to the interior
of the crystal; i.e., thermal expansion is taken into
account, but differential thermal expansion at the
surface is not. The third column was obtained with the
changes in the surface force constants determined at
one-half the melting temperature, " with the dif-
ferential thermal expansion taken into account. (The
values for the thermal expansion at the surface were
taken from Ref. 13, but it has been found that the
values obtained with lattice dynamics" and molecular
dynamics" agree very closely. ) Finally, the results of
the fourth column were obtained in molecular dynamics
computer experiments at one-half the melting tem-
perature. Such computer experiments take all effects,
including anharmonicity, fully into account. The molec-
ular d~~amics values for the surface mean-square
amplitudes were taken from Ref. 13, where the method
of calculation was described. The error estimates
represent the limits of 50%%u~ confidence. These estimates
were obtained by dividing the total number of time
steps in each molecular dynamics calculation into three
subgroups, and then using the equation"

estimated error =
[n(n —1)]"'

n

XLP ((u'); —(u'))')'", (4)
i=1

where (u'), is the average over the ith subgroup, n=3,
and t().0~= 0.816.

For consistency, all the results for (u s),„„r„, in
Table III were calculated using identical model crystals
(i.e., identical for a given surface); these crystals were
eleven layers thick and contained about 50 atoms in
each surface. "It should be mentioned that the values
of (u ') obtianed with models this smaller differ by
several percent from the values obtained with much
larger crystals, as can be seen from a comparison of the

~ We assume that the effect of the zero-point vibrations is
negligible in this context. In Ref. 12, it was found that this is a
good approximation even for Ar.

~ According to the values of ~ given in Ref. 26, k~T~/a=0. 701,
0.704, and 0.698 for Ar, Kr, and Xe, respectively, so we can take
0.70 to be the dimensionless melting temperature for an I.J
potential. . There is no contradiction in using the high-temperature-
limit approximation at T=$T~, since this approximation is valid
for T)~OD (see Fig. 1) and T~)&O~ for most metals. Wallis
et al. (Ref. 22) have also found the high-temperature-limit
approximation to be valid down to $0~.

"See, e.g., P. G. Hoel, Introduction to Mathematical Statistics
(John Wiley R Sons, Inc. , New York, 1954), p. 226. If this equa-
tion is to provide the actual probable error (for large n), it is
necessary that the (u~)i be normally distributed.
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results in column two of Table III with the correspond-
ing results for a 21-lax er model in Table II.

The results of Table III were obtained with a a/a
ratio of 1.28, which is approximately correct for a
classical crystal at half the melting temperature and
zero pressure. The value used for (u ')b„tk in the case
of the quasiharmonic calculations (columns 1—3) was
given bv (~/ksa')(u~')b„u, /T=0. 00602. This value was
determined by performing an independent calculation
for the bulk in the quasiharmonic approximation. The
value for (u 2)b„tq in the case of the molecular-dynamics
calculations (column 4) was obtained from an inde-

pendent molecular-dynamics calculation for the bulk;
a system of 864 particles with periodic boundar& con-
ditions in all three directions was used. This calcula-
tion yielded the result (e/kss')(N ')&„~z/T=0.00619
&0.00009. According to these results, therefore, an-
harmonicit& causes the bulk mean-square amplitudes
to be increased by several percent at one-half the melting
temperature. "Increases of the same order of magnitude
were calculated by Maradudin and Flinn" for Pb at
room temperature and bi wolfe and ('oodman'4 for ("u
at 300 and 400'K.

The results of Table III can be summarized as follows:
There are three factors which cause (u, '),.„„~.„„/(u ')b„~k
to be different from the value calculated with a simple
force-constant model. The first is a temperature-
independent decrease in the force constants at the
surface due to static effects (i.e., due to relaxation of
the surface atoms at O'K). The second is a further
temperature-dependent decrease in the surface force
constants which is due to dx namical eRects (diRerential
thermal expansion at the surface). The third factor is
anharmonicity, which produces increases in the mean-
square amplitudes which are larger at the surface than
in the bulk. All three factors lead to increases in the
ratio (+u )surface/(+a )butk.

'2 V. V. Goldman )Phys. Rev. 174, 1041 (1968)j obtained a
decrease of several percent, but his approximations are open to
question.

'3 A. A. Maradudin and P. A. Flinn, Phys. Rev. 129, 2529
(1963).

'4 G. A. Wolfe and B. Goodman, Phys. Rev. 178, 1171 (1969).
"There is one exception: In the case of (u ') for the (111)

surface, anharmonicity appears to cause a decrease.

Morabito, Steiger, and Somojai' have pointed out
t hat experimental values for the ratio (u, ').„„t„,/
(u ')b„tq are larger than the values calculated with

simple force-constant models. They suggested that the
discrepancy might be due to a decrease in the force
constants at the surface. This hypothesis is quite
reasonable, since a number of calculations with model
potentials" have indicated that the surface atoms relax
outward in static monatomic crystals, and VaiP' found
decreases in the surface force constants using a Morse
potential. Furthermore, AVallis ek al."found that if the
force constants coupling atoms in the surface plane to
those in the planes below are weakened phenomenologi-
cally, then the calculated values for the surface mean-
square amplitudes show better agreement with the
experimental values for Xi.

The present results provide further evidence for the
hprpothesis of weakened force constants at the surface,
but also suggest that two other factors are involved in
the anomalously large experimental values of (N.'),.„g.„,/
(u ')b„tq—namely, anharmonicity and diRerential ther-
mal expansion at the surface.

The temperature dependence of the surface mean-
square amplitudes has been calculated and discussed
previously '8 It w. as found that (u '),,„,t„, is not a linear
function of temperature at low temperatures, because
of the zero-point vibrations, and that there should be
some departure from linearity at high temperatures
also, because of thermal expansion and anharmonicity.
According to the present results, (u '),.„„fg,/(u, ')b, tk

should increase sharply with temperature for T& 2 OD,
because of the presence of surface modes, and should
show some increase with temperature even at high T,
because of anharmonicitx and differential thermal
expansion. It would be interesting if the temperature
dependence of (u '),,„&,„,/T and (u '),g fg„/(N. ')b„u,
were observed experimentally .

"See, e.g., G. C. Benson and T. A. Claxton, J. Phys. Chem.
Solids 25, 367 (1964); J. J. Burton and G. Jura, J. Phys. Chem.
71, 1937 (1967).

3' J. Vail, Can. J. Phys. 45, 2661 (1967).' In Figs. 8 and 9 of Ref. 12, (zz '),111f~qe was graphed up to
about half the Debye temperature as a function of the dimension-
less temperature (k~/fi)(No'/c)'"T. The temperature variable
in these graphs can easily be converted to T/O™D by using the
relation (k~/h) (Mcrm/e)' OD=26.0.


