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Nonlinear Oytical Effects of Conduction Electrons in Semiconductors
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The Boltzmann transport equation for conduction electrons in solids is solved to third order in the applied
optical fields, including nonlinearities due to the nonparabolicity of the conduction band and the momentum-
dependent relaxation times. It is shown that the nonlinearity calculated from the hot-electron approxima-
tion fails to include changes described in terms of the higher-order derivatives of the distribution function.
The nonlinearity arising from the momentum dependence of the relaxation times is of little importance in
III-V compounds because of the predominance of the nonparabolicity effect. The relaxation-time effect
should be observable in degenerate n-type Si and Ge samples where it exceeds the hound-electron non-
linearity, and in metals where it is expected to be larger than the nonlinearity of the electron plasma by a
a factor of 103—10'.

' 'HE nonlinear optical effects of conduction elec-
trons in semiconductors have been the subject of

several recent publications. It has been proposed that
the observed optical mixing' arises from the momentum
dependence of the effective electron masso (due to the
nonpa, rabolicity of the conduction band), and from the
momentum dependence of the rela, xation times' ' of the
conduction electrons. In this paper, the Boltzmann
equation for the conduction electrons is solved to
third order in the applied optical fields, including both
nonparabolicitv and relaxation-time effects. It is
shown tha, t our approach reproduces the result of
Wolff and Pea, rson' for the nonparabolicitp enect,
but the hot-electron approach' 4 is found to be deficient
in that it fails to include changes described in terms of
the higher-order derivatives of the distribution func-
tion. It is concluded that the nonparabolicitx effect is
dominant in the experiments of Ref. 1, but the effect
of momentum-dependent relaxation times should be
observable in metals, a,nd in degenerate &s-t&pe silicon
and germanium sa,mples.

In the momentum space, the Boltzniann transport
equation for the conduction electrons is

8f(p, t) 8f(p, t)
+eE.

ability 5(p, oo) depends only on the scattering angle oo

between the momentum vectors before and after the
scattering. (Xote added in proof. The authors wish to
thank Professor N. Bloembergen for calling to their
attention the fact that the present description is valid
only when the ratio of the duration of a collision to the
period of the optical field is small. It can be shown that
the relaxation-time nonlinearity to be described below
decreases to zero as this ratio increases. ) Under this
assumption, Eq. (1) ma, y be solved by iteration to yield
a solution of. the form

f(p, t) = fo+fi"'+fo"'+fo"'+ (2)

where fo is the equilibrium distribution, and f&'& in-
dicates the solution to first order in the applied field,
etc. Substituting Eq. (2) and equating terms in Eq. (1)
with the same power in the applied field, one obta, ins
the following expression for f"~(coo), the third-order
change in the distribution function at co3= 2~,+nb.

(~o) Lxo&(P)P&(cos8)+X»(P)Po(cos8)]e* "+c.c. ~

(3)
xo&(p) ~ o~ ~& Eopg&&'( (1+oo)

X [P (fo"+ ,'P'fo"')+P'(f-o'+ ,'P'fo")+ oP-"P'fo']

+(8/25) 'p'(Pfo"+P'fo')) (4)

S(P,V)Lf(p', t) —f(p, t)7»nV«(1)

where f(p, t) is the distribution function, E=E co'cu. t
+Eb coscobt is the electric field amplitude of the incident
optical beam having two collinear frequency components
at ~ and ~b, and the term p)&B has been neglected. '
It is explicitly assumed here tha, t the scattering prob-

X,o(p) =i ,oe'&.'& op' gooL-o'(pf "o+p'fo')

+o(Pfo"'+2P'fo"+P"fo')] (~)

Here the primes indicate derivatives with respect to
p', 8 is the angle between E and p, P~(cos8) is the
Legendre polynomial of order / and

/r~(P) =2o S(P oo)L1 —P~(cos&p)7 sinoody

' C. K. N. Patel, R. E. Slusher, and P. A. Fleury, Phys. Rev.
Letters li, 1011 (1966).' P. A. VI olR and G. A. Pearson, Phys. Rev. Letters 17, 1015
(1966).' P. Kaw, Phys. Rev. Letters 21, 539 (1968).'B. S. Krishnamurthy and V. V. Paranjape, Phys. Rev. 181,
1153 {1969). The authors are indebted to Professor Krish-
namurthy and Professor Paranjape for making available a copy
of their paper prior to publication.

is the corresponding momentum relaxation time which
assumes diGerent dependence on the carrier mo-
mentum for different scattering mechanisms;

g&~= (1/«+~oo„); ooo
——~~—~o, n=~o(1/r~+i~, )

—';
P= (gi.+gib)/~o+gi. /2u.
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The third-order current induced at fd3 is given by

FIG. 1.Plot of nonlinear susceptibility constant of InAs at room
temperature, The curves correspond respectively to the non-
linearity due to (a) nonparabolicity effect for a degenerate dis-
tribution, (b) nonparabolicity effect for a nondegenerate dis-
tribution, and the relaxation-time effect with e= —3 for (c) a
degenerate distribution, and (d) nondegenerate distribution. The
dots represent experimental data reproduced from Ref. 1 and
adjusted to fit the nonlinearity due to the nonparabolicity effect
at E= 10"cm '. x'(cog} =jj('&(a)8)/3a)8L, 'EI,.

Eq. (7) gives
(1+8Er/SEg)j &'&(&d3) =i3iVE 'E&,(e/co 's) bm"'E), (8)
(1+4Er/E )5&'

for a degenerate distribution and

j&"(era) =i sXE,'E&,(e'/&d, '&d&m*'F, ) (1+6kT/F.,) '" (—9)

for a nondegenerate (Maxwell-Boltzmann) distribu-
tion. Here .Y is the carrier density in the conduction
band; m* is the effective mass at the band edge;
Ep (k'/4m*) (3)r2iV)')3 is the Fermi energy for the
degenerate distribution; and T is the lattice tempera-
ture. As expected, Eq. (8) is identical to Eq. (9) of
Ref. 2.

When the effect associated with the momentum-
dependent relaxation times alone is present, Eq. (7)
reduces to

j& )(co,) = i(5/24)—1VE, E&,(e /vs*3)

X(ph(1+-.-)(g. '+lp g.")+(8/»)P -'g. 'j) (»)
for a degenerate distribution. Here ( )F indicates that
the quantities inside the bracket is to be evaluated at
the Fermi momentum pe ——(2m*Ee)'". To facilitate
comparison with the results of Refs. 3 and 4, one writes
1/z=ap", where I is an integer. To second order in
(~r) '&&1, Eq. (10) then becomes

j':"( ) =(2e/k')
3 ej")(&d s) = 1VE.'Ee-

I&)r)p' re)" & )'rrr &6) 8O ~ )
where I(p) = 1/rw*(p) is the inverse of the effective mass
of the conduction electron with momentum p. Since
the term proportional to F3(cose) does not contribute
to the nonlinear current in Eq. (6), the final expression
for this nonlinear current does not contain X,3(p).
Substitution of Eq. (4) then gives, after integration by
parts,

5 e'
j&3)(~ ) —i E 2+r~

36m' h'
I(p)

XL(1+-;a)(gi3'+sP'gii")+ (8/25)P'a'gi3'j

Xp'Pfo'd(p')+ C(1+'&i)g (I'+-'P'I")-

+(8/»)P'I'( 'g +(2 +l)g ')jp'Pfo'd(p') (7)

Equation (7) represents the central result of our
analysis. It includes both nonparabolicity and relaxa-
tion-time effects, as well as effects resulting from the
coupling between these two types of nonlinearities.
These coupling terms must be considered when both
types of nonlinearities are of comparable importance.
Thus, when the nonparabolicity effect alone is pre-
sent, ' substitution of I(p)= 1/m*(1+2p'/m*E, )'" in

1 Gd@,

Xn -', (n+3) + (2m+3) —2(m+3)—
%3T1 G03T1 M2

1
+i(2/9) (2ii+3) . (11)

M~3T1TP

For a nondegenerate distribution, the corresponding
expression is given by

2 ( e'
j'(cog) = .VE,'E&,I—

40 km*'k TCO, 'OrIt

1 co )Xe —,
' (I+3) +i (2n+3) 2(n+3)—

C03T1 &r)g)

X +~ 2 9 2n+3, 22

where ( ) indicates averaging over the carrier distribu-
tion. Equations (11) and (12) differ from the results
in Refs. 3 and 4 in the dependence on n as well as in
the frequency dependence. These differences result
from the failure of the hot-electron approximation to
include changes associated with the higher-order
derivatives of the distribution function, as may be
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demonstrated by noting that these incorrect results
can be reproduced from Eqs. (3) and (6) if terms therein
proportional to fo" and fo"' and higher-order derivatives
of other functions are ignored.

Examination of Eqs. (11) and (12) shows that for
acoustic scattering (e= 1) the term first order in

(cur) ' exists and adds in quadrature to the nonlinearity
arising from the nonparabolicity of the conduction
band. For scattering by ionized impurities (m= —3),
this term vanishes, leaving only contributions second
order in (cur) '. For intervalley scattering and scattering
by optical modes, 5 the scattering probability is es-
sentially independent of the carrier momentum (n=O)
so that the corresponding nonlinearity vanishes
entirely.

We have compared the numerical values calculated
from Eqs. (8), (9), (11), and (12) with the measured
values for the various semiconductor samples reported
to date. ' ' Since the results for InSb and GaAs were
qualitatively similar to those for InAs, it suSces to
discuss only InAs in the following.

Figure 1 shows the calculated nonlinear suscepti-
bility constant due to nonparabolicitx and relaxation
time effects in InAs for various carrier concentrations.
At room temperature, the mobility of the electrons in
InAs is limited by both ionized impurity scattering and
scattering by optical modes, ' with scattering by optical
modes being the dominant mechanism. In order to
establish an upper bound for the relaxation-time eRect,
it is assumed that ~~=r2 and that both are due to
ionized impurity scattering only. ' The experimental
results of Ref. 1, adjusted to fit the nonlinearity due to
the nonparabolicity eRect at X= 10" cm ', are shown
for comparison. At morn temperature ~here the experi-

5 J. M. Ziman, Electrons and Phonons (Oxford University Press,
London, 1962).' J. J. Wynne and G. D. Boyd, Appl. Phys. Letters 12, 191
(1968).

7 C. Hilsum and A. C. Rose-Innes, Semiconducting III-V
Compounds (Pergamon Press, Inc. , New York, 1961).

'We note that the values for the relaxation-time eGects are
meant to be representative only, as some scattering mechanisms,
such as ionized impurity scattering, are not intrinsic properties
of the material. Therefore, the computed values for the relaxa-
tion-time nonlinearity could vary widely from sample to sample
depending, for example, upon the extent of compensation.

mental results reproduced in Fig. 1 were taken, the
electron distribution in InAs becomes degenerate at
A')2X10" cm '. It is seen that the experimental
results are in good agreement with the calculated values
for the degenerate nonparabolicity effect, as is expected
for the carrier concentrations which were investigated.
Figure 1 also shows that the relaxation-time nonlinearity
calculated with n= —3 may be above the estimated
bound electron nonlinearity, but is still below the
nonlinearity due to the nonparabolicity effect by about
an order of magnitude.

In Si and Ge, the nonlinearity due to the nonpara-
bolicity of the conduction band is expected to be
negligible. ' Assuming that the dominant scattering
mechanism in Si and Ge is ionized impurities, ' " and
using Eq. (11) to compute the relaxation-time non-
linearity, it is found that the bound electron non-
linearity'" is larger than the relaxation-time e6ect
for carrier concentrations below about 10'7 cm ' in
both Si and Ge. For carrier concentrations above 10"
cm ', the relaxation-time nonlinearity is expected to
to be at least an order of magnitude larger than the
bound electron nonlinearity and should therefore be
observable in degenerate n-type Si and Ge samples.

In metals the nonlinearity arising from density
Quctuations of the electrons' is lower than the relaxa-
tion-time nonlinearity by a factor of the order of
(~„/qrF)'(co3r) ', where q

—is the propagation vector of
the light wave. This factor is of the order of 10'—10'
at room temperature for light waves in the infrared
and visible range. Therefore, by studying the harmonic
wave reQected from metal surfaces" it should be possible
to observe the nonlinear relaxation time eGect in
metals. Experiments are currently underway to study
these e6ects.

The authors are indebted to R. K. Terhune and
G. W. Ford for several stimulating discussions.
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