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The energy-band structures of Cd3As~, Zn3As2, and Cd~. &n~.sAs2 in a hypothetical fluorite structure have
been determined, employing the pseudopotential method. From these results a qualitative picture of the
band-edge structure in real crystals is deduced. lt is shown that many optical and transport phenomena
can be interpreted using these energy-band structures.

I. INTRODUCTION

'N recent years there has been a growing interest in
- - the II-V compounds Cd3As2, Zn3As~, etc., based on
the possible occurrence of either small energy gaps or
extremely high electronic mobilities and low-electron
e6'ective masses or a combination of such properties.
In previous works, the interpretation of experimental
results has been hampered by the lack of band calcu-
lation that would serve to establish the positions and
shapes of the valence and conduction-band edges. A
theoretical determination of the band structures of
these substances, on the other hand, faces many
significant difFiculties.

The major difliculty in a theoretical work originates
from the exceptionally complicated crystal structure of
these substances. Recently, x-ray analysis' has shown
that the Cd3As2-type compounds crystallize in a body-
centered tetragonal structure with 32 As ions and 48
Cd ions per unit cell. Its space group belongs to
C4, '2(I4qcd). Such a large unit cell introduces a large
number of valence electrons (256 valence electrons per
unit cell) and a very involved structure factor. An
accurate determination of such a large number of
valence bands would require the inclusion of a large
number of terms in the expansion of orthogonalized-
plane-wave (OPW) wave functions in order to ensure
the convergence of the calculation. For example, the
InAs crystal has only eight valence electrons per unit
cell, yet approximately 90 plane waves should be
included in the expansion of the Bloch-wave function
to give a reasonably well-convergent result. Thus, in
the Cd3As2 case, one is inevitably confronted with
solving secular determinants of the order of 1000,
which at the present time requires astronomical com-
puter time. The complexity of the structure factor as
well as the computational difhculties in finding a self-
consistent crystal potential also makes the theoretical
study virtually impossible.

To obviate the difhculty in finding a self-consistent
potential, we seek recourse to the pseudopotential
method which has been so useful in other band calcu-
lations of simpler materials. Frequently, the weak
pseudopotentials obtained for the elements or com-
pounds are taken over to construct the weak pseudo-
potentials for other compounds. Since the pseudo-

' G. A. Steigman and J. Goodyear, Acta Cryst. 824, 1062 (1968).
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potential of an atom in one substance does not diGer
much from that of the same atom in another substance,
the previously determined local atomic pseudopotential
with volume correction factors could equally well be
adapted in our investigations of the II-V compounds.
Indeed, band calculations have already been carried
out for the pure cadmium, zinc, ' and arsenic. ' These
calculations provide us with the pseudopotential form
factors for atomic Cd, Zn, and As. These atomic
pseudopotentials are particularly useful since they
have been so accurately determined. As pointed out in
Ref. 2, the band structures resulting from the pseudo-
potential scheme give extremal cross-sectional areas of
the Fermi surfaces of cadmium and zinc consistent
with de Haas —van Alphen measurements and all other
reported measurements of the Fermi surface properties.
In particular, a purely local pseudopotential approach
resulted in average errors that were only of the order
of 10 ' Ry in Zn and 10 ' Ry in Cd, when the error in
the calculations is expressed as the necessary shift in
the Fermi energy to bring the theoretically calculated
de Haas —van Alphen frequencies into exact agreement
with experiment.

In the second step towards overcoming the com-
putational difficulties, we are forced to make approxi-
mations to the crystal structure. The Cd3As2 crystal
may be viewed as a fiuorite crystal structure with
cadmium-ion vacancies distributed periodically
throughout the crystal. The effect of the vacancies on
the valence electrons is then taken into account by a
vacancy pseudopotential which is the negative of the
cadmium atomic pseudopotential. For convenience,
we assume the vacancies distributed in such a way that
their existence is accounted for by an effective vacancy
potential superimposed on the cadmium atomic pseudo-
potential presented in the ideal fIuorite structure. This
assumption, on the one hand, gives a reasonable
physical picture of the potential field seen by a valence
electron and, on the other hand, allows us to formulate
the Schrodinger equation for manageable computation.
The present work is exploratory in character. Our aim
is not to seek complete agreement with experiment.
Our choice of the hypothetical structure will be too
crude for that. Rather, we seek to simply understand

'R. W. Stark and L. M. Falicov, Phys. Rev. Letters 19, 795
(1967).' P. J. Lin and L. M. Falicov, Phys. Rev. 142, 441 (1966).
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the general nature of the results employing the atomic
pseudopotentials for each constituent atom presently
available. Since a band-structure calculation for Cd3As2
crystal in its real structure will not be possible in the
foreseeable future, this work, hopefully, would provide
information as to probable locations and shapes of
valence and conduction band edges.

In Sec. II we shall describe the crystal structures of
these compounds and analyze the relationships between
the real and hypothetical crystal structures. In Sec. III
we define the potentials relevant to both structures and
present the Schrodinger equation used in our formal
calculations. The results of our numerical computation
are given in Sec. IV. From these results we are able to
deduce a qualitative picture of the band-edge structures
of these compounds in their real crystal structures and
to understand the presently available experimental
data. A detailed discussion of the essential changes in
the energy-band structures as one goes from the
hypothetical to the real structures will be given in
Sec. V. A comparison of the results with experimental
data is also to be found there.

II. CRYSTAL STRUCTURE
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The crystal structure of Cd3As2 was determined
recently by Steigmann and Goodyear' as body-centered
tetragonal with 80 atoms per unit cell. This structure,
as well as many others, can be well understood by a
diagram looking down along the t," axis. A most con-
venient way to illustrate this structure is to divide the
unit cell along the c axis by eight equally spaced planes,
representing atoms on the planes as circles and atoms
at hs=c/16 below the planes as crosses. This diagram
is given in Fig. 1, where Cd atoms are on the planes
and As atoms are below.

Examination of Fig. 1 shows that each Cd atom is
tetrahedrally coordinated with arsenic atoms as their
nearest neighbors, while each As atom is surrounded by
Cd atoms located at six of the eight corners of a cube,
the two vacant sites being at diagonally opposite
corners of a cubic face.

The space group of the structure given in Fig. 1
actually belongs to C4,"(14&cd) with a body-centered
tetragonal Bravais lattice. This space group is non-
symmorphic; some of its symmetry operations are
associated with nonprimitive translations. There are
several alternative methods of describing this space
group, each one of which places the origin at a specific
location. If the origin is chosen to be at the As atom 0,
as indicated in Fig. 1, the symmetry operations of the
factor group which carries us from one atom in the
environment of 0 to its equivalent atoms are listed in
Table I. The operations Lq to L8 carry the Cd (As)
atoms labeled by 1, 2, 3, etc., to atoms with the same
Iabels. The As atoms are themselves in a cubic close-
packed structure. The x-ray analysis' indicates that the
As atoms are slightly displaced from their positions in

Fro. 1. Idealized crystal structure of Cd3As2-type crystals. The
unit cell is divided by eight equally spaced planes along the z
direction. As atoms are represented by crosses at hz=~6c below
each plane and Cd atoms are represented by circles on each plane.

TABJ E I. Elements of the factor group C4„" (s = 1 to s=8) y

where tz = t'ai, tz =~2aj, t, =—,'ck.

5 Class

1 I'
C 2

3 C4

4
5 0,.
6
7 0'&j

8

Operation L,

(I,O)

(4.,O)

(S4„ t&+t,)
(g4-1 t&+t )
(,„,2t, )
(p, 2te)

(p.;, t~+t, )
(p t&+t )

s
g+ka
7+la

y
y

S+g'a

x+~2a

Z

Z+4C
Z+4C
z+gc
Z+$C
z+4c
Z+gC

a cubic close-packed array. The displacement is small,
being 0.05 A as compared with the lattice constants
shown in Table II. We shall therefore ignore such small
deviations. The Cd atoms were found to displace
0.25 A from their positions in Fig. 1 towards neighboring
vacant sites, causing a variation of the bond lengths
within each Cd-As tetrahedron. As a result of these
displacements, atoms with different labels will no longer
be at equivalent sites. The space group, however,
remains C4,"(14qcd), whose factor group contains
operations I.~ to 18 only.

It is interesting to see how a fluorite structure can
be formed by simply filling the vacant sites in Fig. 1
with Cd atoms. After the vacant sites are filled, the
unit cell in Fig. 1 will transform into 16 equivalent
fluorite unit cells with the As' replacing the Ca'+
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TABLE II. Quantities used in the calculations.

Lattice constants (A.) a
c

Hypothetical fluorite structure lattice constants 2 (in a.u. )
Volume per primitive cell of fluorite structure
Pseudopotentials form factors (Ry)

V(111)
I (200)
I (220)
V(113)
V(222)
V(400)
V(331)
V(420)

Cd3As2

12.67
25.48.
11.98

429.35

—0.1194—0.0680—0.0094
0.0150
0.0056
0.0134
0.0022
0.0010

Zn3As2

11.783b
23.652b

11.14
345.34

—0.1304—0.0760
0.0082
0.0246
0.0110
0.0050

0
0

Cdq. qZn&. sAs2

8.61b
12.05b
11.45

375.28

—0.1212—0.0530
0.0104
0.0213
0.0033
0.0077

0
0

a G. A. Steigmann and J. Goodyear, Acta Cryst. 824, 1062 (1968),
b W. Zdanowicz, K. Lukaszewicz, and W. Trzebiatowski, Bull. Acad. Polon. Sci. 12, 169 (1964).

and the Cd'+ replacing F in a calcium-fluoride struc-
ture. The new unit cell, being much simpler than the
original one, contains only three basis atoms. As indi-
cated in Fig. 2(a), the dashed lines and the planes
s=~nc, s=4(n+1)c form the boundary of the fluorite
unit cell with lattice constant equal to -'a.

In order to illustrate more explicitly the difference
between Figs. 1 and 2(a), we display the arrangement
of the vacant sites in Fig. 2(b), in which the real unit
cell is divided into four sections along the c axis. The
tail and head of the arrow are situated at the upper and
lower vacant sites, respectively, along the body diagonal
of each small fluorite unit cell. Note that there are only
four types of small cubes containing four difI'erentlp
oriented arrows. In the environment of an arsenic atom,
the va, cancies arrange themselves in such a pattern

that along any direction, there is always equal proba-
bility in finding each type of small cube. This infers
that, as far as the As atoms are concerned, they feel a.

vacancy potential field that is equal to the average of
the fields produced by the vacancies in a structure
containing solely one type of small cube. This is a
reasona, ble first approximation because, as mentioned
before, the cadmium atoms actually tend to displace
towards the vacancy sites and hence the vacancy
potentials resulting from an "averaged" treatment
should be more realistic than the one from an "exact"
treatment.

I.et us now consider the structures in the momentum
space. The reciprocal lattices of the real and fluorite
structures are identical to those of the body-centered
tetragonal and fcc structures, respectively. The basis
reciprocal lattice vectors have the following forms:

0
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Z=K K LlC
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bi ——(2m./a) (1,1,0),
b~= (2n/a)(0, 1,2), for real structure with

the condition c=2a,

and

(2.1)

b,' = (4n/a) (1,1,1),
b~' ——(4s./a) (1,1,1), for fluorite structure.

b, '= (4'/a) (1,1,1),
(2 2)

Z=O~—c4

C 3C
2 4 Z ~C

Throughout this paper u and c always refer to the
lattice parameters for the real structure.

In terms of these basis vectors, the corresponding
reciprocal lattice vectors (RLV) are expressed as
G= (n~b&+»&b, +n&b3) and G'= (»&b&'+»2b2'+nab3')
with si1, e2, e3 representing any integers. Or
equivalently,

I'IG. 2. Relation of (a) the fluorite structure and (b) the cad-
mium vacant-site structure to the Cd3As2 structure given in Fig.
1. The circles are Cd atoms on each plane, the crosses are As
atoms at du= ~'~c below each plane. Broken line indicates the
base boundary of fluorite unit cell. The tail and head of each
arrow are situated at the upper and lower vacant sites, respec-
tively, along the body diagonal of each small unit cube.

where

G= (27r/a) (li,l„l,),

l3 ——half integers,

l~(l2) = even integers,

l2(l&) = odd integers,

(2.3)
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or
I3= integers,

l~ and l~= both even or both odd integers,

6'= (4~/a) (lg', lg', le'), (2.4)

where l~', l~', and l3' are all even or all odd integers.
The Brillouin-zone geometries for these two reciprocal

lattices are shown in Fig. 3. We want to point out that
the first Brillouin-zone volume of the real structure is

only ~'~th that of the fluorite structure. Recall that in
three dimensions the wave vectors k and k+G are
considered to be equivalent if G is any reciprocal lattice
vector (RI.V) of the reciprocal space. In addition, a
small potential with nonzero Fourier component VG

will mix states which have wave numbers di6ering by G.
If we examine Eqs. (2.3) and (2.4) carefully, all

allowed G' values are also allowed RLV of the real
structure. On the contrary, we can find many G that are
not RLV of the fluorite structure. As a consequence,
an extra potential, with the symmetry of the real
structure, acting on the electrons in the fluorite struc-
ture will mix states with wave numbers diGering by G.
For example, the states associated with the following
points in momentum space will be mixed:

(1) X= (4z/a) (1,0,0) mixed with I'= (4m/a) (0,0,0),
(2) (47r/a)(8, 0,0)

mixed with (4~/a)(1 —8, 0, 0), where 6&1,
(3) (4z./a) (8,6,0)

mixed with (4w/a) (1—6, 1—8, 0), where fI& 1,
(4) 1-=(4 /a)(l, l, l)

mixed with (47r/a) (0,0,z) and (4m/a) (-', ,z,0) .

ln Fig. 3 we have shown points within and on the
boundary having special symmetry. Of those within the
fcc Brillouin zone, the points j. , X, L, tV have the
symmetry OA, C~~, D3g, and D2~, respectively. The
character tables and irreducible representations can be
found in Ref. 4. The other case C4„" is somewhat more
complicated since it is nonsymmorphic, i.e., because
of the existence of nonprimitive translations in the

TABLE III. Characters for the irreducible representations
at I' and along 6 for C4,".

a)

Kz

I'ro. 3. The first Brillouin zone of (a) body-centered tetrogonal
structure, and (b) Auorite structure.

symmetry operations, the dimensionalities of the irre-
ducible representations and the whole nature of these
representations for some of the symmetry points on the
Brillouin-zone boundary are quite diferent from those
suggested by the ordinary representations found for
the group of the wave vector. For the present purpose,
we are primarily interested in the band edge which is
at the center of the Brillouin zone. Therefore, we shall
not elaborate the details of symmetry of space group
C4„". %e only give the character table and the irre-
ducible representations at point I' and along the (001)
direction (excluding the point 7) for C4," (Table III).

H' = T+Vp, (r) . (3.1)

V„(r) is, in turn, expressed as the sum of the atomic
pseudopotentials for atoms in the crystal

III. COMPUTATIONAL PROCEDURE

As is well known, in the pseudopotential formalism'
the pseudo-Hamiltonian may be expressed as the sum
of kinetic energy and pseudopotential energy parts:

12 c4 '7 B' V„(r)=Q V„'"(r—Re,). (3.2)

(I,O)

(S,,O)

(~4z, ta+t )

(84, 1, t~+t, )
(py, 2t, )

(p, 2«)
(p g, t~+t.)
(p „,t~+t, )

1 —1

2
—2 The index b denotes the type of atom and the index ~

refers to the atomic site with position vector R~;. The
matrix elements of (3.2) between the plane-wave states
can be accurately determined as

(k~ Vp, (r)~k')=P (V„&e&(q)Se(q)bk—k' —qj, (3.3)

' G. 1'. Roster, in Solid State I'hysics, edited by I'. Seitz and D.
Turnbull (Academic Press Inc. , New York, 1957), Vol. 5, p. 173.

See, for instance, J. C. Phillips and L. Kleinman, Phys. Rev.
116, 287 (1959);B.J. Austin, V. Heine, and I.. J. Sham, ibid, 1/1,
276 (1962},
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where V»i" (q) is the Fourier transform of V„"'(r) and

Sd(q) =2 d ""'. (3.4)

S (q) =S "(q)-S "'(q). (3.6)

Both terms in (3.6) have the form of Eq. (3.4), but the
first sum is over the Cd sites given in Fig. 2(a) and the
second one over the vacant sites given in Fig. 2(b).
Note that Fig. 2(a) is composed of three interpene-
trated fcc lattices, the three basis atoms being at

As: r, =(0,0,0),
Cd: ri= (xa,za, za),
Cd: rs ——(ssa, g'a, xqa) .

Therefore, from the lattice sum rule we have

S„,(q) =p e-'q R d =Sqo.ale,

&(q) =p e iq'aicd —p z iq ~ Ridl(—e
—sq rl+d —iq ra)

(d
—iq rg+e—iq rq)h o,Q~V (3 8)

where X is the number of unit cells in the crystal, 0
is the volume of the cell, and 6' has the meaning given
in Eq. (2.4). From Eq. (3.5) to Eq. (3.8), we obtain

(ki V& (r)ik )=8q il' o (V (6)+2V& (6)
x o [~ (q.+q,+q.)] o [,'(q.+q,+-q.)])

—V»«(q)S«" (q)bq i, q. (3.9)

Here we want to point out that Kq. (3.9) is an exact
expression for the structure given in Fig. 2. If we can
carry out the calculation using Kq. (3.9), we would
obtain the band structures of the Cd3As2 crystal with
C4,"symmetry. However, as some of the discussions in
previous sections indicate, there are some diKculties
in performing the computation in its exact form Eq.
(3.9). If we evaluate Scd" (q) according to the structure
shown in Fig. 2(b), several difficulties arise:

(1) Because of the nonsymmorphic character of Fig.
2(b) Scd"(q) becomes a complex function. Thus the
matrix element Eq. (3.9) is also complex.

(2) S«ii(q) will contain a factor 8q o, where G's are
RLV given by Kq. (2.3). There are 89 RLV, G' with

6'~ &8.7(2ir/a), but the number of RLV, G with
6~ &8.7(2m/a), is 2780. This means that the presence

of the sum over vacant sites enlarges the order of the
secular determinant in the calculation by a factor of
30 in order to reach the same degree of convergency.

Since there are only two types of atoms present, we
may write

(k~ V»&'& [k') =bi, i q[V»"'(q)S~. (q)
+V„«(q)S«(q)]. (3.5)

Let

In view of these diQiculties, we feel that a physically
realistic approximation such as described in Sec. II
must be employed in our present calculation. In doing
so, Sod"(q) is replaced by S'(q). It is clear that the
averaged structure factor of the vacancy structures
which contain only small cubes of the same orientation
is S'(q) =-,'Scd'(q). Consequently,

V, (q)S'(q) =-'V . (q)S '(q), (3.10)

and Eq. (3.9) reduces to

(k~ V»(r)
~

k ) =8g q~ o ( V» (6')
+-',V„.c"(6') cos[-„'a(q,+q„+q,)]

Xcos[-,'a(q, +q„+q.)]) . (3.11)

The matrix element in Eq. (3.11) can readily be evalu-
ated once the atomic pseudopotentials are chosen.

It is interesting to see that Eq. (3.11) may be
explained, alternatively, as having the same structure
factors as a fluorite structure while the Cd potential
in the curly bracket of Eq. (3.9) is replaced by —,

' that
of Cd potential. The effective number of valence
electrons in this fluorite unit cell is now eight, of which
five belong to As 4s'4P' and three belong to Cd 5s levels.

As regards the atomic pseudopotentials, we use the
local pseudopotentials determined in Refs. 2 and 3 with
volume correction factor. The crystal pseudopotential
form factor in the right-hand side of Eq. (3.11) is
expressed in Table II for several given values of G'.
In our calculations for Zn3As2 and Zn~. SCd~. 2As2, we
again use Eq. (3.11) but allow the change in lattice
parameters and replace V»«(6') by V»s (6') and
s[1.8V» "(6')+1.2V»o (G»)], resPectively, in each
case.

The calculation of the band structure was carried
out in a fashion similar to that described in Ref. 3.
Ninety plane waves were used in the expansion of the
pseudowave functions. For reasons of economy, the
secular determinants are solved using Lowdin's per-
turbation technique. ' The complete band structures
along several symmetry directions for Cd3As2,
Cd&.2Zn&. SAs2, and Zn3As2 in their hypothetical struc-
tures are given in Figs. 4-6.

IV. RESULTS

The over-all band structures of Cd3As2, Zn3As2, and
Zn~. 8Cd~. 2As2 are shown in Figs. 4, 5, and 6, respec-
tively. Spin-orbit couplings and other relativistic effects
are not included in these calculations. It can be seen
that they all resemble the band structures of the III-V
compounds InAs, GaSb, etc. , as we would expect. The
lowest valence band belongs to an arsenic s-like level.
The second band is a Cd (Zn) s-like band. The third
and fourth bands are s-like about Cd, and p-like about
As atoms.

' P. Lowdin, J. Chem. Phys. 19, 1396 (1951).
7 M. I. Cohen anfI T. K, Bergstresser, Phys, Rev. 141, 789

(1966).
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Fro. 4. Energy bands of Cd3As2 in its hypothetical crystal structure.

The valence-band maxima of Cd3As2 occur along
(100) and (110) directions at points (0.065, 0, 0) and
(0.125, 0.125, 0) close to the center of the Brillouin
zone. The maximum of Z4 is only 0.15 eV higher than

F» in energy. On the other hand, the direct gap at F
point is 0.6 eV. The conduction-hand minimum at F
has a very small effective mass. Our calculated value
is ns,*=0.045mo as compared with the experimental
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L3' —+ I.)
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I;g' —+ Lg

I I~+II
I'g5 ~ Xg

Eq~ s

F ab
b

Cd3Asg

1.8
3.0
4.7
0.6
1.2
1.7
3.65
4.5

ZnsAs2

2.6
3.2
5.2
1.65
1.1
2.1

3.5

Cdg gZng 8Asg

1.9
2.8

1.3
0.7

& See Ref. 9.
b See Ref. 10.

'E. D. Haidemenakis, M. Balkanski, E. D. Palik, and J.
Tavernier, J. Phys. Soc. Japan Suppl. 21, 1g9 (1966).' V. V. Sobolev, N. N. Syrba, and S. D. Shutov, in Chemical

value of 0.041@&0.s The light-hole effective mass appears
to be only slightly greater than that of the electron.

In Figs. 5 and 6 the conduction-band minima are
located at X rather than at F. The X and F points are,
in fact, equivalent points in a real crystal structure;
therefore, we can still consider the forbidden energy
gaps to be close to the center of the Brillouin zone. The
effective mass for 7n3As2 at X1 is calculated to be
m,~ =0.126mo.

We list several interband energy diA'erences for these
nl. aterials in Table IU.

Experimental reHection spectra were recently studied
for these II-V compounds in the range 1—12 eV.' ' The

structure of the spectra is quite similar to that of III-V
compounds. " We list several prominent reHectivity
peaks in Table IV. It has been shown that in III-V
compounds the E1 peak corresponds to the transition
A3" —+ A1', where the superscripts refer to valence and
conduction bands. The A point is, in fact, very close to
L. It is interesting that this is also true in our results.
We have peaks at 1.8 and 2.6 eV compared with 1.7
and 2.1 eV in the experimental data. The next peak 7';~

corresponds to the X5' —+ X1' transition for the III-V
compounds. Our results for X5'~ X1 for Cd3As2 and
Zn3As2, 3.0 and 3.2 eV, are also close to the experimental
data 3.65 and 3.5 eV, respectively. The E3 peak, for-
merly identified to be associated with the transition
L3' —+ L3' in GaAs, also agrees with L3' —& L3 transition
in our case. Our calculated value for this transition for
Cd3As2 is 4.7 eV. Considering the similarity in both
band structures and reHection spectra of these II-V
and III-U compounds, we may anticipate that the
transition assignments we made are quite reasonable.
There are frequently more than one critical point
contributing to each prominent peak in the optical
spectra. We discuss only the ones at high symmetry

Bonds in Se&nicondgctors and Thermodynansics, edited by N. N.
Sirota (Consultants Bureau, New York, 1968), p. 165.

~0 J. R. Stevenson (private communication)."D. L. Greenaway and M. Cardona, in Proceedings of the
International Conference on the Physics of Semiconductors, E~xeter,
1962 (The Institute of Physics and The Physical Society, London,
1962), p. 666; M. Cardona, K. L. Shaklee, and F. H. Pollak,
Phys. Rev. 154, 696 (1967).
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points of the fluorite Brillouin zone, which are also

symmetry points of the real Brillouin zone.

V. BAND-EDGE STRUCTURES OF Cd&As2, Zn3As2

AND THEIR MIXED CRYSTALS

Al(X
A, (I', )

A, (X,)

After we have the energy-band structures of the
II-V compounds in their hypothetical structure, it is
important to examine what we would expect for the
band structures in the real crystals. Let us consider
the effect of the small residual potential which is the
difference between the potential we used in our calcu-
lation and the potential for the real crystal. As we have
mentioned at the end of Sec. II, this residual potential,
having the symmetry of C4,", is very small and dificult
to evaluate quantitatively. Ke can only estimate its
effect qualitatively to give a picture of the band-edge
structures for the real crystals.

The small residual potential, which acts upon the
electrons in the fluorite structure, will tend to mix states
which have wave numbers di6ering by the RLV of the
real structure and will have negligible effect except
when the unperturbed states that are mixed have very
small energy difterence. Among the states which will

have significant alteration in energy, we choose to
discuss only the states near to band edges.

X~ and I'~, at the bottom of the conduction bands,
both have s-like symmetry in the real crystals. They
have energy difference E(X&)—E(I'&) =0.5 eV in

Cd3As2. In such condition they will interact via, the
small residual potential and, as a result, push each
other apart. The perturbed Fj and X~ levels belong to
the identity representation Aj in the real structure
(see Table III) and one of them moves to higher-energy
position, the other to lower-energy position. The
residual potential and the spin-orbit interaction both
will lift the degeneracy of F». The F&; state is p-like
about As atoms. Since the spin-orbit splitting for free
As atoms is only approximately 0.3 eV, the separation
between the split-o6 I'~„.- bands will be 0.35 eV. The
interaction between X5' and I'~5 via the residual po-
tential will also help to raise the valence-band maxi-
mum. The total effect is estimated to raise the con-
duction-band minimum in an amount 0.2 eV and lower
the valence-band maximum by the same amount for
the case of Cd3As2. At this point, we may tentatively
construct the band-edge structures for the real crystal,
a schematic diagram of which is presented in Fig. 7.
The predicted forbidden energy gap J', for Cd3As2 in
the real structure is 0.2 eV or even smaller; perhaps
a grey Sn-type zero-gap structure may appear. " The
E, for Zn3As~ in the real structure is close to 0.9 eV
and that for Cd~ .Zn~. sAs2 is close to 0.4 eV. Both gaps
are between A~(X~) and E(1'») at the center of the
Brillouin zone of the real crystal structure. The electron
effective mass for Zn3As2, 0.21mo, is much greater than

'~ R. J. Wagner, E. D. Palik, and E. S. Swiggard, Phys. Letters
30A, 175 (1969).

Ai( l5

E (l",5)

Al(l"lgj

Cd&As& 2n& As&

FIG. 7. Schematic diagram of predicted band-edge structures of
(a) Cd3As2, and (b) Zn3As& in their real crystal structure. The
states are labeled by the irreducible representations of the C4,'
factor group and the corresponding representations of the fluorite
structure from which the new states are formed.

"L. Zdanowicz, Phys. Status Solidi 20, 473 (1967)."D. Armitage and H. J. Goldsmid, Phys. Letters 28A, 149
(1968).

that of Cd3As2. This is mainly because the conduction-
band minima, originate from difrerent states for these
two cases.

%hen the residual potential acts on the point L, the
point L, will be mixed with states at the midpoints
between I'X in (100) and (110) directions. The new

perturbed states are at the Brillouin-zone boundary of
the real structure. According to Figs. 4—6, only the I.3'

level has states A~ and Z4 at (4s/a) (-'„0,0), (4n/a) (-„-'„0)
near to it and, hence, will change its energy slightly.
This may help to decrease the energies of the transitions
L3'~I~ and I.3' —+L3 and bring them into better
agreement with experimental E~, E3 peaks. The X~'
level is pushed down by its interaction with I'» and
hence the X~'~ Xl transition will increase in energy.
This also helps to approach the experimental E2 peak
as given in Table IV. For the sake of completeness, we

summarize other available experimental information
to see how our present result might interpret some of
the data.

Besides the aforementioned reflectivity measure-
ments, there have been transmission and reflection
measurements in thin film Cd3As2 over the range
0.1—1.2 eV. Zdanowicz" observed extremely high values
of the absorption coefFicient n at about 0.6 eV and a
decrease of o. by two orders of magnitude within a
narrow region of frequencies. He suggested that 0.6
eV can be taken as the energy gap for direct transitions.
A second decrease of the absorption coeScient at 0.13
eV by about one order of magnitude is then attributed
to the occurrence of indirect transitions. Interband
magneto-optical (IMO) studies of Cd;As2 ' also reveal
a very small energy gap 0.025 eU, an electron eftective
mass of 0.041mo, and a valence-band efI'ective mass of
0.12mo. Armitage and Goldsmid" explain the optical
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work in terms of a Kane-type band with a small direct
gap, an indirect overlap, and a large Burstein-Moss
shift. An alternative band structure was suggested by
Wagner et al. 12 to explain the observation of IMO
transitions in mixed Cd Zn~ As2 crystals as a function
of composition. They suggest an o-Sn-like zero-band-

gap model for Cd~As2. Our present calculation predicts
a band structure in favor of the latter model. As shown
in Fig. 7, the energy gap is at the center of the Brillouin
zone. The 31~E is the small direct gap less than 0.2
eV. However, we have a difI'erent interpretation for
the 0.6-eV transition, which was assumed to be due to
the light-valence to conduction-band transition in Ref.
12. From the distinctly diBerent absorption coefficients
observed for the 0.13- and 0.6-eV transitions, we believe
that the 0.6-eV transition is due to the heavy valence
band E(I'~5) to the higher conduction band A~(X~)
(see Fig. 7), because this is an allowed transition with
stronger oscillator strength. Sexer' also predicts two
conduction bands with efkctive masses 0.06mo and
0.12mo, respectively, in order to explain the magneto-
resistance results. It is surprising to see that we also
have two conduction bands with eBective masses similar
to her results, She predicts that the two bands are

"N. Sexer, Phys. Status Solidi 21, 225 (1967).

separated by 0.15 eV. However, it seems impossible to
have such a small energy separation for pure Cd3As&

from our calculated result. For the mixed crystal, the
separation of the two conduction bands becomes smaller

and reversal of these two bands eventually occurs.
The experimental information for Zn3As2 and the

mixed crystals is not as complete as that for CdeAs2.

If our interpretation for the absorption measurement
for Cd3As2 is correct, then, because of the reversal of
the two conduction bands in Zn3As2, we would expect
to observe a strong-edge —type followed by a weak-edge—

type increase of absorption as the photon energy is

increased from 0.7 to 1.4 eV. Also, we expect many
phenomena relating to the conduction band edge

property to be signi6cantly diferent from those in

Cd3As2. More experimental investigations of the optical
and electrical properties of Zn3As2 and a whole series
of mixed crystals Cd,Zna, As2 are desirable to help
establish the real energy-band structures.
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The phonon structure accompanying the broad-band luminescence spectrum centered at 1.39 eV in
GaAs:Zn at 4.2'K has been analyzed to obtain the low-temperature coupling strengths 8 of both LO and TA
phonons to the center. Values of S(LO) =0.439 and S(TA) =0.818 are obtained. The value of S(LO) is
then used in a procedure developed by Hopfield to limit the geometrical extent of the exciton responsible
for the luminescence. In the Appendix, Hopfield s procedure is used to obtain formulas for the coupling
strength S(LO) for charge densities composed of electron-hole pairs. The results of this calculation are
pertinent not only to phonon coupling to exciton charge distributions, but also to coupling to donor-accep-
tor-pair charge distributions.

I. INTRODUCTION

ECOMBIXATION radiation is often one of the
most important probes available for the deter-

mination of properties of localized impurity or defect
states in a sohd. When the recombination luminescence
is accompanied by phonon emission, further informa-
tion can often be obtained concerning the nature of the
localized state.

The important parameter describing the interaction
of the phonons and the luminescent center is the

t Work supported by the U. S. Atomic Energy Comm~~sion.

coupling strength parameter S. The value of this
parameter is the average number of phonons emitted
accompanying the luminescence, with the probability
for emission of difterent numbers of phonons following
a Poisson distribution. Hopfield' has shown how the
coupling strength S for longitudinal optical (LO)
phonons interacting with a localized charge distribution
in ionic crystals can be related to the "size" of the
charge distribution. Determination of S for LO phonons
then allows an estimate to be made of how tightly
bound a luminescent center is.

' J. J. Hopfield, J. Phys. Chem. Solids 10, 110 (1958).


