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Oscillator strengths have been computed for transitions between a number of low-lying

levels in B z and Ne m. The wave functions were computed by the method of superposition

of configurations, utQizing the pseudonatural orbital technique to accelerate convergence.
The asymptotic limiting large-Z f values were also computed, using the nuclear charge per-
turbation expansion, Together with previous theoretical data from C zz, these results have

been used to make a graphical study of the f-value behavior for these transitions along the

isoelectronic sequence. Comparisons were made between experiment and the predictions of
the Hartree-Fock and charge-expansion methods as well as the present calculations. Finally,
these theoretical curves were used to predict individual f values for each member of the se-
quence through Z = 15 (P xx).

I. INTRODUCTION

The calculations reported here were undertaken
to explore systematically, and on a uniformly ac-
curate level of approximation, the behavior of
atomic oscillator strengths along an isoelectronic
sequence. These calculations arose naturally in
response to several problems encountered in a re-
cent, and more general, study of regularities in
atomic f values. ' One of these difficulties came
from the heterogeneous level of accuracy of the
data available for any given sequence, suggesting
the desirability of studying a particular sequence
at a uniformly good level of accuracy, say 20-30%%up.

Another problem concerned the scarcity of reliable
f -value data for the middle stages of ionization,
it being presumed that the charge-expansion method'
would be adequate for highly ionized species.

The plan of this paper, in brief, is the following.
Moderately accurate variational calculations, using
the method of superposition of configurations
(SOC), are done on several of the iona in the boron
sequence, namely, 8 r, C u, and Ne vr, and these
calculations will be described in Sec.II. f values
were then computed for the infinite Z limit of the
conventional perturbation theory expansion, ' in-
cluding the zeroth-order degeneracies; this is dis-
cussed in Sec. III. The results of these two sets
of calculations are combined in Sec. IV in a com-
prehensive study of the entire sequence by graph-
ical methods. These theoretical curves are then
used to predict the f values for the entire sequence
through P xr.

The boron sequence was selected for a variety
of reasons, not the least of which was theoretical
convenience. With three electrons outside a com-
pact K-shell core, the ions of this sequence are
sufficiently simple that reasonably accurate cal-
culations can be done with relative ease. Further-

more, while such a three-electron spectrum is
fairly simple, it is still complex enough to show
interesting configuration interaction effects in ad-
dition to the usual residual correlation corrections.
Also, the calculations on C n had already been done
earlier, which somewhat lightened the present
computing burden. Finally, this sequence is one
of the most favorable from the standpoint of the
availability of good quality experimental f-value
data for intermediate stages of ionization, largely
from recent lifetime measurements by the phase
shift and beam-foil techniques. ' ' While the experi-
mental data are still somewhat sparse, there are
still enough to provide a reasonably adequate check
on the predictions.

II. SOC CALCULATIONS FOR B I and Ne VI

Variational SOC wave functions were computed
for the ground and a number of excited states of Bz
and Ne vr, utilizing the pseudonatural orbital
(PSNO) technique to obtain rapid convergence.
These wave functions are of the form,

C=CC + QC 4'
a ai, a

~ ~ ~ ~+QQC~4~+
ab abi, g a, b

Here, 4, is the antisymmetrized product, single-
configuration function appropriate for the state
under consideration, and, in all the calculations
described here, it is taken to be the Hartree-Fock
wave function. 4, is normally the dominant con-
figuration in the SOC wave function. The correc-
tion configurations Ca

~ are formed by replacing
the orbital a, occupied in the Hartree-Fock func-
tion, by some "virtual" orbital i, and with the re-
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suiting function suitably projected to give a pure
LS-coupling state. The double substitution terms
+~y ~& are obtained in a similar way. The coef-
ficients in (l) are determined variationaUy, and

they turn out to be the eigenvector elements of the
usual energy-matrix eigenvalue equation.

The Hartree-Fock wave functions were computed

by the analytical expansion method technique using
the University of Chicago self-consistent field
program for the IBM 7094 computer. ' The basis
functions for the expansion method Hartree-Fock
orbitals were the usual Slater-type orbitals (STO),
with the exponents suitably optimized to minimize
the total energy.

The crux of the SOC method lies in the choice of
the virtual orbitals to use in the expansion (l), and
the PSNO procedure adopted here has been de-
scribed in detail elsewhere. 'y ' Briefly, the pro-
cedure is the following. One selects a single elec-
tron pair which spans, reasonably well, the spatial
extent of the electrons to be correlated, and does
an exhaustive SOC calculation on just this pair.
A natural orbital transformation' is then carried
out on this SOC wave function to determine a set
of rapidly converging virtual orbitals, PSNO's.
In effect, one calculates the natural orbital expan-
sion for this pair of electrons in the Hartree-Fock
field of the rest of the atom. It has turned out
that these PSNO's are then also very effective for
representing the correlations of other pairs of
electrons with approximately the same radial dis-
tribution. For instance, for the ground state of
boron 2s'2P P, the PSNO's were determined for
the 2s2p 'P pair, and thege orbitals were then used
to correlate other pairs, such as 2s' 'S and 2s2p'P.

The total energy results obtained for the ground
states of boron and neon are given in Table I."
The notation referring to n = 3 configurations, etc. ,
means all configurations have been included in the
wave functions which contain 3s, 3p, or 3d or-
bitals and which have been found to be energetically
significant. The principal quantum-number label-
ing follows the ordering of the orbitals as they
come out of the PSNO transformation, and it
should thus represent an approximate ordering
of the PSNO's according to their correlation im-
portance. As a further illustration of the nature

of these calculations the coefficients of the largest
ground-state SOC wave functions are given in the
Appendix.

As with both C z and rr, the most important sin-
gle configuration involved the substitution,
2s'-2p', which for boron is the 2P' term. Here
too, moreover, the next most important configura-
tion was a spin-polarization term involving only a
single space-orbital substitution, namely, the
(2P2d 'P)2s configuration. For neutral boron,
this one configuration picked up 0. 018 a. u. of the
correlation energy (=0.5 eV).

As can be seen from Table I, the K shell has been
left alone, and the K-L intershell correlation has
been neglected. This has also been done for all
the excited states, the idea being that with the
E-sheQ electrons represented by a Hartree-Fock
distribution, only the L-shell electrons should be
important for spectroscopic properties such as
energy levels and f values. The computed L-shell
correlation energy for the boron ground state of
0. 068 a.u. compares favorably with several other
recent calculations. A straightforward multi-con-
figuration calculation by Schaefer and Harris"
has given 0.066 a. u. , and an adaptation of the
Bethe-Goldstone procedure by Nesbet" has ob-
tained 0. OVl a. u.

Various excited states for B r and Ne vi were
also calculated in exactly the same way as the
ground states. Each state was computed inde-
pendently of all the others, with parameters varied
and configurations added to depress the total en-
ergy as much as possible. The way in which these
states have settled into place, relative to the com-
puted ground state, is shown in Table II and com-
pared with the experimental energy levels. '4 It can
be seen that the agreement between the experi-
mental and theoretical energy-level spectra is
quite good, especially considering the fact that
these are completely ab initio calculations. The
largest discrepancy for boron is about 450 cm '.
While there are two discrepancies of about 2000
cm ' for Ne vr, these are for the quartet levels
for which the experimental positions are somewhat
uncertain, intersystem transitions being unknown
for this ion. The heretofore unobserved 2P' 'D
term in Nevr is predicted to lie about 357500

TABLE I. Computed total energies and I -shell correlation energies (in a.u. ) for the ground states of Br and Ne vx.

%'ave-function

Hartree-Fock
2g 2P+2P

All n=3 config.
All n=4 config.

No. of

conf ig.

1

2

17
35

BI
Total

energy

—24.52906
—24.55944
—24.59332
—24.59750

Correlation
energy

0.0
0.0304
0.0643
0.0684

No. of
config.

1
2

14
27

Ne vr

Total
energy

—115.9108
—115.9815
—116.0187
—116.0252

Correlation
energy

0.0
0.0707
0.1079
0.1144
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TABLE II. Computed and observed term energies (in a.u. ) for neutral boron and neon vz.

TeI'll

2s 2p P
2s2p P
2s 3s S
2s2p D
2s 3p P
2s 3d D
2p3 4S

2s 2p P
2s2p P
2s2p D

2s2p P
2p' 'S
2p3 2D

2p3 2P

2s 3s S
2s 3p P
2s 3d D

aSee Ref. 11.

No. of
config.

35
16
25
45
35
31

8

27
10
38
31
22

5
23
34
25

29
35

Hartree-Fock

Br
0.0
0.0784
0.1770
0.2172
0.2128
0.2353
0.4010

Ne vr

0.0
0.3521
0.7624
0.9914
1.1091
1.3668
1.5974
1.7499
3.3157
3.5452
3.7320

SOC

0.0
0 ~ 1293
0.1818
0.2202
0.2205
0.2480
0.4420

0.0
0.4485
0.8105
1.0491
1.1376
1.4532
1.6291
1.8444
3.2852
3.5115
3.7140

Observeda

0.0
0.1313
0.1824
0.2180
0.2215
0.2495
0.4421

0.0
0.4571
0.8116
1.0479
1.1344
1.4624

1.8461
3.2885
3.5111
3.7159

cm ' above the ground state.
The oscillator strengths for the allowed electric

dipole transitions among these states have been
computed, in both the dipole-length and velocity
forms, and are shown in Tables III and IV. The
length and velocity forms of the oscillator strength
for a transition from state g to g' are given by

fy = -'(E-&') 'g '
~( q ~v~q'& ~',

where g is the statistical weight of the initial state,

and the squared matrix elements (multiplet
strengths) are assumed to be summed over any de-
generacies in both the initial and final states.
Both these forms must agree if exact wave func-
tions and energies are used, but they need not, and
usually do not, for approximate wave functions.
Agreement between them, using approximate wave
functions, is, furthermore, only a necessary and
not sufficient condition for the correctness of the
f value. Nevertheless, in view of the accuracy
of the computed energy-level spectrum and since
the basic model (SOC) is an open-ended one, capa-
ble of converging to any desired accuracy on the
exact wave functions, the agreement between fZ

should provide some handle on assessing
the accuracy of the calculations.

In the following sections of this paper, somewhat

TABLE III. Theoretical and experimental oscillator strengths for neutral boron.

Transition H artree-Fock
length velocity length

SOC

velocity
Experiment

2s 2p P-2s 3s S
2s 2p P-2s2p D
2s 2p P-2s 3d D
2s 3s S-2s 3p P
2s 3p P-2s 3d D
2s 2p P-2p S

aSee Ref. 6.
See Ref. 3.

2498
2090
1825

11650
16270

1466

0.052
0.339
0.109
1.269
1.036
0.266

0.063
0.336
0.092
0.995
0.691
0.146

0.067
0.067
0.197
1.199
0.786
0.213

0.074
0.084
0.189
0.978
0.765
0.225

0 055
0.059, ' 0.048b
0.175 b
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TABLE IV. Theoretical oscillator strengths for Nevx. The wavelengths in brackets are theoretical.

Transition Hartree-Pock
length velocity length velocity

2s 2p
2s 2p
2s 2p
2s 2p
2s 2p

2s2p
2s 2p

2s2p
2s 2p

2s2p

P-2s2p D
P-2s2p S
P-2s2p P

2 2 2P-2s 3s S
P-2s 3d D

D-2p D
2D-2p3 2P
2S 2p3 2P

2p3 2D

P-2p P

561
435
402
139
123

[557]
440
571
[927]
640

0.143
0.037
0.356
0.027
0.533

0.130
0.055
0.171
0.134
0.117

0.133
0.022
0.155
0.030
0.503

0.121
0.033
0.171
0.273
0.118

0 ~ 091
0.050
0.254
0.026
0.569

0.111
0.074
0.106
0.103
0.143

0.098
0.055
0.272
0.028
0.562

0.125
0.080
0.120
0.084
0.142

2s 3s S-2s 3p P
2s 3p P-2s 3d D

2s2p P-2p S

2047
2225

0.499
0.243

0.105

0.521
0.207

0.067

0.416
0.203

0.096

0.386
0.198

0.108

more emphasis will be given to the dipole-length
form of the f value. In the first place, most of
the transitions discussed here do not involve a
drastic change in the electronic charge distribution,
such as might occur for a transition to a high-lying
Rydberg state. In such cases, the dipole-length
integrand is large just in those regions of space
where the wave functions are large, ' so that fI
should be at least as good as f~ for variational
functions. Furthermore, since the velocity form
puts more emphasis on the K-shell and K-I. inter-
shell aspects of the wave function, which are not
correlated in the present work, it is reasonable
to expect the dipole-length form to include more
of the correlation corrections and thus be more
reliable.

With these thoughts in mind then, one can turn
to the results of Tables ID and IV. The experi-
mental determinations are lifetime measurements
which have an uncertainty of = 10%, and it can be
seen that the SOC dipole-length f varies are in
reasonably good agreement, esyecially if one as-
signs an uncertainty of 25% to the calculated values.
The degree of convergence of the f values, as more
configurations are sequentially added to the
Hartree-Pock function, also supports an accuracy
assignment in this range. The drastic change for
the 2g 2p ~P —Qg2p D transition in boron in going
from the Hartree-Fock to SOC and experiment
should be noted in particular. This is due to the
effect of adding configurations of the form 2g'nd
to 2s2p', i.e. , the admixture of the higher-lying
Rydberg series. There is no experimental data
for Ne vx, but one feature that shouM be noted is
the relatively small difference between the Hartree-
Fock and presumably more accurate SOC f values.
We will return to this point in discussing the iso-
electronic sequence as a whole.

III. ASYMPTOTIC LARGE-Z LIMIT

P=(, +(Z '+(g '+ ~ ~ ~,

E=f OZ+fi Zf+2+)eZ+'''. (5)

Here, $0 is an antisymmetrized product of hydro-
gen-atom orbitals, and &, is simply the sum, over
the electrons, of the hydrogen-atom energies. The
first-order energy e „ if there is no zeroth-order
degeneracy, is given by

where V, the perturbation, is a sum over all the
electrons of the interelectronic interaction

The perturbation expansion of atomic properties,
in descending powers of the nuclear charge Z, has
a long history beginning with the pioneering work
of Hylleraas, " and has been reemphasized in re-
cent times by various workers. The basic theory
will only be sketched here, since a more detailed
exyosition is available in the more general study
of f-value regularities by Wiese and Weiss. '

The usual perturbation approach'~ " "is to
scale all distances by Z, r-Zr, which enables
one to treat the entire interelectronic repulsion
part of Schrodinger's equation as a perturbation,
with Z ' as the perturbation parameter. The
zeroth-order Hamiltonian for this separation is
then simply a sum over one-electron hydrogenic
Hamiltonians, and one has the following expansions
for the wave function and energy:
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The existence of a degeneracy in zeroth order
means that there is a set of zeroth-order functions

[g,~], all with the same e „and one must then
compute e, by diagonalizing the first-order per-
turbation matrix,

=(00 lplko) ~ (6' )

f = f, + f,Z ' +f,Z '. . . (6)

where the leading term

(9)

is the oscillator strength computed with purely hy-
drogenic functions. If there is a zeroth-order de-
generacy for either of the states in the transition,
of course, one must use the zeroth-order linear
combination arising from the diagonalization of
(6'). If, furthermore, there is no change in the
principal quantum numbers in the transition, e.g. ,
2s'2p —2s2p', then e, does not change, f, vanishes
and (6) becomes

f =fZ '+fmZ '+''' (10)

These considerations have several consequences.

This determines a linear combination of the [g, ]
which is then the appropriate zeroth-order wave
function. A typical example of this would be the
ground state of berylliumlike ions, 2s' 'S, which
is asymptotically degenerate with 2p' 'S.

Substituting (4) and (5) into the expression for
f& [Eq. (2)] leads to the oscillator-strength expan-
sion

In the first place, they suggest that Z ' is the
natural parameter against which to plot f values in
a graphical display of the isoelectronic sequence.
The entire sequence is then compressed in the
region between Z ' = 0 and the value for the neutral
atom. Secondly, one can calculate relatively easily
the way in which these curves start at the zero end,
either the initial value f, or, if this vanishes, then
the slope of the curve at the origin. It is the cal-
culation of these asymptotic limits for the boron
sequence which is displayed in Tables V and VI.

Table V gives the zeroth- and first-order ener-
gies for the relevant states of the boron sequence.
For the n' states (2s'2P, 2s2P', etc. ) the results
agree with those of Linderberg and Shull. " In those
cases of zeroth-order degeneracy, all possible de-
generate configurations have been included in the
diagonalization of the first-order matrix, which is
not always a completely trivial matter. Thus, for
example, the zeroth-order wave function for 2s23d
included the configurations (2s2p 'P)3p, (2s2P 'P)3P,
3s2P' (2P' 'D)3d, (2P' 'P)3d, and (2p' 'S)3d. The
corresponding results for the f values are given
in Table VI, where we have tabulated either the
limiting value f, [ Eq. (9)], or, for the n-n transi-
tions, the asymptotic slope of the f -value curve
f, [Eq.(11)]. Also included in this table are the
"incorrect" single-configuration values which are
obtained by leaving out the mixing of the zeroth-
order degenerate configurations, and which repre-
sent the large-Z limits for the Hartree-Fock ap-
proximation. It is clear that generally the asymp-
totic behavior does not differ too drastically from
that of the Hartree-Fock scheme, in spite of the
fact that for some states there are a substantial
number of configurations which must be included.
The largest change is for the 2s'2P 'P —2s2p' 'S
transition where f, goes from 0. 27 to 0.43, and
this arises from the ground-state 2 & 2 configura-
tion interaction,

TABLE V. Z-expansion perturbation energies (in a.u. ) for a five-electron atom. V~ is the first-order matrix
element, which for the nondegenerate case is identical with the first-order energy e~.

TerIIl

2s2p P

2s2p P
2s2p D
2s2p S
2s2p P
2p'4S
2p3 2D

2p3 2P

2s3s S
2s 3p P
2s3d D

—1.375

—1.375
—1.375
—1.375
—1.375

—1.375
—1.375
—1.375

—1.30556
—1.30556
—1.30556

2.33445

2.38954
2.43994
2.47158
2.47744

2,52277
2.55441
2.57550

1.92496
1.96131
1.99265

2.32753

2.38954
2.43994
2.47158
2.47744

2.52277
2.55441
2.58242

1.91028
1.94548
1.98019
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TABLE VI. The leading terms in the Z perturbation expansion of the oscillator strength [Eq. (8)] for a five-
electron atom.

Transition

2s~2p ~P-2s2p2 2D

2s 2p P-2s2p S
2s 2p P-2s2p P
2s2p P 2s3s S
2s 2p P-2s 3d D

2s2p P-2p S
s2p2 ~D-2p3 2

2s2p D-2p P
2s2p P-2p D
2s2p P-2p P
2s2p S -2p P

2s 3s S-2s 3p P
2s 3p P-2s 3d D

fo

Q.Q

0.0
0.0
0.Q14

0.696

0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0

Hartree-Fock

1.050
0.274
2.570

0.799
1.030
0.407
1.154
0.883
1.247

3.926
1.410

fo

0.0
0.0
0.0
0.016
0.700

0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0

Exact

0.850
0.428
2.042

~ ~ ~

0.799
1.030
0.636
1.154
1.404
1.006

3.016
1.236

2s22P + 2p3

Before going on to a description of the results for
the isoelectronic sequence, it is pertinent here to
briefly mention a refinement of this charge-expan-
sion approach due to Cohen and Dalgarno, "which
is designed to make the method yieM quantitative
results for at least a significant part of the se-
quence. In addition to the perturbation expansion
of the total wave function, these authors also con-
sider a Z expansion of the Hartree-Fock orbitals
which they are able to calculate explicitly through
first order. The asymptotic degeneracies and
first-order Hartree-Fock corrections are com-
bined to produce an explicit formula for the multi-
plet strength for the entire sequence. This very
attractive approach thus leads to a charge-expan-
sion approximation to the Hartree-Fock for those
cases where there are no large-Z degeneracies,
and, where there are, it predicts the modifications
in the Hartree-Fock due to these configuration
interactions.

~l6—

, l2

I I I

2s 2p P -2s2p D

0 THEORE7(CAL
—-- 20'/o ERROR

x LAWRENCE 8 SAVAGE
t A HEROUX
0 BlCKEL

f .08

tion will be restricted to the dipole-length form
of the f value.

As an example of the kind of accuracy one can
probably expect from such computational-
graphical predictions, the 2s'2p 'P-2s2p' 'g) os-
cillator strengths are plotted in Fig. 1 and com-
pared with the most recent measurements. It
should be remarked that this transition is some-
what unusual in that it is the only one for which ac-

IV. ISOELECTRONIC SEQUENCE f VALUES

With calculated f values spread out, over three
ions, (Bi, C zr, Ne vz)and the asymptotic behavior
determined exactly, it should now be possible to
draw in the f value behavior tai-rly reliably in a
plot of f versus Z '. This has been done here for
all transitions for which calculations were done
through Z = 6 (C rz). Since some of the states of
2p' are not bound for either Bz or C z z, although
they are for Ne vz, transitions involving them are
omitted from the present considerations. Further-
more, in view of the earlier discussion of the
length and velocity forms, the following descrip-

D4

0
0 ~04 ~08

CE

~ l6

BI

~20

FIG. 1. Theoretical and experimental oscillator
strengths versus Z for the 2s 2p P-2s2p D transition
in the boron isoelectronic sequence. The dashed curves
correspond to hypothetical upper and lovrer error bounds
of 20% on the theoretical curve. For the experimental
values see Refs. 3-6.
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2s'2P + 2P',

which acts uniformly along the sequence to de-
crease the f value substantially from that of the
single-configuration Hartree- Fock procedure.
Both the SOC calculations and experimental deter-
minations, however, show a marked bending over
of the curve at the neutral end of the sequence. A

~36
I I I

~32

~ 28

,24

).20

~ l6

«I2

e08

,04

0
0 «04 ,08 ~ l2

I/Z —«

~l6 ,20

FIG. 2. f values versus Z for the 2s 2P P-2s2p D
transition in the boron sequence: a comparison of the
present calculations (SOC) with Hartree-Fock, charge
expansion, and experiment (same references as in
Fig. 1).

curate experimental data is available for a number
of the ions in the sequence (Bz, C iz, Ntrx, 0 iv ).
No other transition is so blessed; indeed the rule
is to find experimental data for only one or two
ions, if any is available at all. In Fig. 1, a smooth
curve has simply been drawn in free hand to con-
nect the SOC calculated points, and the upper and

lower limits are indicated for an assumed 20%%uo

uncertainty in the theoretical predictions. These
error limits may be somewhat optimistic, since
something in the neighborhood of 25% has been in-
dicated as the kind of accuracy one can expect for
this type of calculation. As Fig. 1 shows, 2(P/p

does encompass the measured values quite satis-
factorily, with the theoretical curve being, if any-
thing, slightly high.

This same transition is shown again in Fig. 2
where comparisons are now made with the predic-
tions of both the charge-expansion method and the
Hartree- Fock approximation. Several effects are
evident here, which are important for understand-
ing the behavior of the oscillator strength along
the sequence. The Z-expansion curve indicates
the effect of the ground-state configuration inter-
action

~l6
I I I I I I I

2s 2p P-2s2p S

~ l2

.08

.04

0
0 04 .08 ~ l6 ,20

FIG. 3. f values versus Z for the 2s 2P P-2s2p S
transition in the boron sequence: a comparison of the
Hartree-Fock and charge-expansion methods, and ex-
periment (Ref. 4).

detailed examination of the SOC wave function for
the 'D state of Br shows that configurations of the
type 2s'nd are quite important, and that they are
responsible for a large cancellation in the transi-
tion moment. This then is an example of the re-
distribution of oscillator strength due to the per-
turbation of the 2s'nd series by 2s2P'. In this
case the perturber loses most of its oscillator
strength to the series. " As the nuclear charge
increases, the 2s2P' energy level rapidly draws
away from 2s'3d and the higher series members,
so that this effect should die out for the higher
stages of ionization with the f value approaching
the charge-expansion curve, and this in fact is
what appears to be happening.

Another transition of interest is 2s'2P 'P-
2s2p' 'S, which is shown in Fig. 3. Here the
dominant effect appears to be the configuration
interaction in the ground state, and the elaborate
SOC calculation, in effect, confirms the predic-
tions of the charge-expansion method. There ap-
pears to be a small enhancement of the f value at
C j:r, where there is also good agreement with the
lone experimental value. 4 The f value for boron
was not calculated because of technical difficulties
arising from the fact that 2s2P' is here imbedded
in the 2s'ns series, with five series members be-
low it. At C ri, however, 2s2P' is the lowest 'S
state, and it rapidly drops below 2s'3s for the
higher stages of ionization. There is thus a level
crossing in the neighborhood of C rz, and, as
pointed out by Zare" in a study of the magnesium
sequence, such crossings can have a drastic effect
on the oscillator strengths. While the SOC wave
function for C rz does contain a significant admix-
ture of 2s'3s, this does not appear to have affect-
ed the f values significantly, and it is of some
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interest to look at transitions from the ground
state to the 2s'3s term.

The f values for this transition are shown in
Fig. 4, "where the level-crossing configuration
interaction shows up quite dramatically. The in-
terference between 2s2P' and 2s'3s is almost com-
plete for C rr which is closest to the crossing. The
two experimental points tend to confirm, or at
least do not contradict this theoretical curve. It
should be remarked that an examination of the
transition moment itself, i.e. , the square root of
the multiplet strength S'+, shows that in this
case the minimum does not occur because of a
change in the sign of 8"' along the sequence";
it maintains the same sign, simply becoming small
at Z = 6. The wave function itself is predominantly
2s'3s for both Bz and Ne vi (the coefficients are
0. 954 and 0.962, respectively), with only small
admixture of 2s2P' (0. 080 and 0. 040, respectively).
For C rr, however, the mixing is rather strong,
with 2s'3s and 2s2p' coefficients of 0. 889 and
0.358, respectively.

In Fig. 5, we show a transition where the domi-
nant correlation correction appears to come from
the asymptotic configuration interaction in the
ground state and has a uniform effect along the en-
tire sequence. Both the SOC and Z-expansion
curves agree beautifully among themselves and
with the experimental point for Nrrr. The measure-
ment on C rr seems to indicate a turning down of
the curve at the neutral end of the sequence, which
is just the opposite of the theoretical predictions.
While it is somewhat difficult to find a mechanism
to account for such a behavior, it should be noted
that since the discrepancy is not large (= 25%%) it
may not really be very significant.

Figure 6, finally, shows an example of a transi-
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FIG. 5. f values versus Z for the 28 2p P-2s2p P
transition in the boron sequence: comparison with
Hartree-Fock, charge expansion, and experiment
(Ref. 4).

tion, 2s2p' 'P —2p' 'D, where neither state has any
asymptotic configuration interaction. The charge-
expansion and Hartree-Fock curves agree beauti-
fully, as they should, and they both appear to give
the wrong behavior. The lone experimental point
here, an emission measurement of C rr, "seems to
support the trend predicted by the present SOC cal-
culations, although there is a suggestion that they
may be somewhat low. An analysis of the C rr cal-
culations shows that configurations of the type,
2s2P3d, mix rather strongly into the 2P' 'D state.
The resulting cancellation thus provides a plausible
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FIG. 6. f values versus Z for the 2g2p P-2p D
transition in the boron sequence: comparison with
Hartree-Fock, charge expansion, and experiment (Ref.
23) .
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mechamsm, in this case, for the C itf value being

somewhat smaller than the Hartree- Fock. The

2s2p3d terms are just becoming bound at Z = 6 and

are still quite close to 2P'. For higher stages of

ionization, these two states pull apart, giving less
mixing (forNe vx); hence a diminishing effect on the
oscillator strength. Some bending over of the f
value curve near the neutral end is thus probably
real.

Similar plots have been made for the other transi-
tions in the sequence; however, since there ap-
pears to be little more to be learned from them,
there is no point in showing them here. For in-
stance, the 2s2P D-2P 'D f values behave much
like the curves in Fig. 6, with the Z-expansion
curve agreeing with the Hartree- Fock while the
SOC one bends over at the neutral end, and for
the same reasons. There is no experimental data
for this transition. Also, the 2s2P' 'P-2P' 'S
curves look much like those of Fig. 5 for 2s'2p 'P
—2s 2p P, only with the Z expansion agreeing with
the Hartree-Fock and the correlation corrections
of the SOC serving to shift the f values uniformly
down. The one very recent measurement here sup-
ports the SOC calculations.

The final results for the isoelectronic sequence
are summarized in Table VII, where f values are
given for each ion of the sequence through Z = 15.
For the most part, these values have been obtained
by fitting a truncated version of Eq. (8) to the SOC
(dipole-length) data. In some of the more patho-
logical cases, such as represented by Fig. 4, they
have simply been read off of the graphs.

Assessing the accuracy of such theoretical data
is always somewhat tricky. However, as discussed
earlier, both internal consistency checks (agree-
ment of length and velocity forms, convergence of
SOC results) and comparisons with available ex-
perimental data strongly suggest something like
25% as a reasonable uncertainty, and this is pro-
visionally recommended for all the data in Table
VII. It is to be expected, of course, that inter-
mediate-coupling effects will become important
for the higher stages of ionization. Unfortunately,
it is outside the scope of this paper to consider
where and to what extent such departures from
LS coupling will seriously affect these predictions.
When this does happen, this data should at least
provide an accurate starting point for an inter-
mediate- coupling transformation.

V. SUMMARY

This paper has presented a study of the behavior
of the oscillator strengths for a number of correla-
tion-sensitive transitions along the boron isoelec-
tronic sequence. This has been done by calculating
the f va1ue for a selection of ions in the sequence
(Bz, Czi, Nevr)and plotting these against the recip-
rocal nuclear charge Z, which is the natural inde-

pendent variable. The f values were calculated with
correlated wave functions by the method of super-
position of configurations, and using the pseudo-
natural orbital technique to accelerate convergence.
A variety of checks and comparisons indicates that
this method is generally capable of achieving f-
value accuracies in the 25%() range. In order to
also have the limiting large-Z behavior of these
oscillator strengths, the necessary calculations
were made in lowest order for the perturbation
expansion in powers of Z '.

Graphs were drawn of the f value versus Z '

for all these transitions and a. substantial number
of them were displayed and discussed. There
were several points of interest here. One was the
comparison of the calculations and graphical pre-
dictions with experimental data. Whenever such
comparisons could be made, the agreement between
these curves and the experimental points generally
was good. The other point of interest centered
around an intercomparison of the curves for the
Hartree-Fock method, the Cohen-Dalgarno version
of the charge-expansion method, and the present
SOC calculations. Since these methods represent,
roughly at least, successively more sophisticated
approximations, such comparisons lay bare the
theoretical mechanisms in many cases for the
particular dependences of f values on nuclear
charge. The asymptotic configuration interaction
included in the charge-expansion method can
strongly alter the f-value behavior from that of the
Hartree-Fock, and often this is indeed the domi-
nant correlation correction. When, however, the
spectrum indicates that additional configuration
interactions may be important, such as potential
series perturbations or nearby level crossings,
then one can have strong perturbations of the f
values, resulting in a gross departure from the
charge-expansion curve. In general, of course,
the charge-expansion method leads to the correct
f -value dependence for large enough Z, and the
present study suggests this to be in the neighbor-
hood of the fifth or sixth stage of ionization.

These theoretical curves have also been used to
predict f values for the individual ions of this se-
quence through Z =15 (Pxr). While all indications
point toward an expected accuracy of about 25%),
further high-precision experimental confirmation
is, of course, desirable.

APPENDIX

The coefficients of the ground-state wave func-
tions for neutral boron and Ne vj: are given in this
appendix (Table VIII) to illustrate the types of con-
figurations which enter into such calculations.
Aside from the 2s- and 2p-functions, all the or-
bitals here are the PSNO's and bear little resem-
blance to spectroscopic orbitals (see Ref. 9). The
signs of the coefficients are somewhat arbitrary,
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TABLE VIII. The P ground-state SOC wave functions for neutral boron and Ne vr.
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1
2

3

4
5
6

7
8

9
10
ll
12
13
14
15
16
17
18
19
20
21
22

23

24
25
26
27
28

29
30
31
32
33
34
35

Configurations

2s 2p
2p'

(3
2 i~) 2p

{3p2 iS) 2p
(3d2 iS) 2p

{3s2p P)2s
{3s3P'P) 2s
(2p3d P)2s
(3p3d P)2s
(3s2p P)2s
(3s3p'I ) 2s
(2p3d P)2s
(3p3d P)2p
(3p"P) 2p
(3p2 1D) 2p
(2p2 3P) 3p
(2p' 'D) 3p

2p 4f
(4s"S)2p

(4d iS)2p

(4f S)2p

(3s4p P)2s
(4s4p P)2s
(4P3d 'P) 2s
(2p4d P)2s
(3p4d P)2s
(3d4f P) 2s
{4d4f 'I) 2s
(3s4p P)2s
(4s4p P)2s
(4p3d'P) 2s
(3p4d P)2s
(3d4f 'P) 2s
(2p2 3P)4p
(2p"D)4p

0.9640
0.2029

—0.0348
—0.0184
—0.0303
—0.0081

0.0461
0.1206

—0.0204
0.0223
0.0395
0.0494

—0.0108
—0.0121

0.0116
—0.0447

0.0360
0.0112

—0.0028
—0.0066
—0.0086
—0.0050

0.0028
—0.0121

0.0030
—0.0100

0.0174
0.0039

—0.0054
0.0028

—0.0067
—0.0057

0.0106
—0.0197

0.0148

Coefficients
Nevr

0.9801
0 ~ 1856

—0.0111
—0.0036
—0.0143
—0.0081

0.0131
0.0575

0.0099
0.0117
0.0243

—0.0032
0.0032
0.0016

0.0034

-0.0021
—0.0044

0.0016
-0.0049

—0.0043
0.0095

—0.0043

—0.0038
-0.0015

0.0049
—0.0080

0.0062

depending on the phase conventions used in defining
the configurations, and the ones given here are
just as they came off the computer. The impor-

tant point, of course, is the magnitude of the
coefficients; further details can be obtained by
communicating directly rvith the author.
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Stark Effect in Hydrogenic Atoms:
Comparison of Fourth-Order Perturbation Theory

with WKB Approximation
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The SchrMinger equation for a hydrogenic atom in a uniform electric field is separated in
parabolic coordinates, and WKB quantization rules are obtained for two of the separated equa-
tions. In the weak-field limit, the quantization rules are expanded in powers of the field and

evaluated analytically. From the results, a power series for the energy eigenvalues is ob-
tained which agrees with all known results of perturbation theory to fourth order. For strong
fields, the quantization rules are evaluated numerically for states for which the perturbation
series is expected to be least accurate. It is found that the perturbation results to fourth
order agree with the numerical results for the energy eigenvalues to one part in a thousand
for the highest fields possible, and that the addition of the fourth order in perturbation theory
improves the accuracy of the perturbation series, contrary to the conclusions of an earlier
work. Finally, the accuracy for the measurement of fields from observed Stark shifts by
using the perturbation theory is estimated.

I. INTRODUCTION sional Schrodinger equation,

The Stark effect in hydrogen has often been
studied by perturbation theory. The first-order
effect was derived by Schrodinger, ' the second-
order by Epstein, ' the third-order by Doi, ' and
the fourth-order by Basu. 4 In practice, partic-
ularly in the measurement of electric fields from
the observed Stark shifts, the energy eigenvalues
must be known for high fields for which the appli-
cation of perturbation theory is not a priori justi-
fied. Instead we apply the WEB method, which
does not assume weak fields as perturbation theory
does, to the Stark effect in hydrogenic atoms.

The most systematic derivation of the %KB
quantization rule has been given by Dunham. ' In
his treatment, the eigenfunction of the one-dimen-

is written
x

g(x) = exp — y(x') &x' . (2)
h

The equation determining y(x) is

& (—,)"y (*) .
R=O

(4)

+ y~ = 2m(E-V),i dx

which is solved by the WKB (asymptotic) expansion


