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Elastic Green's Function for Anisotropic Cubic Crystals*
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The Green's function describing the elastic displacement due to a unit force in an infinite cubic material
is investigated in detail. Only for special cases can an exact solution be given, i.e., for cII—cl.—2c44=0
(isotropy), for cI.+c44=0, and for (100) directions. Perturbation theory is applied to the cases where these
conditions are only approximately fulfilled. Divergencies or strong maxima of the Greens' function, occurring
in nearly unstable materials for c» —c» ~ 0 or c44 —+ 0, are examined. Analytical approximations for the
Green's function are given by fitting the exact known Fourier transform with a suitably chosen ansatz in
certain directions. Other simple approximations are derived by variational techniques and give good results
for crystals with small and medium anisotropy.

I. INTRODUCTION

'HE problem of determining the displacement field
in an infinite elastic medium due to a point force,

which is normally called the fundamental integral or
the elastic Green's function, has a long history. In 1846,
Thompson first gave the solution for the case of an
isotropic solid. Then, in 1900, Fredholm gave an im-

plicit expression for the more general anisotropic case. -'

Unfortunately, analytical expressions can onh be given
for hexagonal crystals, which have been evaluated by
Lifshitz and Rozentsveig' and Kroner. '

Therefore, some effort has been made in the pa, st to
get approximate solutions of the problem. "" For
weakly anisotropic cubic crystals, Lifshitz and Rozents-
veig' and Leibfried' applied perturbation theory with
respect to the anisotropy, but unfortunately only a few
substances such as %, Al, and diamond show a weak
anisotropy (see Fig. 2). Recently, the problem has been
reconsidered. ' Using Fredholm's formula, Mann
et al. made a point-by-point computer calculation of
the Green's function and gave an expansion in spherical
harmonics (for Cu). A similar calculation has been done
by Lie and Koehler9 for Al, Cu, and Li. For better con-
vergence, the results are expanded into Fourier series.
Despite these very accurate computer calculations for
specific crystals, there is still a need for analytical expres-
sions in terms of the elastic constants. Such expressions
would be very useful to obtain a survey for the anisot-
ropy behavior of different crystals, to evaluate dis-
placement fields and interaction energies of point de-
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fects, dislocation arrangements, etc. The purpose of this
paper is to derive such analytical approximations.

II. GENERAL EQUATIONS FOR ELASTIC
GREEN'S FUNCTION

G;,(r) = Ldk/(2~) 'je'"'G;, (k)

is simply obtained from (1):

T,i(k)Gi (k)= b; or G;,(k)= T ';,(k), (4)
with

T;i(k) =C;,k(k,hi= Ti;(k) = T;k( —k) .
Introducing a unit vector x in the direction of k=kx,
we can write

alld
T;i.(x) =O'C;, i(api k't;i(x)——

G,„(k)=- b
—'g "(x) x'-'= 1 (6)

where t;i, (x) and g,,(x) depend only on the direction x.
Instead of (4), we then get

t,i(x)gi (x)=b,„or g;,(x)=t ';,(x)=A,,(x)(A(x), (i)
where A(x) is the determinant ~t,,(x) ~, being of 6th
order in g, and A;, (x) are the appropriate subdetermi-
nants, being of 4th order in ~.

ii75

The Green's function' ' r ' G;,(r,r') of an infinite
elastic medium is defined as the displacement at point
r in the direction i due to a unit force fk(r) = bi, b(r —r )
at point r' in the direction j. It is determined by the
elastic equations

C,,i~ l, ,~B„,G (i r, r')+b; b(r r') —0, =

and the boundary condition Gi (r ~~ ) = 0. Here, C;,i~

is the tensor of elasticity (C;,i~= C,;i~= Ci~;,). Because
of the translational invariance and the symmetry of

C;;~l, the Green's function satisfies the relations

G;,(r, r) =G;, (r—r') = G, ;(r—r') = G;,(r' —r) . (2)

The Fourier transform G;,(k) of G;, (r) defined by
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equation F(Z) = 0 which lie in the upper half plane and,
for simplicity, are supposed to be simple roots.

The very simple result (12), known as Fredholm's
formula, ' is only of practical use if the roots of F(Z) = 0
are elementary. This is the case only for hexagonal
crystals, where 6(x)=O=F(Z) factorizes into three
quadratic equations and where the Green's function is
therefore elementary. '4

III. GREEN'S FUNCTION FOR CUBIC CRYSTALS

~C«~0
(g, k DiVERGING)

Fxo. 1. (c1&,c»,c44) coordinate system showing
the stable wedge-shaped region.

g'(s) =
dQ„

b(e «)g' (x) =
2'

d4, a;,(x)
(9)

k, 2s D(x)

The back transformation (P= principal value) is

g"(x)= (dfl, /2~)(2S(. '&F(1/x. S))g* (x) (»)

Equation (9) is a line integral along the intersection of
the plane x p=0 with the unit sphere x'= 1 and @„is
the azimuth in that plane. Introducing polar coordi-
nates 0" and C for ti= (sinO~ cosC, sinO~ sinC, cosO~) and
counting 4t „ from the intersection of the p~ —p2 plane with
the plane x p=O, we have

~j =co+„sin4+ sin&, cosa~ cosC,
~2= —co&„cos4+sing„cosO sinC,
a'3= sing„sino".

By the substitution Z= tang„ the integral (9) can
be transformed into a line integral —~ &Z& ~ ' which
can be evaluated. Following Lifshitz and Rozentsveig,
we set k;= co&, a,(z) with ak(z) = sinc+z cosO cosc;
a.(Z) = —cosC'+Z cosO cos4; ak(Z) =Z sinO; and D(x)
=cos'p„F(Z) and 6;k(x)=cos'p, F,k(Z), where F(Z)
= Det~ C;,k(a, (Z)a((Z)

~
and of 6th order in Z. Then we

have:
1 " F;k(Z) k F;k(Z )

g;k(P) =— dZ =2'k Q
F(Z) .=' b P(Z-)

(12)

Here Z are the three roots of the 6th order algebraic

With the unit vector y in the direction of r= ry, we

get from (3),

G;,(r) = (4~r) 'g;, (S), I(k'= 1 (g)

where g;, (y) is only an angular function. By performing
the radial integration in (3) we get a direct angular
transformation between the functions g;,(x) and g;,(s):

The elasticity tensor for cubic crystals is

C;&k(= C12b;z bkl+c'44(b;kbJ i+b;lb&k)+db&jkl & (13)
with

3

ckk ckk 2c—44 and b;,ki =p e; (' e, *'ek 'ei" .
s 1

Here e&'), e('), e(."& are the unit vectors of the cubic
system. In the following, the coordinate system will

always coincide with the cubic system. Then we have
~„I,&= 1 if i= j=&=1 or 6;,k~= 0 otherwise. The values
of the elastic constants c», c», and c44 are restricted by
the stability condition, i.e., the energy density

1

c44) 0, c$k c(2)0, ckq+2ck2) 0. (14)

To illustrate this, we have drawn in Fig. 1 a coordinate
system with c44, c», and c» as coordinate axes. The
elastic constants of all stable solids lie within the wedge-
shaped space which is enclosed by the planes c44=0,
c» c» 0 and c»+ 2c»= 0.To give an example of what
combinations of the elastic constants are actually
realized in nature, we have plotted c(2/c44 over c(1/c44
in Fig. 2 and have marked the values for some cubic
crystals with points. All isotropic materials lie on the
line c»—c»—2c44=0. It is seen that only a few cubic
crystals such as %, diamond, and Al are isotropic or
nearly isotropic.

From (13) we get for t;k(x):

&;k(x) =c44b;k+(c«+c(2)K(Kk+dK(;)'b;k (15).
(The summation convention will not be applied to
indices in brackets. ) The eigenvalues r of f,k determine
the eigenfrequencies co of the elastic waves: k'7 =neo '
=nb'C ' (n=mass density, C =velocity of sound).
"Dynamical" stability requires r (x)&0:

t;k(x)a, ak&0 or c«) 0, c~k —ckk&0, ckk) 0. (16)

These conditions are contained in (14) if there e;; is
replaced by ~(a,k,+a,k;). Therefore, the conditions (16)
or c(k) 0 are less restrictive than (14) or ckk+2ckk) 0.

The validity of (16) implies that h(x) =
~
t;k(x)

~
&0,

which guarantees the existence of g,k(x) = t ';k(x). There-
fore, the Green's function g, j, is always finite for all
stable materials which lie within the "wedge" in Fig. 1.
On the other hand, g;~ is diverging on the plane c»=0
and, more importantly, on the two planes c»—c~2=0
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and c44=0, which limit the stable region. Thus, the
Green's function g;~ has very strong maxima for
materials with very high anisotropy, which in Fig. 1

lie very near to the planes c»—c»=0 or c44=0. This
will be discussed in more detail later.

From Eq. (15) we get then for g;2(34):

AU
~/ gQ

Pq",

~ Mo

g'. =(~)
KiKIC

C44+dK(') (C44+d" ( ) )(C44+«(3) )

C44+ C12x(, +,.) (1+2— ') (&7)
~-& C44+dKj

aCl—

~ FeS&
C(p=-C4p

I

~

KC(

NHpCI

The Green's function g;&(p) can be given in elementary
form only for two special ratios of the elastic constants.
For isotropic materials (d=cll —c12—2c44=0, Fig. 2)
we have:

1 C12+3C44 1 C12+C44
g'l(y) =—— &;3+—— p;p2. (18)

2C44 C12+2C44 2C44 C12+2C44

For the case c44+c12= 0 (Fig. 2) the second term in (17)
vanishes and g;2(y) is diagonal:

1 d
g'3(P) = 1+ (1 P (')') ()'2 - (»)

c44

0 t 2 3 4 5 6
C f1/C44

FIG. 2. c»jc44 versus c1&/c44 for various crystals.

with
p =c(2+c44/c12+ 2C44 .

The result for g;3(p) =g(2(3)(y)+g, 2(')(p) is

1
g;3(y) —L(1—-', p)(1;3+'2pp;pl)

C44

+ ( 2+4P—'sP') —~*—3(1 p(')')—
2c44-

+( 4P+ ,'.—P')p'p3—+(3P x'ep') p'—p3(p(')'+p(2)')
p2——(();2—5p;p2)g p,

' . (22)
16

For arbitrary constants, g;3(y) is elementary only if tl

coincides with one of the cubic axes. A(34) reduces in
this case to a quadratic equation and the poles can be
found. 32 We get for p= (1,0,0) Lt)=(1,0,0) or (0,0, 1)
follows by cyclic permutation):

1
gll g12 0 gl3 g23 for t) (1 0 0)

c44
For the integration we have used the convenient for-

(20) mula (r= ry):
C11+C44

g22= g33=
L(C11 C12)C44(C11+C12+2C44)C11)

To our knowledge, (18), (19), and (20) represent the
only cases for which elementary solutions can be given.
Otherwise, we have to make approximations. This is
easy if d=0, c44+c»=0, y= (1,0,0) are only approxi-
mately valid. Then we can apply perturbation theory
starting from the unperturbed solutions (18)—(20).

I7. PERTURBATION THEORY FOR 6;y

The case of weak anisotropy has been treated by
Lifshitz and Rozentsveig' Lthere is a misprint in Eqs.
(2.10)—(2.12) of Lifshitz and Rozentsveig's paper. The
last term K~K2 p, K,

4 of Eq. (21) is missing) and Leib-
fried. ' For ~d~&&c44 we can expand g,3(34) into powers
of d. Taking only the linear term into account, we get
from (17).

1
g'2(&)=g'2"'(~)+g'2"'(~)= L~*K PK'K3)—-

C44

+ I K(,)'7'),„+PK;KK(K—(4) +K(3) ) P K(K3 Q Kj ), (21)
C44

(d(t. ,/23r)K K ' ' K= '8 8 ' ' 'C), r2" ', (23)
(223)!

which can be derived by transforming (1/k2)K ' ' K,„'
according to Eq. (3). Leibfried' used a slightly different
approach. He 6rst derived for each anisotropic tensor
C;,&( (13) an averaged isotropic tensor C;;21 by rotating
the cubic axes e&'& over the whole unit sphere, thus
replacing (1;;24 in (13) by —3'(1;2+32K;K&. The corresponding
averaged isotropic constants are

c12 C12+ 3d yr C44 C44+ 3d ) Cll c12+2c44 ~ (24)

They have been proposed by Voigt' as the isotropic
constants of polycrystals. If we introduce these con-
stants c12 and c44 instead of c12 and c44 into (17) and
expand them linearly in d, we get Leibfried's result,
which is

1
g'3(e)=g'3"'(0)+g*""(0)= D1 2P)~'2—+SPICA—)

C44

+
~

+ P+ —P—' ~;—2+( — P P—' ~p—'pa- —
@442 4 10 20 80 E 5 30 80

"R. Hill, Proc. Phys. Qoc. (London) A6S, 349 (1952).



1178 1'. Fk. DF. DERIC HS 3, '.i D C. LEI BI'RIED l88

001

010

001

Finally, we can apply perturbation theory to g,3(y) in

the vicinity of L100]. According to (9) x has to be
perpendicular to t& and x has to lie nearly in the (100)
plane for t&~L100j. Therefore, we can expand g;1(x)
into powers of Kl (Kl'«1) taking only the lowest term
into account. The integrals are elementary. For instance
for p2, p3 &(1 we get

1 1
gll(p)= —Ll —cl(p'+P3') j, gl-(1)=—C3P- (29)

030

FzG, 3. Divergencies of g11{y) for c11~ c1. (full lines}.

+(3 4P+ 'S8—')p('&—'&' +3(3& 'Stf')p —p3—(pt'&'+'p«&')

P C12+C44

(~'3 —Sp'pl)Z -p', ff= — (2S)
16 i e12+2C44

with

C12+C44
Cl=- —+—

2 c44 d+c12+ 2c44

1 (1—3&)3 2(1+»)3—(1+g)3a+&1a3
X ——— +—

2 2 —a (2 —a)'(2+a)113

cl2+c44 1—g 2g —u
C.=— +—

d+cl.+2c44 2 —a. (2 —a)(2+a)"'
and

(30)

For small anisotropy, i.e., linear in d, this result is the
same as (22), but it is better for higher anisotropy.
The reason for this is that the zeroth approximation
g;3 "&(p) of (2S) represents for each anisotropic crystal
the best isotropic Green's function, as will be shown
later by variation (49).

The case
~
c44+c13~&&c44 or d can also be treated by

perturbation theory. From (17) we obtain

~;I (C44+C»)K4KKg*3(x)=,—, (26)
c44+dK«&3 (c44+dK~4&3)(c44+dK&3&3)

By complex integration, we get from this for the di-
agonal element gll(t&) (g33 and g33 follow by cyclic
permutation):

g»(e)=(«4) "'Lc44+d(1 —pl') j "'
(c44+c13)(1—pl )

(27)
2(c44) '&'[c44+d(1 p13)j3~3—

The nondiagonal elements are also elementary but some-
what more complicated:

c44+c12 431432(1 p3 )
g»(e)=-—,

c44 yly3L(xl+x3) +(yl+y3) ]
&& (plp3L(yl+y3) (P3'ylyl —1)+y»3'+y2zl ]

+pl(p2 Pl ) (~2yl zly2) ), (2g)

—1/2

y1, 2 431,2(1 —p3') 1+—(1—P1,3 )
c44

$1,2 —D1,2 plp2p3~ &1,2 1 1 p3 + p3 p1, 2 ~

c44 c44

'g=
~

8=
C44

(cll C12) (cll+c13) 2c12c44

C44C 11

The corresponding constants describing the behavior of

g33 g33 and g33 near y~(100) are even more complicated
than Cl and C2 and will not be given here.

V. BEHAVIOR OF g;g FOR NEARLY
UNSTABLE MATERIALS

In Sec. III, we have seen that the elastic constants of
all stable solids lie in that wedge-shaped region of Fig.
1 which is bounded by the planes c44=0, cll —cl2=0,
and cll+2c»=0 LEq. (14)]. Moreover, the Green's
function has divergencies on the three planes c44=0,
cll —c13——0, and c11=0 LEq. (16)j.Therefore, materials
for which the elastic constants lie very near to the
planes cll —c12=0 or c44= 0 must have near divergencies
or very pronounced maxima. %hat occurs near the
plane c11=0 is irrelevant because this plane is outside
the stability region.

In the first case cll —+ c12+0 which is nearly realized
for such highly anisotropic materials as alkali metals
and Cu-Zn (Fig. 2), the determinant h(x)= ~f;3(x)~
goes to zero only if x coincides with a (110) direction.
Ke have

14&(110)=33'c '(11—0)c '(110)c, '(110)
3 (cll+ c13+2c44) c44-', (cll —c13) . (31)

Here cl(110) and c,(110) are the longitudinal and trans-
verse velocities of sound in a (110) direction. For cll ~
c», the transverse velocity with the polarization vector
in L110) vanishes. For this kind of highly anisotropic
material, g,3(x) has, in general, strong maxima, in a
(110) direction. This means for the Green's function
that g;3(y) has strong maxima whenever the integration
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path xi p [Eq. (9)) includes a (110) direction. To get
the position and form of these maxima, we expand both
the denominator A(x) and the numerator A;1-(x) in the
vicinity of the (110) direction, taking only the leading
terms into account. The integration can then be per-
formed. For example, gll(p) has such maxima if fl lies

in a {110)plane. Writing

tl= [I/v2(1 —$2)sin02, I/v2(1+ $2)sin 02, cos02],
t22«1 (32)

we get

001

010

,

001

Cqq+C44

g»(e) =-
2c44

4cll(cll+c 14)sin'-04&22

Cyy —C~2
1j2

+— [4c»(c11+c44) c os-'0, +(c11+c44) '

sin�'0~2]

2c44

(33)

One sees that in the (110) plane g„(p) is proportional to
[(2c44)/(cll c12))"' and diverges for cll —2 c12.

Because of the cubic symmetry, we get the same
maxima if tl lies in or nearly in a {110},{101),or {101)
plane, but no such maxima for {001) or {011}planes
because All vanishes in the limit cll —+ c12 for (110)
directions which are perpendicular to [100). These
maxima planes for gll(y) are shown in Fig. 3. At the
intersection of two such planes, the contributions from
the difI'erent planes add to each other and give rise to
an extra strong maximum. Therefore, Eq. (33) gives
only half the value of gll for S&= [111)or p= [010],etc.
For g12(tl) we get maxima on the planes (110) and (110)
(Fig. 4). Moreover, near these planes we have

g12(t/) = +g»(f/), «r plp2) 0
= —gll(tl) «r pip-&" (34)

where gll(tl) on the (110) plane is given bl (33). Be-
cause of the weak divergence [(2c44)/(cll c12)] /'-,

the maxima are—even for such a highly anisotropic
material as Li for which 2c44/(cll —c12)= 9.4—not very
pronounced. Nevertheless, the maxima can clearly be
seen in the computer calculations of Lie and Koehler
for Li2 (Fig. 8; arrows indica, te the positions of the
maxima for cll ~ cl,).

Also in the second case (c44 —++0), which is approxi-
mately realized for example for the alkali halides
(c44=c12«cll, Fig. 2), we get such "near divergencies. "
In the simple isotropic case (d=0), g;2(x) is directly
proportional to 1/c44 [Eq. (17)). But for d/0, the be-
havior is more complicated. For c44 —+0, A(x) goes to
zero ( c44) only if x lies in a {100)plane. If x coincides
with a (100) direction, then A(x) is even proportional
tO C44'.

6(x= ( l K1&&)2)&0c44[1&l K2 &I(cll+ Cl'&)+ c44411] . (1&)

To evaluate g;4(tl), we expand again A(x) and A;2(x)
around the maxima planes of g,l(x) taking only the
most diverging terms for c44 ~ 0 into account. Then for

g»(tl) we obtain

(I C11+2C12

g»(p) =1 c44 1+—— (1—pl')
C«C~~+C~2

—I j2

(36)

We see that in the limit c44 —+ 0, gll(y) diverges pro-
portionally to (c4,) "' with the exception of the point
[100), where gll goes as 1/c44, in agreement with (20).
Equation (36) is not valid if y lies in or near the (010)
and (001) planes, with the exception of the region near
[1007. On these two planes, gll is also proportional to
(c44) '/', but the fl dependence is somewhat more diffi-

cult. In the limit c» ~ 0, Eq. (36) gives g» on the whole
unit sphere in agreement with (19).

The nondiagonal element g12(fl) diverges for c44 —+ 0
proportional to (c44) '" if /2 lies in the (001) plane
(Fig. 4; dashed line). In this case we obtain:

42cj2
gl (t)=-

(c44d) (c11+2C12)

X (37)
[f1+(I/2 c2) 1/2] 1/2+ [1/ (I/2 c2) 1/2]1/2

for plpl) 0, with f/= (cll+c12)/(cll+2c12) and c
=4pl'p2'(c»/(c»+ 2c12)).

VI. A FITTING APPROXIMATION FOR g;2(P)

The solutions obtained in Secs. IV and V by pertur-
bation theory give us information only about the Green's
function for the very special cases c~~ —cj2 —2C44~0,
c»+c44~0, cll c12 —+0, c44~0, or p~(100). More-
over, the expressions are rather complicated, preventing
us from applying second-order perturbation theory
which would lead to elementary, but even more com-
plicated, results.

In the following, therefore, we will try to get some
sort of an over-all approximation which gives us a
reasonable solution for all allowed values of the elastic:

010

&'«. 4. Divergencies of g12(y) for c11 —+ c12 (full lines) and for
c44 ~ 0 (dashed line).
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late that the ansatz (38) coincides with the exact ex-
pression (17) at certain points on the unit sphere. The
exact location of these points is rather arbitrary, but
will be chosen in such a way that the points are more or
less equally spaced from each other. To fit g«(34) we
choose the points (1,0,0), (1/vS)(V2, 1,0), (1/%)(1,V2, 0),
(1/V3)(1, 1,1), and (0,0,1). LThe last point guarantees
that we get the exact value for gll(100), because ac-
cording to (17), gll(34) = 1/c44 in the whole plane (100)j.
To 6t gss(34) with the exact expression, we choose the
points 1/v2(1, 1,0), 21(1,1,&2), and (1,0,0). The latter
points are both inclined at 45' to 1/v2(1, 1,0). Because
gls(100) =0, we 6t the slope of gls(34) at this particular
point. Using Eq. (23), we then perform the integration
and get

gll(t)) =al+a2pl +a3pl +a4pl'+a„. (1—5pl')P p '

FIG. 5. Fourier transforms g11(x) and g12(x) for Cu: exact:
@=0 and &=45' ——fitted: @=0——and p=45' ———
(fitting points are marked by 0}.

constants, but which cannot, of course, be a very ac-
curate approximation in each case. In order to do this,
we make the following ansatz for the Fourier transform
g;k(34) with the undetermined constants cl, ~, cls.

gik(34) =Clbik+C2K(Kk+C3K(i) bik+C42K(Kk(K(4) +K(k) )

+C3K(i) bik+Cs g Kj bik+C3K(Kk g Kj

+C72 KiKk (K (4) +K (k) )+C3K (1) b(k

+Cls Q Kj bik ~ (38)

This expression contains all linear independent power
expressions up to the sixth order in x which have the
same cubic symmetry as the tensor function g;k(34).
This is equivalent to using all cubic harmonics'" up
to the sixth order which have the appropriate symmetry.
Cubic harmonics are only orthogonalized combinations
of the linear independent expressions of (35).

The irst term in the exact Eq. (17), being propor-
tional to b, l„depends only on a~;)~. Therefore, we can
restrict our ansatz (38) and set cs—=0=elk. Comparing
(35) with the exact formula (17) and with (21), we see
that this ansatz can give us the exact solution only in
the case of isotropy (cl, c240) or weak anisotropy
(cl csP 0 c3 c4 cs small). Because of the divergence of

g;I, for c~~—c~2 ~ 0 and c44 ~ 0, it is clea, r than an
ansatz like (38) cannot be good for very high anisot-

ropy, because any expansion into regular functions
diverges in these limits. We have, of course, chosen the
ansatz for g;k(34) so that the corresponding ansatz for
the Green's function g;k(y) is elementary. The trans-
formation can be performed easily using formula (23).

To determine the constants c~. Cs„we will go back
to a method used by Houston to evaluate angular in-
tegrals of functions with cubic symmetry. ""We postu-

"F.C. v. d. Lage and H. A. Bethe, Phys. Rev. 71, 612 (1947).
~ W. V. Houston, Rev. Mod. Phys. 2P, 161 (1948),

gls(e) =p)psl bl+bsps'+bss (p34+p24)+bsps4),
with

al ——(1/32) (7A+ 9B—18C+27D+ 7E);
bl= (1/24) (7F—20G —27H) —(9/32) (C—D);
a,= (1/32) (47A —225B—144C+405D —83E);
bs= (1/16) (—10F—16G+54H)+ (27/8) (C—D);
as= (1/32) (81A —189B—135C+270D —27E);
bs (5/4) (—F——+G);
a4= (1/32) (—45A+ 135B+135C 270D+45E—);
b4= —5as= (135/32)(—C+D);
as= (1/32) (27C—27D) .

For the constants A, , H we get from (17):
A =gll(100) =1/cll, E=g»(001) =1/c44,
B=gsl(@210)

4C44+ C12+d

2 (c44+-', d) (c44+cls)+(c44+-*,d) (4c44+elk+ d)

C=gll(1420)
SC44+2C~2+2d

(C44+ 3d) (C44+C12)+ (C44+ 3d) (5C44+C12+ d)
D =gl1(111)

5C44+2cg2+8

(C44+sd) (6C44+3cis+d)

gls(130)F= = —(C44+ C12) /C44 ' C 11

e-+0

C44+ Cy0

(39)

(40)

(41)

G =g)2(110)=-
(2c44+d) (2c44+ elk+ 2 d)

C44+C12
H =gls(11/V2) =—

4(c44+sd)'

C44+ C12 C44+ C12

x ~+g +
c44+~d c44+4d

"D. D. Betts, A. S. Bhatia, and M. Wyman, Phys. Rev. 104,
$7 (1956),
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To check the accuracy of this approximation, we have
plotted in Fig. 5 for Cu the fitted expression for the
Fourier transformsgri(24) andgts(24) andcompared with
the exact ones (17). Here f) is the polar angle to the 1

axis and P the azimuth in the (100) plane. The elastic
constants used here are (Ref. 14; room temperature):

e

04

3.0

2.5

2.0 — COMpUTER AND 4) =45' ——
cll= 16.84, ci2= 12.14, c44= 7.54

(in units of 10"dyne/cm2). 15

FIT: 4 = 0 ————ANO 4 =45

Figure 6 shows the so-determined Green's function
gi)(I)) and g(2(p) and compares it with the computed
values of Ref. 10 for Cu. The agreement is fairly good.

To get better approximations than the given one, we
can do essentially two things: First, we can make a
better ansatz than (17) and include, e.g. , in the next
step, all linear independent expressions of 8th order in
x and use some more fitting points to determine the
constants. This is, of course, straightforward and can
be done easily. Or, we can try to get some better criteria
to determine the constants of our ansatz than the simple
fitting procedure. This will be done by variational tech-
niques in Sec. VII.

VII. VARIATIONAL PROCEDURE

The energy E of a displacement Geld s;(r) due to a
force f;(r) is given by:

&IZ
I
1

C =45'

05

I5 45 60
8 (de(I)

75 90

exact Eq. (7) which determines g; (24). This result re-
mains valid also in the limit eo —+~ which corresponds
to a point force f(r)=f)(r) or f(k)=1. Therefore, we
can use (44) to determine g, (r) or g; (I)) by variation.

In order to do this we make an ansatz for g;„(24)
with &V linearly independent functions g; (")(24)
P(= 1, 2, , Ã)

Fro 6. G. reen's functions g1&(l)) and g~2(l)l for Cu: computer:
4 =0 and 4 =45 ——6tted: C =0 —.—and C =45
(0 polar angle to 1-axis, 4 azimuth iII (100) plane).

8$; 8$q
E= dr -2'C;;2; f;(r)s, (—r)

Bt'& Bf~

(42)

Introducing the Fourier transforms s;(k) and f;(k) by
Eq. (3), this can be written

k
['2T,„(k)se(k)s;(—k) —f;(k)s, (—k)]. (43)

(22r)'

g;„(24)= g Cig;„("'(24) .

Introducing this in (44), we have

N N

3E0/40 2 2 2 xx'cxcv
X, ) '=l X=1

(45)

(46)

As a functional of s;(r) or s;(k), E is minimal for the
exact displacement field s;(r) or s;(k), respectively.

One sees directly from (42) that for a point force
f;(r) = f'); f)(r), the displacement force of which is just
the Green's function G; (r), the energy is inGnite. To
prevent this divergency, we consider an extended force
f;(r)=b; f(r), where f(r) depends only on the absolute
value r. In this case, the tra, nsform s;(k) is given by
s;(k) =0; (k)f(k) = (f(k)/k')g; (24). The energy as a
functional of the angular function g; (24) is then

dQ„
Di —

g „(—"—)(24).
4x

N

Q Tu, c), =Di,
X'=I

(47)

The best set of the constants cz is then determined by
minimizing E, giving the equations

I':= ep

with

dQ„
L2& 2(~)gs(-)(~)g'(-)(-~)

4m —6*(-)g*(-)(—«)j,
" dk

f'(k) .
0 27k

As an instructive example, we make an isotropic
ansatz for g;„(24) of the form of Eq. (17) for d=0 with
two constants cl and c2, which can also be expressed
by some effective isotropic constants cl2, c44', and
Cll = Cl2 +2C44 .

gim(l() =Clf4m+C2K(K~
&

Miminizing E with respect to g, (24), we always get,
independently of e0 and the special form of f(r), the

&4 P. Q. Huntington& Solid State Phys. (I ondon) T, 213 (1958).
Cl=

c44

Cl2 +C44
c2=

c44 (c12"+2c44")
(48)
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4.0
I

COMPUTER 4» 0 ANO 4~45» ——
X5

3.0

e
eu 2.5

2.0

e
I5

C»

O
0

0,5

VARIATION 4 ~ 0 —- ANO 4 ~ 45» ——

~+ 45

4 0

9I2

I ~

"«~»
J

0
0 45

9 (dog)

I''rG. 7. Green's function g»(y) and gl (p) for Cu: computer:
4 =0 and 4=45' ——variation (50): 4 =0 —.—4 =45'

Here g; &oi(9), given by the first term in Eq. (25),
represents according to (48) and (49) the best isotropic
a,pproximation, and g; "i(y), given by the second term
in (25), is the correction due to anisotropy. The param-
eters c,o and c~ are introduced to improve the perturba-
tion theory in a simple way. [For weak anisotropy, i.e.,
as long as (25) is strictly valid, we have co= ci= 1.) By
variation we get for co and c~.

Eod 2 —1

co —— 1——
c„(3 P) [IC»+ (d/c„—)E,j

(51)

with

ci= ca,
1+(d/c44) (Ei/Eo)

4 36 68 16 ci2+c44
ED=—— f3+ t3' O', t3=—

25 175 525 525 c~2+2c44

16 32 328 2,016 384
i3+ t3' — fI'+— t3'

875 875 9,625 125,125 125,215

(52)

In Fig. 7, we have plotted this approximation for g; (9)
and compared it with the computed results for Cu. ' The
agreement is fairly good and (50) represents a consider-
able improvement of the perturbation expression (25).

The "best" isotropic constants c;,' are then determined
by variation and are identical with Voigt's averages
c;, (24),"

c12 ci2 elf+ jd, c44 = c44= c44+ sd. (49)

To get better approximations, we make an Ansats which
has the form of Leibfried's perturbation theory (25) for
weak anisotropy,

s;(r) = drG, „(r—r') f„(r') . (53)

In this section, we have made an ansatz for G; and
optimized the coefficients by minimizing the energy for
the unit force Now th.e question arises whether the dis-
placement field s;(r), calculated according to (53) with
the optimal Green's function, is also optimal, i.e., is this
displacement identical with the displacement field s;(r)
obtained by putting the ansatz for G; into Eq. (53)
and then optimizing s, (r) by minimizing the energy for
the f (r) force? In general, this is not the case, and the
optical displacement field s;(r) and the field calculated
by (53) with the optimal G; (r) are normally different.
The diGerence is, of course, the smaller the better the
approximations are and vanishes if the Ansatze for
G, (r) and s;(r) give the exact results. In the future we
want to apply the variational procedure to the calcula-
tion of point defect displacement fields and their inter-
actions and certain dislocation arrangements.

Ot,her approximations can be obtained by using the
more general ansatz (38) and determining the constants
cj., c2, , c8 by variation. All the integrals T» and D~
needed to solve the linear equations (47) are elementary.
In a first step, we have used only five constants (ci, cs,
c3 c4 and c6), which are the only important ones for
weak anisotropy (22, 25). This ansatz has the same func-
tional 9 and u dependences as the ansatz (50), with the
difference that now all 6ve constants are varied inde-

pendently instead of only two. Unfortunately, the result
shows no considerable improvement, e.g. , for Cu we

get, within the drawing limits, the same curves as for the
approximation (50) in Fig. 7. The improvement is also
not much better if we use all eight constants c~ c8 of
ansatz (38). As an example for this, we have plotted in

Fig. 8 this approximation for gii(g) and gii(ti) and com-

pared it with the computed results for Li. Li is extremely
anisotropic (see Fig. 2) and the elastic constants are
(Ref. 14; 78'K):

cii ——1.48, cia= 1.25, ci4 ——1.08 [10" d)ne/cm'].

The agreement is not very good. In particular, the
maxima which are due to the divergencies of f~; (r)
for cia as cii (+IV) and which are marked in Fig. 8 by
arrows are only poorly rejected in the approximation.

This example shows that our approximations are
restricted to materials with weak and medium anisot-
ropy. To get satisfactory approximations for higher
anisotropy, we would have either to take many more
terms in an expansion like (38) into account or to use
such trial functions g; &"i(u) which already have strong
maxima or near divergencies in appropriate x directions.
But such functions are not easy to handle and we have
made no progress in this direction.

The characteristic advantage of the Green's function
G;„(r) is that we can obtain the displacement field due
to an arbitrary force f„,(r) by superposition:
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Analogously to the variational principle (42) for the
displacement Geld s,(r), one can also derive a variation
principle for the strain Geld a.;,(r):

(fr( —-S;,kiak)(r)a;, (r)

—[ci„a„.(r)+f,(r)]s;(r)) . (54)

4.0

3.5

3.0

e
2.5

c) 20

COMPUTER% m0
I

ANDC m454

0 II &(f/rM
VARIATIQNC m0 AND+~454

45aj-
4-0

Here S;,~~ is the inverse of C;,~~. For cubic symmetry, it
has the same structure (13) as C;,kl with constants si2,

s44, and r= s~~ —s~~ —2s44, which are connected with the

cs~ s bv

e
(II

1.0

05

2=45'

sqq —sq2 =— —, 2s44 =
cj 1 c12 2c44

1
sgg+2sg2

cps+ 2ci~

0
0 15 30 45

9 I {fea I

75 90

(55) Fio. 8. Green's functions g«ly) and g42(y) for Li: computer:
4 =0 and 4 =45' ——variation (38): 4 =0 ——and
4 =45' ———.Positions of maxima for egg ~ c12

The displacement field s;(r) enters as a Lagrange param-
eter to guarantee the subsidiary condition (j„,a;,'+ f,= 0. ,

whereas variation with respect to lr;, (r) gives Hooke's
law. By Fourier transformation from (54) we get

dk
f ——',5;jkla kl(k)o;„*(k)

(2m) 2

—[ik {r;,(k)+f;(k))s,e(k)) . (56)

For an extended force f;(r)=fI, f(r), we have s;(k)
= (1/k2)g; (24), and analogously, a;, (k)=(1/k))I;j, (24).
Then we have

dQ„
(2~ij lk))kl;{m)(44)r)ij;(m) (44)

4'
+[4)', ; (-)(24)K —{)'{-)lg'(-)*(24)) (57)

As an example we try, analogous to (54), an isotropic
ansatz with arbitrary but isotropic constants c~ ~, c44,
and c~~ = c~~+ 2c44,

ljiy;m(24) = l[Kjfiim+K(Bjm+(C)2/C42+2C44)Kmi), ,
—2(Cii+ C44/cil+ 2c44) K{KjKmj. (58)

By variation, we determine the c; s such that the strain
field ));j, (58) is optimal. The result is

C44+ ~~ (I
C12 =Cl2+ gd )

c«+ i od

C44

C4.~ =C44+ ~d-
c44+ —,'0 d

cyy =cg2+2c44 ~ (59)

The corresponding isotropic inverse constants s;; are

.$)2 s\2+r/5, s44=s44+r/5, and sii si'+2444. (60)

Similarly to (24, 49), they can be obtained by averaging
the anisotropic S;,k~ over all directions of the cubic axes
and are identical to the ones used by Reuss" for poly-
crystals. Therefore, whereas the isotropic constants
which give the optimal isotropic displacement field
G; (r) can be obtained by averaging C,jk(, the best
isotropic constants with respect to the strain field a,,(r)
are obtained by averaging S;,k(. Both constants (55)
and (49) differ only by quadratic and higher terms in
the anisotropy


