
E. A. STER 8

sum rule becomes

2 d5 Reti l,Z=- (A11)
h(2s.)' g r 0(k)

We note from (A7) that the average value of Retkq
depends on only Z, the valence charge difference be-
tween the impurity and the host, and not on the details
of the potential. %hen Z=O, tl, l, can be small and one
expects that it can be calculated from perturbation

theory. However, for Z&0 in the noble metals, t»
cannot be small and, as we argued in Sec. II, cannot
be calculated from perturbation theory. Nevertheless,
the total scattering by the t matrix could still be small,
i.e., ti, i, , could be small for most k' as discussed in Sec.
II. The Friedel sum rule fixes the average value of tl, k

at an appreciable value for Z&0 and tl, k then must go
rapidly to small values as k' moves away from k. Thus
l produces scattering which is strongly peaked in the
forward direction.
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We consider the pseudopotential interaction between the s-like electrons in metals that also contain d
electrons, using Hubbard's hybrid representation of the Korringa-Kohn-Rostoker (KKR) band-structure
method, in a manner similar to that recently employed by the author in discussing the total energy of d-band
metals. The interaction is formulated as a sum of two parts: (1) a direct interaction between orthogonalized
plane waves (OPW's), which is similar to the "transition-metal pseudopotential" recently de6ned by
Harrison from a modi6ed OPW viewpoint, and (2) an indirect interaction via the d electrons, similar to
Harrison's "hybridizing terms. " We then combine these two parts and arrive at the KKR-Ziman form
of the pseudopotential as the resultant effective interaction. The author's previous result for the total
energy of an alkaline earth or noble metal is reinterpreted as the consequence of using the KKR-Ziman
pseudopotential with a d-scattering resonance.

I. INTRODUCTION

HIS paper is concerned with calculating the
eA'ective pseudopotential interaction between

the s-like electrons in transition and near-transition
metals, where the presence of the d bands in the
electronic structure must be taken into account.
Harrison' has treated this problem by considering the
band structure from a modified orthogonalized-plane-
wave (OPW) point of view, where the basis set of
functions contains both OP%'S and atomiclike d
functions'; he has in this way derived an effective
pseudopotential interaction between the OP% states.
Here we begin instead with the band structure repre-
sented by Hubbard and Dalton's' ' hybrid secular
equation, which is based on a transformation of the
Korringa-Kohn-Rostoker (KKR) method, and we
formulate the pseudopotential interaction in these
terms; the procedure employed is a generalization of
that used by the author in deriving an expression
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for the total energy of the alkaline earth and noble
metals. '

We obtain the pseudopotential interaction as the
sum of two parts: The first part represents a direct
interaction between OP%'s and is similar to Harrison's'
transition-metal pseudopotential; the second part
represents an indirect interaction via the d electrons,
similar to the hybridizing terms of Harrison's treatment.
These two parts are then combined, and it is shown that
the resultant efTective pseudopotential reduces to the
KKR-Ziman' (KKRZ) pseudopotential containing the
full phase shift, including the d-scattering resonance,
which is the result to be expected. Our previous ex-
pression for the total energy of an alkaline earth or
noble metal can then be reinterpreted as the con-
sequence of using the KKRZ form of the pseudo-
potential with a a'-scattering resonance.

II. EFFECTIVE INTERACTION
BETWEEN OPW'S

In the KKR method of band-structure calculation
the niufIin-tin approximation is used; the one-electron
crystalline potential is approximated by a sum of non-

' R. A. Deegan Phys. Rev. 186, 619 (1969).' J. M. Ziman, Proc. Phys, Soc. (London) 86, 337 (1965).
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overlapping spherical potentials centered on each
lattice site. The potential then enters the solution of
the Schrodinger equation for the crystal only through
the phase shifts of this spherical potential. In a tran-
sition metal the t=2 phase shift has the following
resonant form" (following Refs. 3 and 4, we use the
symbol X for the orbital angular momentum of the
resonant state, which for a, transition metal is X= 2):

where I denotes unit matrices, giving

C —HtD-'II

0

0 pb

D —HC—'H' ka

The equation for the coeScients b K is then

(&')(b) =0,

(2 7)

(2.8)

$), (E)='tan gi('p) = F/(pp p)+(i (p)
where we have defined

2.1
O'= C-HtD-IH

where gI denotes the / phase shift, F and ep are the width
and position of the X scattering resonance, and Iq' is a
smooth residual pha, se shift, which is small. (The
quantity ~p determines the position of the d bands in
the electronic structure of the transition metals. )

Hubbard and Dalton' 4 have shown that, for such a
resonance in the phase shift, the KKR equations
determining the eigenfunctions and eigenvalues can be
approximately transformed to the following hybrid
form [see HD (30) and (31); we use the symbol HD
to denote equation numbers in Ref. 4]:

(2.2)

In this equation, b is a column vector with components
bK, which are the coefFicients of OP%'s of wave vector
4+K, with K denoting the reciprocal lattice vectors of
the crystal; a is a column vector with components a,
which are the coefFicients of localized d functions
having magnetic quantum number m; and C, 0, and
8 are matrices representing, respectively, the con-
duction [or nearly-free-electron (NFE)] bands, the d.

bands, and the hybridization between them. The
ma, trix elements can be written as [HD (30)—(33), or
see Eqs. (2.5)—(2.7) of Ref. 5]

From (2.4) and (2.5), the matrix HtD 'H has elements

h '(k+K)h„(k+K')rp" (2.10)

h.*(k+K)h.(k+ K )
&KK' =&KK' . (2.12)

Cp —C

Equation (2.12) defines an effective pseudopotential
v'. The first term on the right-hand side represents a
direct interaction between the OP%'s of wave vector
(k+K) and (k+K'), and appears to correspond to the
transition-metal pseudopotential 8' of Harrison's'
treatment; the last term on the right-hand side of (2.12)
represents an indirect interaction of the plane waves
via the d electrons, similar to the hybridizing terms of
Ref. i.

where the last terms on the right-hand sides of (2.4) and

(2.5) have been ignored since they contribute to orders
F2 and Fv', respectively. The matrix elements of C' in

(2.8) are then

~Kir '= (I k+KI' —p)~Kit +rxK '(k, p), (2 11)

where we have defined

~« = (I k+Kl' —p)6«+vKK. (k, p), (2.3) IIL SIMPLIFICATION OF PSEUDOPOTENTIAL

D„„,= (p, —p)6„„+0(F),

H„x= I'i"h (k+K)+0(I'"v),

(2.4)

(2.5)

(2.6)

' V. Heine, Phys. Rev. 153, 673 (1967).

where p(k) are the desired energy bands, and the NFE
pseudopotential function vKK and the hybridization
function h are defined in Ref. 4. Note from (2.5) that
the resonance width F controls the strength of the
h&.bridization; here we will retain only lowest-order
terms in F when calculating the effect of the d bands
on the plane-wave interaction.

To obtain the e6ect of the d bands on the NFE bands,
we follow a procedure employ. ed by Heine, ' and multiply
(2.2) on the left-hand side b& the matrix

with the definitions [HD (4) and (7)]:
f(p) =—(p/pp)"+'"e&" '&~~

aild
4ir lk+Kl

F( (k+K, p)=— — —F(„*(k+K)
~l /2 ~ t+I./2

Xexp

(3 2)

(3.3)

In Sec. II we formulated the effective pseudopotential
interaction in terms of the hybrid KKR scheme. %e
now use the explicit form of the functions v KK and h
of that scheme to combine the two terms on the right-
hand side of (2.12); it is shown that v« ' then reduces
simply to the KKRZ pseudopotential, containing the
full d phase shift, including the resonance.

The hybridization function h is given by [HD (19)]
h (4+K)=f"(p)F),„(k+K) p), (3.1)
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where r is the volume per atom, a= p'", and P is the
Ewald-like splitting parameter of the hybrid scheme. '
Then the last term in (2.12) becomes

ti '(k+K)A„(k+K') 1'f(p)
4x

r icir. ' ———Q (21+1)tiPi (cose ice.) . (3.9)

only for energies p=K'—Ik+KI~Ik+K'I'' making
this approximation, we obtain

Xg Fi„*(k+K,p)F),„(k+K', p). (3.4)

where
XFi *(k+K, p)Fi„(k+K', p), (3.5)

tx" (p) = L1'/(pp —p)]L1—f(p)] (3 6)

and ti= tanrti. LHere, as in Ref. 5, we have replaced the
denominator of HD (12) by unity, to lowest order in
the phase shifts. Also, we have retained the energy
dependence of the pseudopotential HD (17), rather
than evaluating it at p= kp, as in HD (21).]From (3.4)—
(3.6), and (2.1), Eq. (2.12) becomes

pKK
' ———g tiFi '(k+K, p)Fi„(k+K', p), (3.7)

which, for /= 1~, contains the full phase shift ti, of (2.1).
Substituting from (3.3), this becomes

(2t+1)
p„„,'= ——P tiI @+K

I
'I 4+K'I '

2 ft,
22+1

2p —
I k+KI' —

I
@+K'I'q

Xexp IPi cos(eKK ), (3.8)
2P )

where 8KK denotes the angle between the vectors
(k+K) and (k+K'). This can be simplified by noting
that, to lowest order, v'KK will be physically significant

The pseudopotential nKK of (2.12) can be written as
Lsee HD (21) and (12), and Eqs. (3.5) and (3.6) of
Ref. 5]

vxK ———Q Lti+hig(ti'+ti, "—ti)]
2tn

This is just the KKRZ form of the pseudopotential

I Eq. (52) of Ref. 6, in the limit (r, r' —+ 0)], where we
have made the approximation p' Ik+KI' Ik+K'I'.

Finally, we note that the lowest-order effect of the X

resonance on the first conduction band is, from (3.9),

4s. (2li+1) 1'

happ

(resonance) =—
6p —6

(3.10)

Replacing p by t't', this becomes the term F(d, p)i Lsee
Eq. (3.15) of Ref. 5] which was integrated over the
Fermi sphere in Ref. 5 to give the expression for the
total energy of an alkaline earth or noble metal; the
remaining terms of (3.9) give the NFE pseudopotential
vKK" introduced in Ref. 5.

IV. SUMMARY AND DISCUSSION

This paper contains a formulation from the hybrid
KKR point of view of the eRective pseudopotential
interaction in the presence of d electrons. %e have
obtained this interaction as a sum of direct and indirect
terms, similar to Harrison's' formulation of this problem
from a modified OPW viewpoint; in combining these
terms we have essentially unfolded the hybrid scheme
into the KKR plane-wave representation of Ziman. '
This throws new light on our previous results for the
total energy of near-transition metals, and also empha-
sizes the usefulness of the KKRZ formulation for these
materials. Finally, we note that, in dealing with tran-
sition metals, a hybrid-KKR treatment of the type
considered here may be the most suitable method for
explicitly taking into account the partially ulled d
bands.


