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The well-known criterion for characterizing approximately the electronic properties of concentrated
alloys in pure-metal terms is that the mean free path of the electrons be many atomic spacings. For alloys
whose solvent and solute have different valences, this condition can be expressed in terms of the energy
shift AE (k) of a given Bloch state as the impurities are adiabatically turned on. The criterion in terms of
AF (k) is that its real part should be much greater than its imaginary part, which is satisfied if that part of
the ¢ matrix of the solutes which contributes to real scattering is small. The noble-metal alloys that obey
the Hume-Rothery rules satisfy this weak-scattering criterion because the shielding cloud around dilute
heterovalent impurities is more spread out than expected on the free-electron model, enhancing higher-
angular-momentum phase shifts. Such a spreading of the shielding cloud is a consequence of band effects
introduced by a large energy gap between the conduction band and the next unoccupied band. The small
¢ matrix or phase shifts cannot be calculated by perturbation theory because the change of wave function
in the vicinity of the impurity is large; yet once they are known, their effects can be treated as small. It is
shown for this type of alloy that a Bloch state with wave vector k in the pure metal will have exactly the
same k in the alloy as the solutes are adiabatically turned on. The response of this alloy to electric and
magnetic fields can be calculated from the same formulas as are used for pure metals, with the substitution
of a phenomenological relaxation time appropriate for the alloy, and with energy levels of the alloy
E (k) =Eo(k)+AE, (k) in place of the energy levels of the pure metal Eo(k), where AE, (k) is the real part
of the energy shift AE(k). In particular, de Haas-van Alphen measurements determine the shape of the
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Fermi surface of the alloy, which in general differs from that of the rigid-band model.

I. INTRODUCTION

NTEREST in the study of alloys has increased

greatly in the last few years. The reason for this is
not too hard to ascertain. Our fundamental under-
standing of disordered alloys and other disordered
systems is quite primitive compared to that of the
pure solids. As the investigations in pure solids become
more detailed and more quantitative, the contrast with
disordered systems becomes more glaring. In the study
of disordered alloys, the noble-metal-based alloys have
a prominent position. Many of their experimental
properties can be explained by the simple rigid-band
model.! In fact, the famous Hume-Rothery rules are
mainly applicable to the noble-metal alloys.! The Hume-
Rothery rules state that the various boundaries of the
stability of phases in the noble-metal alloys occur at
approximately the same electron-per-atom ratio 3 in-
dependent of the alloying element. More examples of
Hume-Rothery-type rules have been found in the
changes of the axial ratios with 3 in some hexagonal
noble-metal alloy phases.? All of these properties have
a simple explanation in terms of the rigid-band model.
Briefly, if we can treat the disordered alloy as a pure
material we can describe the states of the alloy in
terms of Bloch states. In the simple rigid-band model
the alloy is assumed to have the same electronic struc-
ture as the pure host with a Fermi surface determined
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by the 3 of the alloy. The alloy phase boundaries
correspond to the value of 3 where some part of the
Fermi surface is in the vicinity of touching the Brillouin-
zone boundaries. The change in the axial ratio corre-
sponds to the value of 3 where electron states above an
appropriate gap energy just start to be occupied.

It has been shown that in order to explain the
experimental data, it is not necessary to assume as
extreme a model as the rigid-band model.? In fact,
only the geometric part of the rigid-band model need
be assumed. The geometric part refers to the shape of
constant-energy surfaces in & space and if these are
approximately the same in the alloy as in the pure
host, the explanation of the experimental data still
follows. In a previous publication,? it was pointed out
that the geometric structure of alloys is the same as
the host if three conditions are fulfilled. These are (a)
the excess charge of the solute localizes around it; (b)
the mean free path of the electrons is many atomic
spacings; and (c) the electron states of interest in the
pure solvent are in one band and are greatly separated
in energy from the other bands. In this paper it will
be pointed out that in the sense that condition (a)
was used, it and condition (b) are inconsistent for
noble-metal alloys. Condition (a) assumed that the
excess charge of the heterovalent solute was so localized
that essentially only s-wave-type scattering occurred
and thus the shift of the energy was such that constant-
energy surfaces in the pure host remained so in the
alloy. What we show here is that when such strong
localization of charge occurs, condition (b) will not be
satisfied for concentrated alloys. In order to maintain
condition (b), condition (a) must be modified to

3 E. A. Stern, Phys. Rev. 157, 544 (1967).
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permit an increased spread in the excess charge around
the impurity so that higher-order orbital-angular-
momentum waves can scatter with an appreciable
amplitude. This spread in shielding charge is greater
than that predicted for a free-electron-gas model of the
noble metals, yet, as discussed in Sec. II, the effect of
the noble-metal band structure is to produce such a
spread of the shielding charge around impurities. This
modification of condition (a) is expected to produce a
change in the shape of the constant-energy surfaces on
alloying. Yet such a change in the geometric structure
on alloying does not invalidate the Hume-Rothery
rules. After all, the original explanation of the Hume-
Rothery rules'# incorrectly required that the Fermi
surface of the pure noble metals not touch the zone
boundaries, yet the predictions of this theory still
agreed reasonably well with experiments. The explana-
tion of the Hume-Rothery rules apparently does not
depend too critically on the shapes of the constant-
energy surfaces as long as they are reasonably close to
those of the pure host. However, this point requires
more experimental and theoretical investigation.

The outline of the paper is as follows: Section II
discusses how the modification to the shielding cloud
around the impurity introduced by the band structure
of the noble metals decreases the scattering. Section
IIT presents a theory of the properties of alloys in the
weak-scattering limit. In Sec. IV a comparison between
theory and experiment is made. The summary and
conclusion is presented in Sec. V.

II. BAND-STRUCTURE EFFECTS

In calculating the properties of solids, much success
has been attained by assuming that every interaction
is shielded in a manner characteristic of a free-electron
gas.® The fact that the electrons in a solid are not free
but are moving in a periodic potential does not ap-
preciably affect the shielding in many cases. However,
in the case of the noble-metal alloys, the periodic
potential and the resultant band structure have an
important effect as we discuss here.

The critical characteristic of the noble metals which
distinguishes them in this case is the large energy
separation between the conduction band and the higher
unfilled bands. We idealize the discussion by assuming
that the conduction band is so far separated from all
other bands that these other bands can be entirely
neglected. The model that we discuss is a metal with
a single band whose properties can be calculated in the
tight-binding approximation (TBA). Such an approxi-
mation is not accurate for the s-p electrons of the noble
metals, but the results of this model can still be applied
by replacing the TBA atomic states with the appro-

“H. Jones, Proc. Roy. Soc. (London) Al147, 400 (1934); Phil.
Mag. 41, 633 (1950).

5W. A. Harrison, Pseudopotentials in the Theory of Metals
(W. A. Benjamin, Inc., New York, 1966).
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priate Wannier functions of the alloy. We consider an
alloy composed of two constituents which are dis-
tributed on a simple Bravais lattice in a random
fashion. We thus neglect interstitial alloys, volume
distortion, or short- and long-range order effects. We
will illustrate our point by considering the dilute im-
purity limit, but our qualitative result will remain true
for all compositions and for all types of alloys. The
discussion in this section depends heavily on Ref. 6.

In the TBA the wave function for the pure metal
can be written as

Yr(r) =2 ei*Reg1(r—Ro), 1

where ¢:1(r—R,) is the atomic wave function of the
type-1 constituent of which the pure metal is composed.
The atoms are centered at the points of the lattice R,.
We assume for simplicity that ¢, is an s function. The
band corresponding to the ¥ can hold two electrons
per atom when the two spin states of the electrons are
included. We assume that the type-1 atom contributes
only one electron per atom to this band.

Now, let us replace one of the type-1 atoms centered
at R, by a different atom of type 2 which contributes
two electrons per atom. We assume that the atomic
wave function of the type-2 atom is ¢o(r—R;). The
general wave functions of the alloy ©,.(r) can be written
in the TBA as

() =2 an(m)pn(r—R,), 2)

where ¢,=¢; for all nss and ¢,=¢, for n=s. Here
an(m) are constants independent of r. Corresponding
to each Q, there is the eigenenergy E,. At 0°K the
N+1 states in the band of lowest energy will be
occupied where N is the number of lattice sites. The
one excess electron contributed by the impurity at R,
will be localized in its vicinity due to the Coulomb
attraction with the positive charge of the impurity
atom. What is of interest is how this one excess electron
charge is distributed among the Q... In the free-electron
gas, the states near the Fermi energy pile more charge
in the vicinity of the impurity than far away from it
to-build up the total shielding charge.” In particular,
if an additional electron is added to the electron gas,
its state would also have a larger amplitude in the
vicinity of the impurity as it penetrates the shielding
charge and feels the attractive potential.

What we now show is that if an additional electron
is added to the metal in our model, its state would
have a smaller amplitude in the vicinity of the impurity
than away from it. This follows almost immediately
from the theorem® that in a completely filled band
there are exactly two electrons around every atom for

S E. A. Stern, Phys. 1, 235 (1965).
" C. Kittel, Quantum Theory of Solids (John Wiley & Sons, Inc.,
New York, 1966), Chap. 6.
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both the impurity and the host atoms. This theorem
simply states that one cannot put more than two
electrons in the atomic states ¢. If all the shielding
charge is localized around the impurity in the state ¢,
then it is completely occupied and the addition of any
further electrons to the system would require them to
have states which deposit no charge on the impurity
site. This is too extreme a situation, as more detailed
calculations show.® Not all of the shielding charge is
localized in the state ¢, and additional electron states
have a nonzero amplitude on the impurity. However,
the amplitude on the impurity will be less than on the
other atoms. By continuity, one also expects that states
at the Fermi energy have this same type of amplitude
behavior.

The ¢ matrix which determines the scattering from
the impurity is given by8

L= | V(") |¥1), 3)

where ¢y is an unperturbed Bloch state and ¥ is the
actual initial state as modified by the screened im-
purity perturbation V(r). From the above discussion
we expect

[tk [2< [{wr [ V () | $4) | 2 4)

at the Fermi energy because ¢y is decreased compared
to ¢ in the region where V() is large. In Sec. III we
discuss the properties of alloys with small {-matrix
elements as in relation (4).

The experimental evidence gives strong confirmation
that band-structure effects on shielding are important
in the noble metals as discussed in Sec. IV.

III. WEAK SCATTERING-LIMIT IN ALLOYS

If we consider a state |k) in the pure host with
energy Ey, as the impurities are adiabatically turned
on, the energy of this state changes to E(k)=FEj
+ AE(k). The weak-scattering limit is defined by the
condition that

ReAE(K)=AE, (k> ImAE(K)=AE (k).  (5)

The magnitude of AE;(k) is a measure of the scattering
of the state |k) in the alloy. Small values of AE;(k)
signify a long lifetime or small scattering. In terms of
the ¢ matrix of Eq. (3), the condition (5) means that

Reti> Imiy. (6)

This is shown in the Appendix by proving that in the
dilute limit AE (k)= N ixx, where NV; are the members of
impurities.

Let us introduce the Green’s function for the alloy:

G=(E—H)™, )

8L. S. Rodberg and R. M. Thaler, Introduction to the Quantum
Thegréy of Scattering (Academic Press Inc., New York, 1967),
p. 196.
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where H is the Hamiltonian of the alloy. Then from
the definition of E(k),

k|Glk)=1/[E-E(k)]. ®)
Let us define H4 by
HA=H0+Zk:]k)AE(k)(k{ 9)
and G4 by
Ga=(E—Ha)™, (10)

where H, is the Hamiltonian of the pure host.
G4 has the same diagonal elements as G. They are
related to one another by

G=G4++G4(H—H,)G. (11)
Introducing the 7" matrix by?®
TGa=(H—H,)G, (12)
we have
G=G4+GsTG4. (13)

By calculating the diagonal elements of both sides of
(13), we determine that

(k| T|K)=0. (14)

Now let us define a new Hamiltonian H 4’ which is
the real part of H,:

HA'=H(,+§ |KAE, (k)(k]|. (15)
Letting
Ga'=1(E—HJ,), (16)
we can write (13) as
G=G4'+G4'TGs'+O(AE,), (17)

where the remainder is of the order of AE;. Equation
(17) implies that

Y= [k)+Ga'T|k)+0(AE)), (18)

where ¢y is an eigenstate of the alloy. Taking the dot
product of (k| with both sides of Eq. (18) we obtain

(k|¥)=14+0(AE)). (19

Equation (19) informs us that in the weak-scattering
limit, ¢, has approximately the same k as that of the
state |k). Now the energy of ¢y is E, while that of
|k) is E=E,+AE, (k) in the alloy and Ey in the pure
host. In other words, |k) is the adiabatically related
state to Y. Thus we have proved that, in the weak-
scattering approximation, the k for a state in the pure
host remains the same in the alloy as the impurities are
turned on.

We can define a 77 such that (18) can be written in
the form

Y= |k)+G4'T'[k). (20)

9 B. Velichy, S. Kirkpatrick, and H. Ehrenreich, Phys. Rev.
175, 747 (1968).
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TasLE 1. Phase shifts. Comparison between calculated and
experimental phase shifts for impurities in noble metals with a
valence difference of Z. The calculated values assume free-
electron shielding in the Thomas-Fermi model and are obtained
from Ref. 16. The experimental values are obtained by matching
theory with experimental data in Ref. 15. The data in the table
is the data in Ref. 15 corrected to the case of no volume change
in alloying by multiplying all phase shifts of a given impurity by
the same factor. The experimental values are for: Z=1, Cd in
Ag; Z=2,Inin Ag; Z=3, Sn in Ag; and Z=4, Sb in Ag.

Z=1 zZ=2
Iree-electron I'ree-electron
calculation  Expt. calculation  Expt.
8o 1.055 0.247 2.139 0.393
8 0.143 0.294 0.290 0.603
8, 0.029 0.064 0.053 0.130
83 0.007 0.014 0.012 0.031
84 0.002 0.003 0.003 0.008
Z=3 Z=4
Free-electron Free-electron
calculation  Expt. calculation  Expt.
3o 2.826 0.477 3.401 0.571
) 0.459 0.936 0.673 1.267
82 0.074 0.201 0.093 0.271
3 0.017 0.047 0.021 0.063
84 0.004 0.011 0.005 0.015

In the weak-scattering limit, 7" will be small. Formally,
(20) is equivalent to |k) with energy FE.(k) being
scattered by a weak potential equal to 77, and it is
known that the Boltzmann equation can be applied to
such a case.’® This is discussed in more detail in the
Appendix. The Boltzmann equation can be used to
calculate the transport properties of the alloy in the
weak-scattering limit. Moore!! shows a similar result
up to fourth order in the potential. Our discussion here
is applicable to all orders in the potential.

In addition, all of the other results of pure solids
with weak scattering can be used. This includes the
definition of a Fermi surface, the interpretation of the
de Haas-Van Alphen effect in terms of the extremal
cross section in % space, the optical mass at frequencies
below interband ones,'? and the polar-reflection Faraday
effect’® in terms of an appropriate integral over the
Fermi surface. What must be remembered, however, is
that the geometric structure, i.e., the constant-energy
surfaces in % space or the E(k) relations, must be those
of the alloy.

IV. COMPARISON WITH EXPERIMENT

Noble-metal alloys are unique because of the large
energy gap between the conduction band and the next
unoccupied band. According to the discussion of Sec.
11, this causes the states at the Fermi energy to deposit

10W. Kohn and J. M. Luttinger, Phys. Rev. 108, 590 (1957).

ILE. J. Moore, Phys. Rev. 160, 607 (1967).

2 F. Abelés, in Optical Properties and Electronic Structures of
Metals and Alloys, edited by F. Abelés (North-Holland Publishing
Co., Amsterdam, 1966), p. 553; H. Fukutani and O. Sueoko,
ibid., p. 565; L. Muldawer and H. J. Goldman, ibid., p. 574.

13 A. J. McAlister, E. A. Stern, and J. C. McGroddy, Phys.
Rev. 140, A2105 (1965).
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less than average charge near the center of a hetero-
valent impurity. Any shielding must occur further
away from the impurity which enhances the higher
partial-wave scatterings. The Friedel sum rule'

Z=2/7% (2+1)é,(kr), (21)
1

where Z is the valence difference between the impurity
and the host, and &;(kr) is the phase shift at the Fermi
momentum, indicates that by spreading the phase shifts
to the higher [ values, it is possible to keep all phase
shifts small and still satisfy the sum rule. This would not
be the case if only §, were important. We expect most
phase shifts to be positive for an attractive potential
as would be the case for a multivalent impurity in a
noble-metal matrix. A phase-shift analysis of experi-
mental data!® as shown in Table I, shows that small
phase shifts are a good approximation for a Z=1
impurity (an impurity with valence two). For Z=2
impurities the approximation is still quite good, while
for Z=3 impurity the approximation of small phase
shifts is marginal. The importance of band-structure
effects in keeping all phase shifts small, as discussed in
Sec. II, becomes evident by comparing with phase
shifts calculated for a free-electron gas,'s as in Table I.

Calculations of the orbital susceptibility of dilute
noble-metal alloys using a free-electron model’® give
poor agreement with experiment. The authors presumed
that this poor agreement was caused by the neglected
band characteristics of the Cu electrons. The discussion
in this paper agrees with this presumption. The band
characteristic of the Cu electrons does improve the
theory of orbital susceptibility by introducing a greater
spreading of the shielding cloud which increases the
diamagnetic contribution, as required by experiment.

Other independent evidence of the band-structure
modification of the shielding cloud in the vicinity of
the impurity is given by electrical-resistance measure-
ments. Impurities in the noble metals produce a residual
resistivity change of about % the value calculated from
the Born approximation.!” The same calculation for
host metals of Mg, Al, and Pb give a more reasonable
agreement.!’” These latter metals have small band gaps
and overlapping bands so that one expects that the
free-electron theory would be reasonable, as is the
case. The smaller measured residual resistivity of the
noble metals can be explained by a spreading out of
the shielding cloud and a repulsion of the wave func-
tion at the impurity as expected from band-structure
effects. Such a modification of the wave functions
would increase the higher-angular-momentum partial-
wave scattering at the expense of the /=0 partial

14 J. Friedel, Advan. Phys. 3, 446 (1954).

L. C. R. Alfred and D. O. Van Ostenburg, Phys. Rev. 161,
569 (1967); L. C. R. Alfred (private communication).

16 W. Kohn and M. Luming, J. Phys. Chem. Solids 24, 851
(1963).

17 P, Leonard, J. Phys. (Paris) 28, 328 (1967).
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wave. These higher-angular-momentum partial waves
contribute less to the resistance because of the 1—cosf
factor that enters in the theoretical calculation.

The determination of electron scattering on different
parts of the Fermi surface by de Haas-van Alphen
measurements also confirms the band-structure effects
on electron shielding. The electron states on the belly
have mainly s symmetry about the Cu cores, while
those on the neck have mainly p symmetry.!® The
shielding of Z=0 impurities such as Ag in Cu would
not be greatly affected by the band-structure effects.
Only Z>1 impurities saturate the band allowance of
two electrons around each atom and thus their shield-
ing is greatly affected by the band. We expect then
that Z=0 impurities would have more localized shield-
ing clouds than Z>1 impurities. This distinction can
be proved by observing the belly and neck electrons.
The s-type belly electrons will be more strongly
scattered by a localized shielding charge than the p-
type neck electrons and vice versa. Thus one expects
that for Z=0 impurities, the ratio of the belly electron
scattering to neck electrons will be greater than for
Z>1 impurities. The experimental data agree with
this. The ratio of the scattering temperature (which
is proportional to scattering) of the neck Xy to that of
the belly X is found to be!®

Xn/Xp=1.5 (22)
for polyvalent impurities, while
.YN/‘YB"’V"% (23)

for homovalent impurities which do not change the
volume.?

In the weak-scattering approximation, a state of
wave vector k in the pure solvent ends with the same
wave vector k after the impurities are adiabatically
turned on, i.e., as the number of solvent atoms are
adiabatically converted to impurity atoms in a con-
tinuous fashion. In addition, the uncertainty in k
introduced by the alloying is much smaller than the
shift in Fermi wave number produced by alloying.
However, in general, one expects that the constant-
energy surfaces in the alloy change shape from those
of the pure solvent because the energy shift is not the
same for all states of a given energy, i.e., AF,(k) varies
with & for a fixed £;. We thus do not expect that, in
general, the rigid-band model will predict accurately
the shape of constant-energy surfaces in alloys. Inter-
estingly, the de Haas—van Alphen experimental results
of dilute alloys in Cu'® agree with the rigid-band model
to about 109%,. One expects some deviation from rigid-
band behavior and it would be interesting to make
further de Haas-van Alphen measurements with Ag

18 B. Segall, Phys. Rev. 125, 109 (1962).

19 L). F. Chollet and I. M. Templeton, Phys. Rev. 170, 656
(1968).

% P. E. King-Smith, Phil. Mag. 12, 1123 (1965).
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and Au as the hosts to see if nonrigid-band behavior
can be observed.

The Hume-Rothery rules have a very natural ex-
planation in terms of the band-structure effects present
in the noble metals. All explanation of these rules
assume that the alloy electronic band structure can be
described in the same terms as used for pure metals.
This means that a wave vector and its corresponding
energy E(k) can be defined. Such a definition must be
valid, not only in the dilute limit but also in the con-
centrated regime where the 3 has increased by about
a factor of 2. This can occur only if the Bloch-like
states have long mean free paths of many atomic
spacings even in the concentrated regions. In terms of
the energy shift in alloying, this requires that the real
part be much greater than the imaginary part, which, in
turn, is the definition of the weak-scattering limit. As
the discussion in this paper indicates, such behavior
follows for valence-1 metals when the conduction band
is well isolated from the nearest occupied band. Since
only the noble metals among the common metals have
this property, we can understand why the Hume-
Rothery rules best apply to the noble metals.

It is important to distinguish the noble metals from
polyvalent metals, some of whose alloys also appear to
satisfy rules which mainly depend on 3. Long mean
free paths of electrons in concentrated alloys of the
polyvalent metals may also occur. In this case the
long mean free paths occur because the impurity can
be treated by perturbation theory. Perturbation theory
is valid when the wave-function change in the vicinity
of the impurity is small.?! In the noble metals with
polyvalent impurities, one expects a large change in
wave function because there is percentagewise a large
change in the charge density in its vicinity. However,
for the case of, say, aluminum impurities (valence 3),
in lead (valence 4), the percentage change of charge
density is expected to be about 25%,, which implies a
change in wave-function amplitude of about 12.59.
Such a change one could expect to treat by perturba-
tion theory, implying that a virtual-crystal or average-
potential approximation would be valid. The scattering
is thus small because the perturbation is small.

Another way to consider the case of polyvalent
alloys is in terms of scattering phase shifts.2? For
aluminum impurities in lead, the shielding should be
free-electron-like because the gaps in lead are small.
For aluminum which has three electrons around it, the
two s states are mostly filled.?? The electrons at the
Fermi surface in the vicinity of the Al impurity have
only a small amount of s character, more p character
and some d character. Thus one expects that the I=1
and larger phase shifts are appreciable, permitting
small phase shifts to satisfy the Friedel sum rule (21).
In this case, in contrast to the noble-metal alloys, the

2L E. A. Stern, Phys. Rev. 144, 545 (1966).

2 C. P. Flynn, Atomic and Electronic Structure of Melals
(American Society for Metals, Metals Park, Ohio, 1967).
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shielding is free-electron-like and the small phase shifts
can be estimated by perturbation theory.

The criterion that we expect the Hume-Rothery
noble-metal alloys to satisfy is that the change in kg
induced by alloying be much larger than the uncer-
tainty of k. This point is discussed further in a later
paper where a detailed comparison with experimental
data will be made.

There are some positron annihilation data on Cu-Al
alloys?® and polar-reflection Faraday-effect measure-
ments on Ag-Mg alloys,?* both of which preliminarily
indicate increased Fermi-surface neck size with in-
creased 3. Such behavior is predicted by this paper.

V. SUMMARY AND CONCLUSIONS

The behavior of the noble-metal alloys in satisfying
the Hume-Rothery rules can be attributed to their
unique property of a large energy gap between the
conduction band and the nearest unoccupied band.
This fact introduces band-structure modifications on
the shielding of polyvalent impurities which has two
related effects. The shielding charge is spread out
further and the electrons at the Fermi energy have a
smaller amplitude around the center of the impurity
than expected on the basis of a free-electron model.
These cause a weaker scattering of the electrons by
the impurities. The scattering is weak enough that the
¢t matrix can be treated by perturbation theory. It is
important to emphasize that the ¢ matrix itself is quite
different from the V matrix, i.e., the actual perturbing
potential. This is because the modifications of the wave
functions near the impurities are large and cannot be
treated by perturbation theory. From the weak ¢ matrix
and thus weak scattering, it follows that it is justified
to describe the alloy in terms of & states, Fermi surface,
Brillouin-zone boundaries, energy gaps, etc. Such argu-
ments are necessary to justify the explanations!:** of
the Hume-Rothery-type properties of the noble-metal
alloys which depend only on 3.

It should be emphasized that the band-structure
effect on shielding occurs only for impurities with Z> 1.
In these cases the shielding cloud saturates the band
allowance of two electrons per atom. For impurities
with Z=0, such as noble metal in noble metal, the band
effects should not be important and the shielding should
be similar to free-electron behavior.

The arguments used here are valid only for non-
transitional impurities. It is assumed that in adiabati-
cally turning on the impurities, various & states in the
pure metal have approximately the same relative values
of energy as in the alloy. In particular, the d states
which are well below Er remain so in the alloy. This
will not be true for transition-metal impurities. For
these impurities some of the d states in the noble-

2 D. L. Williams, E. H. Becker, and P. Petijevich, Bull. Am.
Phys. Soc. 14, 402 (1969).
% J. Tracy and E. Stern (unpublished).
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metal alloys can be shifted above Ep. To estimate the
changes in electronic properties in this case one must
calculate how the d states are shifted, a much more
difficult program.

Although the small {-matrix alloys maintain to a
good approximation the same k-vector states as in the
pure metal, the shape of the constant-energy surfaces
is expected to change somewhat. However, this change
should not appreciably modify the Hume-Rothery
arguments.!-34

Because of the small ¢ matrix, the interpretation of
experiments is the same as is standard for pure ma-
terials with the following modifications. The added
constituent acts as a scattering mechanism which can
be treated phenomenologically by the standard device
of a relaxation time. The alloy has a Fermi surface
whose size and shape is such as required to enclose the
3 of the alloy using the % space of the pure solvent but
using the £(k) of the alloy.

Throughout this paper the effects of volume changes
have been neglected.
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APPENDIX

In this Appendix we give a more detailed proof that,
when the ¢ matrix of the impurities is small, the re-
sponse of the alloy to electric and magnetic fields can
be calculated by exactly the same formulas as derived
for Bloch states if the value of the energy used is that
of its adiabatically related alloy state.

A wave packet of ¥« in Eq. (20) can be formed and
from standard results® it will have a group velocity
given by

v(k)=(1/2)viE,(k), (A1)

where, it is important to note, E,(k) is the real part of
the energy of the state in the alloy. This group velocity
v is the velocity of an alloy electron in the state k. We
note that, although k does not change on alloying, the
velocity does because the energy does.

The equation of motion of the alloy state yy will be
determined by the standard method of power con-
servation.?® Electric fields ¢ and magnetic induction
fields B exert a force F on the electron,

F=eet+ev(k)XB, (A2)

where e is the electric charge of the electron. The power
input into the alloy system by these fields acting upon
an electron in state y; is

__P=F-v(k)=[ec—i—ev(k)xB}v(k). (A3)

% W. R. Smythe, Static and Dynamic Electricity (McGraw-Hill
Book Co., New York, 1950), pp. 463—4.

% F. Seitz, Modern Theory of Solids (McGraw-Hill Book Co.,
New York, 1940), p. 318.
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The rate of change of energy of the alloy system caused
by these forces on ¥ is

P=dJE (k)/dt=V.E.(k)- (dk/dt)
=v(k)-[eet+ev(k)XB].

Using (A1) we see that one solution of (A4) is
h(dk/dl)=[ee+ev(k)XB]. (A3)

The term with B does not rigorously follow from (A4)
since its dot product with v gives zero. We do, however,
have the result that B does not change the energy of
the state ¢y, i.e., B causes k to remain on a constant-
energy surface of the alloy.

That the contribution of B to (A35) is correct can be
shown from a calculation of power absorption in a
system moving with a constant velocity v(k). In such
a system the velocity of the electron is now v/(k)=0
and the electric field ¢'=e+v(k)XB. We find from
power conservation that the value of #(dk/dt) produced
by ¢ is as given by (AS). But in the moving system,
dk/dt is the same as in the stationary one, proving the
validity of (AS). This argument could be criticized
since in the moving system the electron is at rest and
the power absorption is zero. To overcome this criticism
the moving system can be chosen to have some infini-
tesimal velocity relative to the electron in a direction
other than that of v(k).

If we consider constant B fields and ¢ fields which
vary in time as the real part of e~%? where 7w is less
than interband energies, we can write a Boltzmann
equation for the alloy electron which treats scattering
effects in terms of a phenomenological relaxation time 7,

3 —
;{—}—V,f- v+Vif-(ee+ev(k) XB)r1= (o)) ,

T

(A4)

(A6)

where f(k,r) gives the occupation probability that the
state k is occupied at the point r and f is the equilibrium
distribution. We note that for wr>>1, (A6) is the same
Boltzmann equation as for the pure metal, except that
alloy energies, and thus velocities, are employed. Thus
all formulas which are derived from the Boltzmann
equation for the pure metal in the limit of wr>>1 are
also valid for the alloy when the alloy energies and
velocities are substituted for those of the pure metal.

Using (AS) and the fact that k in the alloy is the
same as that in the pure metal, the states in a B field
can be quantized following the same semiclassical deri-
vations as for the pure solid.?” One finds that the period
of the de Haas-van Alphen effect is that calculated for
the pure metal with the constant-energy surfaces of the
alloy substituted for those of the pure metal. Thus the
de Haas-van Alphen effect measures the maximum or
minimum cross section of the constant-energy surfaces
of the alloy. These are not the same as those given by
the rigid-band model unless the constant-energy sur-

27 L. Onsager, Phil. Mag. 43, 1006 (1952).
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faces of the pure metal retain their same shape in the
alloy. As discussed in Sec. IV this is not expected to be
generally the case for alloys.

Equation (A5) coupled with the fact that k in an alloy
is the same as in the pure metal indicates that w., the
cyclotron frequency, will change with alloying because
v(k) changes. A calculation of the de Haas-van Alphen
effect for an alloy as described in Ref. 28 neglects to
take this into account and is therefore in error.

We now derive a form of the Friedel sum rule for
dilute impurities with a small / matrix. Electron states
at the Fermi energy in the pure metal have their
energies shifted below £p in the alloy when the impuri-
ties add Z more valence electrons per impurity atom
than that contributed by the host atoms. This is true
because when the impurity does not change the volume,
as we have been assuming throughout, the Fermi level
remains fixed. But we know that the Fermi surface for
the alloy plotted in the same % space as the pure metal
must contain more electrons to accommodate the #n,Z
added by the impurities per unit volume, where #; is
the number of impurities per unit volume. The original
Fermi surface enclosed less electrons, and thus, on the
average, the energies of these states in the alloy must
be less than Er. A state which in the pure metal has
an energy Ep— AE,.(k) will be at the Fermi surface in
the alloy. We require that the number of new states
enclosed by the alloy Fermi surface just accommodate
the electrons added by the impurities,

2 dS AE, (k)
h (27!')3 _/;g,, Vo(k)

where vo(k) is the velocity in the pure metal and dS is
an element of area in & space on the Fermi surface of
the pure metal. For a free-electron gas, (A7) reduces
to the usual form of the Friedel sum rule in terms of
phase shifts.

A general expression for AE(k) is*®

AE(K) = k| V[¥w)/(k|¢x), (A8)

where V=3, V, is the potential introduced by the
impurities. In the dilute limit we can expand all
quantities in (A8) as a power series in N;, the number
of impurities. Doing this and keeping just the lowest
terms, we have

n;Z= - ) (A7)

k| V] =2 (k| Valp) =Nt (A9)
(k|¢r)=140(N/N).
Substituting (A9) into (A8), we find
AE(k)=Nily. (A10)

Substituting (A10) into (A7), our form for the Friedel

28 A. D. Brailsford, Phys. Rev. 149, 446 (1966).
2 Reference 7, p. 7.
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sum rule becomes

7 2 A Retkk
#(2r)? /EF wk)

We note from (A7) that the average value of Refyy
depends on only Z, the valence charge difference be-
tween the impurity and the host, and not on the details
of the potential. When Z=0, #,x can be small and one
expects that it can be calculated from perturbation

(A11)
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theory. However, for Z>0 in the noble metals, fxik
cannot be small and, as we argued in Sec. II, cannot
be calculated from perturbation theory. Nevertheless,
the total scattering by the ¢ matrix could still be small,
i.e., txxs, could be small for most k’ as discussed in Sec.
II. The Friedel sum rule fixes the average value of fxk
at an appreciable value for Z>0 and fy.- then must go
rapidly to small values as k’ moves away from k. Thus
¢ produces scattering which is strongly peaked in the
forward direction.
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We consider the pseudopotential interaction between the s-like electrons in metals that also contain d
electrons, using Hubbard’s hybrid representation of the Korringa-Kohn-Rostoker (KKR) band-structure
method, in a manner similar to that recently employed by the author in discussing the total energy of d-band
metals. The interaction is formulated as a sum of two parts: (1) a direct interaction between orthogonalized
plane waves (OPW'’s), which is similar to the “transition-metal pseudopotential” recently defined by
Harrison from a modified OPW viewpoint, and (2) an indirect interaction via the d electrons, similar to
Harrison’s “hybridizing terms.” We then combine these two parts and arrive at the KKR-Ziman form
of the pseudopotential as the resultant effective interaction. The author’s previous result for the total
energy of an alkaline earth or noble metal is reinterpreted as the consequence of using the KKR-Ziman

pseudopotential with a d-scattering resonance.

I. INTRODUCTION

HIS paper is concerned with calculating the

effective pseudopotential interaction between
the s-like electrons in transition and near-transition
metals, where the presence of the ¢ bands in the
electronic structure must be taken into account.
Harrison! has treated this problem by considering the
band structure from a modified orthogonalized-plane-
wave (OPW) point of view, where the basis set of
functions contains both OPW’S and atomiclike d
functions?; he has in this way derived an effective
pseudopotential interaction between the OPW states.
Here we begin instead with the band structure repre-
sented by Hubbard and Dalton’s** hybrid secular
equation, which is based on a transformation of the
Korringa-Kohn-Rostoker (KKR) method, and we
formulate the pseudopotential interaction in these
terms; the procedure employed is a generalization of
that used by the author in deriving an expression

* Supported in part by the U. S. Army Research Office (Dur-
ham), under Contract No. DA-HC04-69-C-0007.

1I'W. A. Harrison, Phys. Rev. 181, 1036 (1969).

% See, e.g.,, R. A. Deegan and W. D. Twose, Phys. Rev. 164,
993 (1967).

3 J. Hubbard, Proc. Phys. Soc. (London) 92, 921 (1967).

4 J. Hubbard and N. W. Dalton, J. Phys. C1, 1637 (1968).

for the total energy of the alkaline earth and noble
metals.’

We obtain the pseudopotential interaction as the
sum of two parts: The first part represents a direct
interaction between OPW’s and is similar to Harrison’s!
transition-metal pseudopotential; the second part
represents an indirect interaction via the d electrons,
similar to the hybridizing terms of Harrison’s treatment.
These two parts are then combined, and it is shown that
the resultant effective pseudopotential reduces to the
KKR-Ziman® (KKRZ) pseudopotential containing the
full phase shift, including the d-scattering resonance,
which is the result to be expected. Our previous ex-
pression for the total energy of an alkaline earth or
noble metal can then be reinterpreted as the con-
sequence of using the KKRZ form of the pseudo-
potential with a d-scattering resonance.

II. EFFECTIVE INTERACTION
BETWEEN OPW’S

In the KKR method of band-structure calculation
the muffin-tin approximation is used; the one-electron
crystalline potential is approximated by a sum of non-

§ R. A. Deegan Phys. Rev. 186, 619 (1969).
6 J. M. Ziman, Proc. Phys. Soc. (London) 86, 337 (1965).



