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Green's Function for an Electron in a Lattice*
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The dynamics of an electron in a solid (with or without uniform external electromagnetic fields) is studied
by confining attention to a single lattice cell. The Green's function is presented and computed in the limit of
the periodic potential going to zero.

I. INTRODUCTION

'HE dynamics of an electron in a solid is studied
by confining attention to a single lattice cell.

The periodicity of the lattice is built into the Green's
function so that periodic potentials, although extending
throughout all space, may (depending on the potential)
be thought of as small perturbations.

The feasibility of this restriction is to be expected
because of the physical equivalence of all lattice cells.
However, in the presence of uniform electromagnetic
fields, although physical equivalence is retained, the
potentials of the field destroy the mathematical equiv-
alence. In this paper, essentially by doing something
similar to a gauge transformation, we present a Green's
function for a single cell even in the presence of fields.

There is some similarity of our method to Zak's' kq
representation. He too is able to deal with a single cell.
As in his work, an "extra" three-dimensional continuum
of parameters (k) therefore appears. In his representa-
tion they are additional variables, to us they are
boundary conditions (just as they are for Bloch wave
functions). Related to this work and a precursor to
Zak's is the paper of Pradduade, ' who likewise found it
useful to treat k as a variable for the purpose of retaining
formal periodicity in r.

In the limit of the periodic potential going to zero,
but retaining the periodicity of the lattice (by imposing
boundary conditions in the cell), we obtain the Green's
function in closed form (with or without electromagnetic
fields) as a multidimensional Jacobi theta function.
Some tentative applications of this form are presented.

2. GREEN'S FUNCTION FOR A SINGLE CELL

Ke wish to confine attention to a single cell W of the
lattice and to express physical results for the entire
lattice in terms of functions on tV.

In the absence of magnetic or electric fields all
cells are both mathematically and physically equivalent.
Under these circumstances we can appeal to a general
theory' for the construction of Green's functions on W.
There is a periodic potential V which is defined through

*Work supported in part by the National Science Foundation
and the U. S. Army Research OfBce (Durham).' J. Zak, Phys. Rev. Letters 19, 1385 (1967); Phys. Rev. 16S,
686 (1968); 177, 1151 (1969).

2 H. C. Pradduade, Phys. Rev. 140, A1292 {1965).' L. Schulman, Phys. Rev. 1?6, 1558 (1968), Sec. 3.

all space (R' and which, in effect, defines TV. Similarly
defined are the Bravais lattice vectors

y, = jiai+ j~R2+ j3R3, (2.2)

where j=(ji,ji,j3) runs through triples of integers.
Such a sum for V=0 and in one dimension was carried
out in Ref. 3; it may be quite singular but can be given
meaning (as the boundary value of an analytic function)
by adding a small positive imaginary part to the mass
parameter that appears in G, . Obviously,

Gw(k; x&+R;, t2 xi tl)
= exp(iR,"k) Gs (k; xi, t~, xi, ti) . (2.3)

Now for each k, a Bloch function 4'k(x) can be con-
sidered to be defined on lV alone. It is thus a solution of
Schrodinger's equation (in W but of the same form as
in (R') with the boundary conditions

+k((+R, t) = exp(ik R)%'&(g,t), (2.4)

where R is any of the R, , and g is on the "left" boundary
of H', i.e., let B'aV=boundary surfaces of TV, then the
left boundary —=8 Wi=BW itiiW; —&iiW= ((QWt (—R;PW for some R;}.4 Of course 4 may be trivially
taken to be of the form

4'~(x, t) = exp(ik. x)uq(x, t), (2.5)

with u periodic, but for later purposes it suits us onl~ to
impose the condition (2.4).

Gs (k) is now seen to have been defined just so as to
propagate solutions of Schrodinger's equation with
boundary conditions (2.4).

Since the k in (2.4) is essentially the same as the k in
Zak's kq representation, it is worth remarking how the
present approach regards the appearance of three extra
degrees of freedom (ki,k, ,k, ) in the wave functions.

' lf x =P a;R;, then W is defined by 0&n;&1, i =1, 2, 3; on 0th'
at least one of the o., is 0 or 1; on 8gW one or more of the n; is i.
1139

where R; are the primitive translation vectors. A
Green's function G, can be defined for all of (R' (which is
the covering space for W, cf. Ref. 3) with the potential
V. This is now used to define Green's functions Gg on
W. I et xi, xi+ W. For each (arbitrary) k we can define

Gs (k) x.,ti, xi, ti)

=Q exp( —i',"k) G, (xi+ted;, t2; xi,ti), (2 2)
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They are simply the three-dimensional continuum of
boundary conditions that are made possible because the
space 8' is not simply connected; their particular form
arises because TV has the fundamental homotopy
gloup Z ~

G, can be recovered by integration in the first
Brillouin zone:

G, (xl+p, , t2, xl, tl)

= (1/V) exp(ik p~) Ga (k; x„tl, xi,tl)d'k, (2.6)

where V is the volume in k space of this zone. )An
over-all phase ambiguity can be used to ensure that
Ga (xl+R, tl, xi+ R, tl) =Ga (x&,t&, xl, tl) so that xl can
also be selected anywhere in tR'.1

Various applications of this formalism come im-

mediately to mind. %e can give an integral equation,
equivalent to Schrodinger's equation and entirely
defined in 8', which incorporates both the usual sort of
initial conditions and also the periodicity. If

II=Ho+II I

then in the usual way it follows that

(2.7)

G(t) =Go(t) i GO(—t r) H l(r) G—(r)dr, (2.8)

where G and Go have the same k and are defined by'

(2.9)

For example, if Ho p'/2m, then ——Go can be evaluated
in closed form. If g denotes the Green's function for a
free particle,

g(X2,t2 j Xl)tl) =g(xl —Xl, t2 —tl),

g(y, t) = (m/2lrit)"' exp(imy'/2t)

(of course g=0 for t(0), then letting y=x& —xl,
t = t2—ty gives

Ga, (k; x„t,; x„tl)= (m/2~it)'I'

XP expL(im/2t) (y+p;)' —ik p,). (2.10)

~N/2

P exp( a—'(s+n, T—'(s+n))), (2.12)
(det T) l/2 n

where z and n are X-tuples and T is the X)(.ttt' matrix

(t;,). The components of n run through the integers
and (s,n) =P; ls~n=;

3. ELECTROMAGNETIC FIELDS

If a uniform electromagnetic field pervades the lattice,
then

H= (1/2m) (p—eA)' —E.x+ V(x), xg Qtl, (3.1)

with K=const and A=~8)(x, 8=const. V is periodic.
Although all cells are still physically equivalent, the
appearance of potentials has introduced a mathemat-
ical inequivalence. However, we shall find that it is
still possible to write a Green's function for 8' alone.

Ga- is supposed to satisfy (2.9) with the Hamiltonian
(3.1). However, the expansion (2.2) is no longer
possible since G, (xl+p, , 4; xl, tl) no longer satisfies (2.9)
in W. However, the equation that G, satisfies I (2.9) in

W+p, ] is related to (2.9) in W by a gauge transforma-
tion. Making use of well-known procedures, v we modify
G, (x&+p, , 4; xl, tl) so that it satisfies Schrodinger's
equation in W. Instead of G, (xl+ p, , tl, xl, tl), we use

ezpI ieA, (x—. xl, tl —t,)jG,—(x&+p, , t&, xl, tl), (3.2)

with
A.,(x,t) =p," (tE+-,'xX8). (3.3)

A.; is the generator of the gauge transformation relating
H in lV to H in 8'+y, . G~ can now be expressed as

Ga (k; xl, ts, xl,tl).
=g exp( —ip; Ll+eE(t, —t,)+-',e(x,—x,)X 8))

XG.(X2+pj, t2 j xlytl) . (3.4)

which can be found in Bellman. For example, they
satisfy a generalization of the fundamental theorem

for theta functions which is useful for obtaining the

energy eigenfunctions from the Green's functione:

&(s,T)=2—, eWP —(n, Tn)+2 l(n s)j

The Jacobi theta function is defined as

Hl(s, t) = g exp(isPt)exp(2wits) . (2.11)

The considerations of Sec. 2 now go through, and the
wave functions propagated by G~ have the property

4 (x+p, , t) =exp[ik p+ieA, (x,t)]lp(x, t) (3.S)

The cV-dimensional generalization of this' replaces l' by—Q;,,=P t;,t;t, and st by Q;=P s,t;. Obviously Ga 0 is
such a multidimensional theta function. These functions
are the subject of a well-developed theory, references to

~ The operator 1 in Eqs. (2.9) is g; exp( —ik.p;) 5(x2+y, —x1).
6 R. Bellman, A Brief Introduction to Theta Functions (Holt,

Rinebart and Winston, Inc., New York, 1961), See. 61.

for p, one of the lattice vectors. (Note: For xg W—BaW
this property does not hold. ) In this way boundary
conditions enter the problem in a dynamical way.

For perturbation theory in this framework, Eqs.

' L. D. Landau and E. M. Lifshitz, Quantum Mechanics
(Addison-%'esley Publishing Co., Inc. , Reading, Mass. , 1965), p.
422,
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(2.7) and (2.8) are again relevant, . Ta,king

IIO= (1/2m) (p—eA)', (3.6)

where q, are reciprocal-lattice vectors

q, = p j.K. , (3.9)
a result of Glasser' can be used to obtain once more a
closed-form expression for t 0. Glasser used the path-
integral method to obtain the Green's function for a
particle (moving in cft') in a magnetic field. It is9

the dyadic D is

D= (4/mes)(l tan-', cot+ )(~&a( ta—nicot)) (3.10)
aild

u=k+-', m x,XB. (3.11)

im eB eB/)
Xexp — cot

I
LBX (x —xi)]'

2 2m 2m)

1 . e
+—

I 8 (x,—xi)]'——S.x)Xxi . (3.7)
t m

Using g for G, in (3.4) (with E=O) leads to an expres-
sion for Gq as a multidimensional theta function. Before
writing this explicitly we introduce some notation. I et

cd = eB/m, (R;),=R;„,
R„K„=2wcl„„, (K„)i——E i,

(A);, =A, ;, (g) =A„B„, y=x.—xi.

Thus (p,);=ji,Ri, c. If each term in (3.4) is written in
the form A exp(i5, ), then

A = (m/2irit) 3t'(-,'(ut) csc (-',(ut),

5;= —(y+p;) (k+-,'mcvx2XB)

+-,'~cot(-,'cd/)(y+p, ) (I—g) (y+p, )

+(m/2t)(y+p). 0 (y+p)+y k

Since the matrix for the reciprocal-lattice vectors
satisfies RE=2~ 1,

(y+p;), =t (yE)„+2irj ](It.—');.
Absorbing the X ' into the various vectors and dyadics
in 5, , it is obvious from (2.12) that 5; is just the argu-
ment of the exponent appropriate to the theta function
definition. The modular transformation (2.12) can be
applied, and a tedious calculation leads to the result

Gs (k; x2,t. ; xi,0) = (2ir) '(detZ) sec(scot) exp(iy k)

XQ expL —i-', (q,+u) D. (q, +u)+iq,"y], (3.8)

M. I . Glasser, Phys. Rev. 133, B831 (1964}.The same formula
appears in R. P. Feynman and A. Hibbs, QNantues Mechanics and
I'ath Integrals (McGraw-Hill Book Co., New York, 1965},p. 64.

9 This provides yet another example of an exact time-dependent
Green's function that is equal to A e' /~, where S is the action along
the classical path (i.e., that satisfying the equations of motion),
and A is the square root of the Van Vleck determinant Pdet —O'S/
8{x~};8(x&};g.In Refs. 3 and 8 will be found further remarks on
this subject.

For ~&0 one could, in principle, obtain similar informa-
tion by Fourier transforming (3.8), but the complicated
t dependence in D makes this dificult.

Each term in the sum over j in (3.8) is recognized as
arising from a corresponding one in (3.12), as cd departs
from zero. If in a single summand in (3.12) we set
x2= x& and integrate over W', then by the normalization
of 4', what is left is exp( —iEi„t). To lowest order in co,

a similar term can be obtained from the summands in
(3.8), and we use this to compute the energy shift in
a given band:

aF., =-', P R, .BX(q,+k). (3.13)

Departures from rigor in this expression are essentially
due to band crossing. Another way of saying this is
that the approximation ~ ~ 0 also depends on the size
of t Therefore . (3.12) cannot be rigorously identified
with the approximated version of (3.8) term by term.

One can obtain the partition function Z= Tr(c, &~)

from this Green's function with the usual identification
it —& P= 1/AT and with integration over x= xi ——x2. For
small co and high temperature the integration goes
through as above yielding Z with all band-crossing
eEects exactly accounted for. The integral over k for
the computation of Z again yields a theta function.

e. PROSPECTS

An aspect of the foregoing analysis that is amusing is
the incorporation of boundary conditions into the
dynamics of the problem. This is already apparent in
Zak's theory. If the presently proposed method finds
practical application, it will probably be because the
free (or free plus magnetic) part of the problem can be
solved in closed form as a multidimensional theta func-
tion. These functions are known for their convenience in
computation' and also for the illumination they provide
when the modular transformation is applied. Further-
more, remaining in a single cell of the lattice (another
feature we have in common with Zak) shouM have the

Obviously this too can be compactly expressed as a
theta function. For co=0, this form of the Green's
function can be used to read off the energy levels of
the system by comparison with the general expansion

G(k; x, ,t; x,,O) =Q qk;(xi)q i„*(xi)exp(—cFi,g/). (3.12)
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advant. age that introducing the periodic potential will

not have such a traumatic effect on the nature of the
problem since the periodicity has already been ac-
counted for and built into the Green's function.

A specific physical situation where the results of
Sec. 3 may prove useful is the problem of magnetic
breakdown. ' Under the dominating inAuence of a

"J.M. Ziman, Principles of the Theory of Solljs (Cambridge
University Press, Cambridge, England, 1964), Sec. 9.8.

strong magnetic field it may be reasonable to consider

the lattice potential to be a small perturbation.
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The %arren short-range-order (SRO) parameter of a binary alloy with arbitrary composition is studied
for the case of static, configurational interaction with two-body potentials of arbitrary range. A well-defined
straightforward procedure for generating a consistent high-temperature series expansion in powers of a
dimensionless parameter related to T./T is derived. While the existing theories are correct only to the
linear power in T,/T, our results are worked out exactly to the third power in this ratio. A plausible in-
version of the series, which in the linear approximation corresponds to the Clapp-Moss theory, is given. It
is shown that, at least up to the second order in T,/T, such an inversion corresponds to the predictions of a
self-consistent decoupling approximation, Using a technique similar to that first introduced by Kramers
and Opechowski, the order-disorder transition temperature T, is computed as a function of the system
composition for lattices of cubic symmetry with nearest-neighbor interactions. A remarkable prediction of
this study is the suggestion of the existence of a critical concentration below which the system does not
order (or separate, as the case may be). For the special case of positive nearest-neighbor interaction in
lattices of cubic symmetry, we have also computed the nearest-neighbor SRO parameter for several corn-
positions and temperatures. The results of the present study typically renormalize the corresponding results
of the Clapp-Moss theory by several percent. For the stoichiometric composition m& & = m& &, the results of
the present approximation are compared with the very reliable corresponding results of Fisher and Burford
(who carried out a careful evaluation of the systematics of the elaborate high-temperature series available
for the Ising ferro- and antiferromagnets, i.e., for m&-~&=m&~~). In general, the quantitative differences
between I isher and Burford's results and those of the present approximation are smaller than the corre-
sponding differences for the linear approximation of Clapp and Moss. An interesting conclusion of the
present analysis is that, except for the special case of the nearest-neighbor interactions, the structure of the
Fourier transform of the SRO parameter a(K) is difl'erent from that conjectured by Clapp and Moss. As
such, the originally compelling argument in favor of the Clapp-Moss assumption, that from experimental
observations of a(K) the ratios of the strengths of the interparticle potentials for different separations are
determined with a higher degree of reliability than the actual magnitudes of the potentials, is found to be
somewhat weakened.

I. INTRODUCTION

HE problem of determining the statistical correla-
tions in disordered binary alloys has received

much attention in the literature. ' Clapp and Moss' have
recently reported a new solution of the correlation func-
tion. This solution is applicable to alloys of arbitrary
composition with two-body potentials of arbitrary

* Supported by the U. S. Atomic Energy Commission.
' F. Zernike, Physics 7, 565 (1940); T. Oguchi, J. Phys. Soc.

Japan 6, 31 (1951); R. J. Elliott and W. Marshall, Rev. Mod.
Phys. 30, 75 (1958); J. M. Cowley, Phys. Rev. ?7, 669 (1950};
120, 1648 (1960); 138, A1384 (1965); D. O. Christy and G. L.
Hall, ibid. 132, 1959 (1963); R. Brout, Phase Transitions (W. A.
Benjamin, Inc. , New York, 1965).

2 P. C. Clapp and S. C. Moss, Phys. Rev. 142, 418 (1966).

range. However, for arbitrary composition this solution
turns out to give only the dominant temperature-
dependent term correctly. (For stoichiometric composi-
tion, the next-order temperature-dependent term is also
correct. ) Of course, at suSciently elevated temperatures
the higher-order terms contribute negligibly to the corre-
lations, and as such the Clapp-Moss solution can be
expected to be adequate. As the temperature becomes
comparable to, or less than, about 2T„where T, is the
transition temperature, these additional temperature-
dependent terms become increasingly important.

Fisher and Burford and Moore et a/. ' have reported an

' M. E. Fisher and R. J. Burford, Phys. Rev. 156, 583 (1967);
M. A. Moore, D. Jasnow, and M. Wortis (to be published).


