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Relativistic Band Structure of Gold*
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The electronic band structure of metallic gold has been calculated using a relativistic form of the Korringa-
Kohn-Rostoker method, including a four-component spinor wave function and the full Dirac central-6eld
Hamiltonian. The bands are compared with those of Schlosser s nonrelativistic calculation, using the same
muon-tin potential. The derived cross-sectional areas of the Fermi surface are in general agreement with
Schoenberg's de Haas-van Alphen measurements. The allowed dipole transitions are used to interpret the
optical measurements by Beaglehole. The peaks in the imaginary part of the dielectric constant being about
1 eV higher than our calculated band gaps, we conjecture that indirect transitions play an important role.

I. INTRODUCTION
' 'N the study of heavy elements, perturbation theory
~ ~ becomes inadequate for the treatment of relativistic
eA'ects such as spin-orbit coupling and mass-velocity
and Darwin corrections. ' ' To investigate the band
structure of gold, we use the four-component Dirac
Hamiltonian in conjunction with the Korringa-Kohn-
Rostoker (KKR) or Green's-function method. Gold was
chosen because of its large atomic number and its
importance in completing our understanding of the
properties of the noble metals and their alloys. The
present authors and associates have previously calcu-
lated the band structures of several ordered and dis-
ordered IB-IIB alloys. 4

In Sec. II we present the mathematical formalism
based on the work of (KKR), ' Ham and Segall (HS),'
and Onodera. ' In Sec. III we describe the actual calcu-
lation, the results found, and we compare the latter
with the available de Haas —van Alphen and optical
data.

II. THEORY

The relativistic formalism divers from the nonrela-
tivistic KKR treatment in that the Schrodinger
Hamiltonian inside the mufFin-tin sphere is replaced
by the D irac central-6eld Hamiltonian. The wave
function is then a four-component spinor. One gen-
erally constructs (at selected k points of the Brillouin
zone) linear combinations of these wave functions
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belonging to the various irreducible representations of
the crystallographic double-point groups, thus reducing
appreciably the computational labor.

In order to simplify the physical problem, the crystal
periodic potential is chosen to be spherically symmetric
and of the muffin-tin form:

V (r)= V (r) Vo, r &r—

where V, (r) is the atomiclike potential centered about
a particular lattice site, Vo is the constant average
potential between sites which has been subtracted from
V(r) for calculational purposes, and r„ is the muffin-tin
radius which has been chosen to be one-half the nearest-
neighbor distance. V, (r) has been calculated from a
relativistic self-consistent atomic charge density, as
supplied by Cromer, ' coupled with a Lowdin-Alpha-
type expansion in spherical harmonics to include the
eA'ects of 14 nearest neighbors. The exchange term in
the potential was calculated using a 3 coefFicient in
front of the Slater (p)"' approximation. This latter
approximation was used for both the atomic as well as
the crystal exchange efI'ects.

We use the Dirac central-field Hamiltonian (in units
of m=c=h=1)

X=e.p+p+ V(r).

This Hamiltonian commutes with the total angular
momentum J and the operator EC=P(c (+1). This
lattice operator is particularly useful in that it speci6es
both J and l:

E&0:J=t——,', l=K, t=l—1;
K(0:I=/+ ,', f= —(K+1)-, l= 3+1. (~)

The crystal eigenvalue problem can be written as

—(a p+p W)f(k, r)= V(—r)f(k, r), (4)

with V(r) = V (r+R ), where R„ is a lattice translation
vector. The four-component spinor f(k,r) must satisfy
the Bloch condition

p(k, r+R„)= ~p(r+R„))q= e'" a tp(r))q,

D. T. Cromer {private communication}.
9 P. O. Lowdin, Advan. Phys. 5, 1 (1956).
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which leads directly to the boundary condition

~1k(r') ~(k(r)
~ik ~ Ro

) (6)

is an eigenfunction of Dirac's central-field Hamiltonian.
As a trial function in (7), we shall use the following:

fK(r)
~|k(r))~ =2 ~' CK HK „, (11)

ZgK(r)5KK,
where k is the wave vector of Eq. (4), r and r' are
conjugate points on the polyhedron surface, and Ro is
the translation vector joining points r and r' (see KKR).

The boundary-value problem of Eqs. (4)—(6) can
be solved using the Green's function g(r, r'), which is
the solution of the same boundary-value problem in
which the right-hand side of Eq. (4) is replaced with
the 5 function b(r r'). By—means of the Green's func-
tion, this boundary-value problem is converted into
an integral equation satisfied by the wave function
and having as a kernel K(r,r')= c)(r,r')V(r'). KKR
have shown that this integral equation can be directly
obtained from the variational principle RA=0, where

where 5~, ~ means that we must replace K by —K in

TABLE I. Energy eigenvalues in rydbergs at the various E (in
units of 2m-/e) points of the face-centered zone. The notation
used for the symmetry points is that of Elliot.

Z (K)K

i'e+ (0,0,0)

8 (K)
—0.795
—0.545
—0.645

b,v(0.4,0,0)—1.18

I'(t+{0,0,0) —0.58
—0.75

b.7(0.2,0,0) —0.77
—0.665
—0.57

1'7+{0,0,0)
As(0. 2,0,0)

—0.67
—1.11
-0.74
—0.59
—1.0
—0.725
—0.62
—0.96
—0.68
—0.58

h7 (0.6,0,0) —0.845
—0.57
—0.50
—0.875
—0.53
—0.45
—0.89
—0.52
—0.42
+0.2—1.15
—0.765
—0.685
—0.61
—0.585

A=lim A,
e—+0

0 0 (0.4,0,0) 67(0.8,0,0)

dr P"'(r) V(r)
64{0.6,0,0)(rf—24 x7+ (1,0,0)

&& 4 (r)— dr' g(r, r') V (r')f(r'), (7) a, (o.s,o,o)
'& rs—e

Zg (0.125,0.125,0)—0.94
-0.56
—0.485

xs+(1,0,0) -0.94
—0.51
—0.001 Z4 (0.250,0.250,0) —1.05

—0.775
—0.725
—0.64
—0.555
—0.72
—0.52

—0.37
—0.845
—0.795
—0.74
—0.64
—0.58
—0.425

xs-(1,0,0)
a(0.5,0.5,0) A4+, f)+ (0.375,0.375,0.375)(a p+P) ~s,k )=k '(s,k ) y

the appropriate Green's function of Eq. (7) is

A4+, g+ (0.250,0.250,0.250) —0.71
—0.5459a

K (0.75,0.?5,0.75) —0.87
—0.835
—0.675
—0.54
-0.49
—0.23
—0.97
—0.685
—0.67
—0.56

where v is the volume of the polyhedron, and where A4+,g+(0.125,0.125,0.125) -0.73
—0.57

k„=k+K„, k„'= (1+k ')'('
A4 (0.375,0.375,0.375) —0.38Q (5/8, 3/8, 4/8)

1+4„' '" X(s)
(r~s,k,)= e'"»' (9b)

2k. ' Pe k./(1+k. ')jx(s) Wv(1,0,0.5)

W4(1,0,0.5)

—0.18
and A4 {0.125,0.125,0.125) —1.13

—0.76
—0.67
—0.585
—0.97
—0.76
—0.64
—0.61
—0.94
—0.69
—0.52
—0.16
—0.54
—0.73
—0.43

—0.16

As {0.250,0.250,0.250)

for s=&~, respectively. The Green's function of Eq.
(7) satis6es the boundary conditions of Eqs. (3) and
(5) and has the properties

(1") l. -(o.s,o.s,o.5)
r.4+,,+{0.5,0.5,0.5)

Within the muon-tin sphere, the radial wave function

where the limiting process required by the singularity
of the Green's function is self-understood, and the
integration is only over the region r &r since the shifted
potential V(r) vanishes for r)r Noting. that the
plane-wave solution

~
s,k„) of the Dirac equation for a

free particle is
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FIG. 1. Relativistic band
structure of gold.
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the Kubic harmonic factor 8~ „,and v here

ttZ, Q &K', y
' ~K' (12)

is the basis function" of the o, th irreducible representa, —

tion.
The radial functions sa, tisfy two coupled differential

equations. The analysis from this point on follows the
same pattern (variational principle, limiting process,
etc.) as the KKR and Ham-Segall papers, with the
appropriate relativistic adaptation. Details can be
found in Onodera's paper' or in Sommers's doctoral
dissertation.

The determination of the constant coeKcients in

(11) leads to a secular determinant, the zeros of which
yield the energy values at a given k point, for a given
irreducible representation of the symmetry group of
that point.

A complete program was set up to perform these
calculations on a CDC 6600. This program is availa, ble
on request from the authors.

III. RESULTS AND DISCUSSION

The electronic band structure of gold was calculated
at several points of high symmetry and at other general
points of the fcc Brillouin zone. The resulting bands
are shown in Fig. i and Table I. These bands may be
compared with the nonrelativistic band structure which
was computed by Schlosser" using the same choice of
crystal potential but with an augmented-plane-wave
method. The energies at several points of the zone
were checked against Schlosser's and agreed with his
results when the limit of c~ ~ was taken in the
relativistic program. This limit and the insertion of
single group representations allows one to convert the
"For a list of basis functions see Y. Onodera and M. Okazaki,

J. Phys. Soc. Japan 21, 2400 (1966)."H. Schlosser (private communication).

relativistic program to the nonrelativistic one. A com-
parison of Fig. i with the nonrelativistic case showed
that the bands in the relativistic case were shifted
toward lower negative energies by about 0.22 Rx for
the lowest-lying I' states, to about 0.1 Ry for the n'

bands. These energies are given with respect to a
shifted constant potential of Vo ———1.082 Ry in both
cases. This downward shift is to be expected since the
states of lower angular momentum should be affected
to a greater extent. To see this, one transforms the
Dirac equation by means of a double Foldy-Wouthuysen
transformation and then notices that the mass-velocity
and Darwin terms are largest when the electron is near
the nucleus. For small r, the atomic orbitals go as r' and
are thus largest for the 5-like states. Of course, in the
crystal the electron wave functions are admixtures of
diferent angular momentum states and thus the energy
corrections will be symmetry-dependent.

The Fermi energy was determined by expanding the
surface integral J'k'(Q, Ep)d 0 in Kubic harmonics" and
by interpolating this integral to the total number of
conduction electrons. In this manner the Fermi level
was found to lie at I'"F———0.409 Ry with respect to a
constant potential Vo ———i.082 Ry.

The band structure of gold is more like that of
copper than that of silver. In both copper and gold the
width of the c3' bands is much wider, and the top of
these bands is nearer the Fermi surface, than in silver.
(the gold d bands are even wider than the copper d
bands').

priori the Fermi surface is expected to be similar
to that of Cu, i.e., to be formed of a "spherical belly"
sprouting eight necks towards the hexagonal faces of
the Brillouin zone. The specific geometric parameters
of the Fermi surface of Au max be determined from
our calculated band profiles. We have estimated the

"D. D. Betts, A. B. Bhatia, and M. %'yman, Phys. Rev. 104,
37 {1956).
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TABLE II. Comparison between our (110) and (111) cross-
sectional areas and those measured by Schoenberg (the values
listed are in units of 10"cm~).

~ K [3/4, 3/4,0]

H L. to plane of paper
(g ) in plane of paper

Experiment
Theory
Free electron

Belly A11o

4.89
4.83
4.5

Neck A»1

0.154
0.172
none

The (lOO) cross section of the Fermi surface.

X lOO

t

K [3/4. 3/+0]

HL, to plane of paper
q) in plane of paper

The (IIO) cross section of the Fermi surface.

FIG. 2. Fermi-surface contours.

cross-sectional areas Happ of the belly and A~~~ of the
neck. Table II provides a comparison between these
calculated cross sections and those measured by
Schoenberg" in his de Haas —van Alphen experiments
of Au (The values listed are in units of 10'6 cm 2.)
These cross-sectional areas are also shown in Fig. 2
(the area of the dotted circle is equivalent to the belly
cross section).

Following Cooper, Khrenreich, and Philipp, " we
attempted to use the calculated energy bands to
explain the optical absorption data of Beaglehole. "

"D. Schoenberg, Phil. Mag. 5, 105 (1960).
~4 B.R. Cooper, H. Ehrenreich, and H. R. Philipp, Phys. Rev.

138, A494 {1963)."D. Beaglehole, Optical Properties and Electronic Structure of
Metals and Alloys (John Wiley 8t Sons, Inc. , New York, 1965),
p. 154.

According to these data, there are three peaks appear-
ing in the imaginary part of the dielectric constant:
at 3, 3.5, and 5 eV. Using the calculated bands, we
could assign these peaks to three possible direct transi-
tions: (1) transition Q3 (near Lq+) to Q4 band which
intersects the Fermi level, (2) transition X7+ to X6-,
and (3) from K~ right below the Fermi level to K5
right above the Fermi level. However, the erst two
transitions are too small to account for the experi-
mental results. Since there are no Van Hove critical
points in the joint density of states in the X direction,
one would expect the dipole transition probabilities to
be much smaller in the E direction than in the X or I.
directions. Therefore, the third possibility is also un-
likely. Thus, comparison with experimental data
strongly suggests that the indirect transitions must
play an important role.

In conclusion, while our calculated bands are in
excellent agreement with the de Haas —van Alphen
data and corroborate (at the limit c —+ ~) Schlosser's
nonrelativistic calculations, they cannot provide a
satisfactory interpretation of optical experiments if
one confines oneself to the vertical-transition scheme
of Cooper et al."Appeal must be made to many-body
eRects and to phonon-assisted indirect transitions.
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