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The orthogonalized-plane-wave (OPW) expansion converges poorly for ionic crystals and also for d-bands

in transition metals even when modified by the addition of an atomiclike d function to the basis set. The
augmented-plane-wave (APW) expansion converges rapidly, but requires the crystal potential to be ap-
proximated by an unphysical spherical mufFin-tin potential. We here develop a modified APW expansion
and compare its convergence with the other methods. The modified APW converges with the rapidity of
the usual APW but, like the OPW, is applicable to nonspherical potentials.

I. INTRODUCTION

HE basic mathematical difIiculty in calculating
energy bands lies in finding a basis set in which

an expansion of the crystal wave functions is rapidly
convergent. The difFiculty arises from the fact that near
the lattice sites an expansion in atomic wave functions
is appropriate, whereas in the interstitial regions a
plane-wave expansion is rapidly convergent. Several
methods of overcoming this dilemma are well known;
all of them are closely related to one of two basic
methods. ' The augmented-plane-wave (APW) method"
was first proposed by Slater in 1937. It consists of an
expansion in basis functions made up of a single plane
wave in the interstitial region and of a sum of exact
solutions to the Schrodinger equation in a spherical
region about each atom with coefIicients chosen to make
the APW basis function continuous at the boundary of
the sphere. This method seems to converge rapidly in
most cases, 4 whether used for simple metals, transition
metals, semiconductors, or ionic crystals. Its major
drawback is that the crystal potential must be approxi-
mated by a mufFin tin, i.e., it must be spherical within
the atomic spheres and constant outside them. It can be
extended to the warped muffin-tin potential, which is
spherical within the atomic spheres but not constant
outside the spheres. ~' Such a potential, however, is even
less physical that the simple muffin tin (although it may
lead to energy bands in better agreement with experi-
ment), because it is not an analytic function.

The orthogonaiized-plane-wave (OPW) method in-
troduced by Herring~ in 1940 consists of expanding the
valence wave functions in plane waves which have been
orthogonalized to the occupied core states. This intro-
duces the proper atomic character into the basis set,
and convergence is fairly rapid for simple metals and

* Research sponsored by the U. S. Air Force OfIice of Scientific
Research, Once of Aerospace Research, under Grant No. AFOSR
68-1506.' We are excluding from consideration all cellular methods.' J. C. Slater, Phys. Rev. 51, 846 (1937).' T. L. Loucks, Augmented P/ane Wave Method (W. A. Benjamin,
Inc. , New York, 1962).

4 The transition metal dioxides and trioxides where the oxygen
p's hybridize with the metal d's seem to be a case of slow
convergence.' F. Beleznay and M. J. Lawrence, J. Phys. C1, 1288 (1968).

'H. Schlosser and P. M. Marcus, Phys. Rev. 131, 2529
(1963).' C. Herring, Phys. Rev. 57, 1169 (1940).
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semiconductors. The OPW method (unlike the APW)
is easily applied to nonspherical self-consistent crystal
potentials. The convergence is worse for ionic crystals
whose valence functions are poorly represented by
plane waves. No convergence at all is obtained for the
3-d transition metals. This is because the 3-d functions
are by sylnmetry automatically orthogonal to all the
core functions, and the OPW expansion reduces to a
simple plane-wave expansion. Following a suggestion
in Herring's original paper, ' Callaway' and Deegan and
Twose'p modified the OP% expansion with the addition
of atomic d functions which were made to vanish
smoothly at the inscribed sphere. This modified OPW
expansion (MOPW) converges, but not nearly as rapidly
as the APW.

We introduce here a modified APW expansion
(MAPW), which converges with nearly the rapidity of
the old APW in all cases and yet is applicable to non-
spherical crystal potentials. In Sec. II we derive the
MAPW method for spherical muon-tin potentials;
in Sec. III we compare the convergence of the MAP%
with the MOPW and the APW for nickel; and in
Sec. IV we extend the MAP% method to nonspherical
potentials.

II. MAPW METHOD

The MOP% method adds to the plane-wave basis set
a set of atomic functions which are forced to go to zero
smoothly at the inscribed sphere radius rp. Because of
this they are not exact solutions to the Schrodinger
equation within the inscribed sphere. Even if the
atomic functions are exact solutions within some smaller
sphere of radius rpp the final crystal wave function ob-
tained from an expansion using the atomic functions
and a finite number of plane waves will not be exact
within the rpp sphere. This is because any finite number
of plane waves will give some additional contribution
to the already exact wave function within the rpp sphere.
The APW method avoids this difFiculty by expanding
in functions consisting of a plane wave outside the
sphere joined continuously (but not smoothly) to an
(in principle) infinite number of exact solutions inside

I We have used 4279 plane waves in an expansion of the Fi2 level
of Ni without any sign of convergence.

9 J. Callaway, Phys. Rev. 97, 933 (1955); 99, 500 (1955).' R. A. Deegan and W. D. Twose, Phys. Rev. 164, 993 (1967).
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the sphere. These exact solutions are of the form
fz~= fz(r)Yz (r), where Yz is a spherical harmonic and

[—7, +V(r)+l(l+1)/r' —Eoffz(r) =0. (1)

In practice, ' the maximum value of l used is about i2,
giving 169 different rPz . Thus, if the potential within
the inscribed sphere were to be nonspherical, then
instead of i2 uncoupled differential equations one
would have i69 coupled diRerential equations to solve
numerically. This is beyond the capability of present
day computers and is the reason why the APW method
has been limited to spherical muon-tin potentials.

We therefore propose a modified APW basis function, or

Re Q Ak Ak'(Hkk'+Skk' E Dkk')
kk'

The surface integral reduces to Jsf*(8 P, B—„go)ds in

the present case of continuous functions. The Eo in

Kq. (1) should be taken to be the variational energy E„.
However, Kq. (3) is variationally correctzz even when
EON E„, thus accelerating the iterative process of
making Eo= E„.

If we write P=Pk Akxk, where the sum is over all it
difI'ering by a reciprocal lattice vector from a given k
within the Brillouin zone, Kq. (3) becomes

l

x =('I'o) "'(e'"'—4 x
val l m=l

X(jz(kr )—fz(r„,)jz(kro), ,'fz(ro)]

Q A k A k (Hkk +Hk k*
kk'

+Skk'+Sk'k 2E2IDkk') 0 1 (3)

where jl is a spherical Bessel function, r„=r—R„with
R„a lattice vector, "and 0 is a unit step function. This
MAPW basis function differs from the APW in that
only / values corresponding to atomic valence states"
are summed over; in the APW method all values of l
are summed over. "Like the APW, the MAPW basis
function is continuous at the inscribed sphere, but has
a discontinuous normal derivative. Although in the
remainder of this section we shall use the spherical
muffin-tin potential, one can already see that by reducing
the l sum to valence states we have removed the major
obstacle to extending the APW method to nonspherical
potentials. In Sec. III we shall see that we have done
this without incurring any appreciable loss of
convergence.

Schlosser and Marcus' have derived the following
variational expression for the energy E,, when two
separate basis sets are used, one in an inner volume Q;
bounded by a surface S and the other in the outer
volume 00 of the unit cell:

E. Q*fdQ =Re /*Hfdf
0&+Op 0;+00

+ «:~.O' &;*~.&o)dS
I

(—3)
s

"For simplicity we assume one atom per unit cell. The exten-
sion to more complicated crystal structures is trivial."In cases where there are occupied core levels with l values not
found in the valence, one should include those core l values in the
valence l sum lest the expansion converge to that core level. For
example, in a calculation involving Br or its ion one would include
l =2 along with the valence l =0 and 1 in the sum."In standard APW calculations one takes yk'"'= (EO) '"e'k'

kzn —(~g)- 2~ gn, l, rrz eo zzp~l(kr0) Ylrrz*(k) Yozm(rn) fl(rn)/
f&(r0), which is identical to Eq. (2) only when the sum over l is
actually infinite. Since the sum in practice must be finite, the
standard APW basis functions are actually slightly discontinuous.

where Dkk, Hkk. , and Skk are the overlap, Hamiltonian,
and surface integrals of Kq. (3), and where we have
used the fact that Dkk *=Dk k. Because the erst-order
variation of E, vanishes when a first-order variation of
any Ak~ is made, ' a set of linear equations for the Ak
are obtained which lead to the secular equation

det~Hkk+Hk k +Skk'+Sk k 2E Dkk
~

0. (6)

The matrix elements in Kq. (6) are easily evaluated:

4~ vai

Dk k =zlkk ——p (2l+1)Pz(cosekk )
0

r0

jz(kr) jz(k'r)r'dr

jz(k'ro)
fzorodr1 z(kro) —,(7)

l2

"We question the validity of Eq. (3) when P is discontinuous.
Schlosser and Marcus (Ref. 6) argue that the exact solution to
which one is converging zs continuous, and that their variational
procedure involves integrations over the inner and outer volumes,
but not over the discontinuity itself. This, we believe, is an
incorrect limiting procedure, The fact remains that the 6nal wave
function, if expanded in a finite number of discontinuous functions,
will contain a small discontinuity. This results in a "small"
infinity in the kinetic energy of that function. We have applied
Eq. (3) to the I'» level of Ni, expanding in pz(r„)O(r0 —r },where
Pd(r„) is the exact solution within the inscribed sphere, plus a set of
pk= (NQ) " te'"' +4m g„e'"' .g2(kr„) Y20*(k) Y20(r"„)O(ro —r )j
The dd matrix element of Eq. (6) contained no surface contribution
and was just 2(E0—E,). The dk matrix elements consisted purely
of surface terms and caused E, to drop below the value E0 obtained
from the 1X1 determinant. Because of the nonorthogonality and
discontinuity of the pk, spurious eigenvalues (whose eigenvectors
contained almost no P~ component) developed. We list the lowest
nonspurious, as well as the spurious, eigenvalues for various sizes
of secular determinants: (1X1}0.2832; (2 X2) 0.2/73; (3X3)
0.2755; (4X4) —76.15, 0.2769; (6X6) —328.04, 0.2766; (8X8)—2361.58, —15.37, 0.2770.
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4~ vai

IIp p
——k'happ +V(k —it') ——g (2l+1)P((cos8pp )

0

TAarE I. Convergence of MOP% method
for three different cutoff factors.

r0

V(r)j (k'r)j (kr)r'dr

+k'- j &(k'r)j &(kr)rodr

"a jp(k rp)—Eo fPr'drj ((kro), (8)
fl2

4g vai

Sp k = ——ro' P (2l+1)P&(cose&z')j ((k rp)j &(kr p)
0

No.
of PW

15
65

169
259
379
555
705
813
989

1205
1373
2083

Matrix
size

2X2
5X5

10X10
15X15
20X20
25X25
30X30
35X35
40X40
45X45
50X50
69X69

0.3839295
0.3380652
0.3013187
0.2968527
0.2964055
0.2943814
0.2916657
0.2898656
0.2891362
0.2885806
0.2884777
0.2883423

0.4882709
0.3789099
0.3301688
0.3146819
0.3118600
0.3084479
0.3015888
0.2961349
0.2937418
0.2917862
0.2913704
0.2910817

0.5980045
0.4186325
0.3709477
0.3423550
0.3334954
0.3301247
0.3189393
0.3078040
0.3022876
0.2972336
0.2959369
0.2954741

Energy (Ry)
n =2.0430 a =3.1093 a =4.1757

XLk j&'(kro)/ j&(kro) —f&'(ro)/ f 1(ro)], (9)

where P&(cos8pp) is the Legendre polynomial of the
cosine of the angle between lt and k', V(r) is the
potential which here must be either a Hat or warped
muon tin,

In the MOP% expansion we took the basis functions
X, (1(i&n) to be symmetrized combina. tions of plane
waves and

xo(r) =2 e*" ""fe(r-)e '" """Vop(~v)

V(E) =0 ' V(r)e'*'d'r
Os+Go

=2 e'" ""fp(r-) Vpo(e ~) r &rpp (10)

and the prime on j&'(kro) and f~'(rp) indicates differentia-
tion with respect to the arguments kr and r evaluated
at r= rp. The relative simplicity of the matrix elements
is due to the fact that e'p' —4pri' g„j~(kr) V~ *(k)F'~ (r)
is orthogonal to F~ (r); thus, no cross terms involving
f&(r) appear in Kqs. (7)—(9).All the matrix elements are
obviously real. Although IIj, & and Sj, & are not in-
dividually symmetric, it can be shown' that their sum is;
thus Eq. (6) reduces to det~II&p+Sltp E.Dkk'~ 0.

III. GONVERGENGE

Because our desire was merely to test the conver-
gence properties of various expansions, we chose a
rather simple muon-tin potential for nickel. The
potential was generated using the Slater" exchange
approximation from a self-consistent d's' atomic con-
6guration, using the program of Herman and Skill-
man' and starting from their d's' configuration. A
constant was subtracted from the potential in order
to make it vanish at the inscribed sphere, rp=2. 3500
a.u. '7 In spite of its simplicity, this potential is no
worse than that used for most so-called Grst principles
APW calculations. All calculations were done for the
partner of the two-fold degenerate representation I"~2

whose d projection contains only the m=O spherical
harmonic.

~~ J. C. Slater, Phys. Rev. 81, 385 (1951).
'BF. Herman and S. Skillman, Atomic Structure Calculations

(Prentice-Hall, Inc. , Englewood CliGs, N. J., 1963).
"This is the largest inscribed sphere commensurate with a

mesh point of our numerical integration. The maximum inscribed
sphere for the lattice constant ao ——3.3293 a.u. is r0=2.3542 a.u.

where fe(r) is the solution to the 1=2 Schrodinger
equation (1) with Ep chosen to be the eigenenergy we
are calculating. Ke need not have used the eigenenergy
since, because of the cutoff factor e &"oo "&', Xp is not an
eigenfunction of the Hamiltonian, and therefore the
convergence is not sensitive to small discrepancies
between Ep and the eigenenergy. The value of rpp is
arbitrary, but should be chosen to be considerably
larger than that value of r for which fe(r) is a maximum
and yet much less than rp, o, is then chosen to make
xo(ro) & 10 ' so that overlap integrals involving
fe(r„)fe(r ) are negligible. The calculation of the
secular determinant (x;~H —E~x;) is straightforward;
the determination of the eigenvalue E and the eigen-
function P~&——g; op A~X; is somewhat complicated by
the fact that E occurs in the off-diagonal Oi matrix
elements, but is still straightforward. '

In Table I we show the convergence of the eigenvalue
(for rpp=0. 8805, Ep= 0.2831952 Ry, and three different
values of n) as a function of the number of plane waves
used and the dimensionality of the secular matrix. Each
plane wave (PW) is counted once, whether it appears
in zero, one, or more than one symmetrized combina-
tions of plane waves (SCPW's). "Thus the 2&(2 matrix
has as basis functions Xp and the (2,0,0) SCPW. The
15 PW's are the six (2,0,0) plus the eight (1,1,1) and
the (0,0,0), which do not occur in F~p SCPW's. The con-
vergence is seen to be very slow when compared with

"I.GorofF and I„Kleinman, Phys. Rev. 164, 1100 (1967),
Sec. II.

'9 Plane waves of the form (a,b,c) and {a,b,O) each occur in two
F12 SCPW's.
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matrix of PW

1XI 15
2X2 27
3X3
5X5
7X 7 113
9X9 169

12X12 229
14X14 259
20X20 387

APW
max — I = 12 /max = 18t„...=6

19 0.2882095 0.2882090.2881819 0.

0.2830794 0.2832

1922 0.2831927
5 0.2831952 0.

2831921 0 2831926
0.283192

:2831925
31918 0.2831925

67 0.2831919 0.
0.2829934 0.283191

MAPW

0.2898665
0.2855048
0.2835035
0.2832481
0.2832029
0.2831940
0.2831935
0.2831933
0.2831932
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close to F.,= ().2831932 Ry that no further change in I'„
will occur as E0 is made to equal E„.Because the sum
over f( is finite, the APW's are always slightly dis-
continuous. This causes the APW expansion to converge
to a result slightly belmv the correct eigenvalue. This
can be seen in Table II where we compare the APW
convergence for the three cases of l,„=6, 12, and 18
with the MAPW method. All even l's except zero appear
in Fi2, thus, the sum over valence l's in the MAPW
method contains only l=2. It is seen that the APW
method converges only very slightly more rapidly than
the MAPW. To obtain convergence to within 0.0005 Ry
(which is about what one would want for a very
accurate band calculation) one needs a 3&(3 matrix
for I'i2 in either case. This convergence is not obtained
with a 69&(69 matrix in the MOPW method.

IV. NONSPHERICAL POTENTIALS

We will discuss here the application of the MAPW
method to transition metals in either the fcc or bcc
crystal structures. Because of the partially filled d bands
we expect the potential to be highly nonspherical within
the inscribed spheres as well as far from constant out-
side. Let us assume that we know the crystal potential
both in terms of its Fourier expansion and in terms of
an expansion in Kubic harmonics" (and hence spherical
harmonics as well) about a lattice point,

V(r) =g Vr, (r)Kr, "'(r) =P Vl.(r) Q ni((r Vi, (p((r), (11)

where the I'~ superscript on the EL indicates that it
transforms with the full cubic symmetry. The exact
solution within the inscribed sphere will be of the form

= —p Q Q Vr, (r)f'( „(r) K«Kr, r'V p„.(N, , (13)
P=3 m' L=4

where the superscript on f ( ~ indicates that it is taken
from the previous iteration. Because the lowest nonzero
spherical harmonic in the expansion of a cubic potential
is Z. =4, the only mixing of the valence states l=0, 1,
and 2 is d with d. By using Kubic harmonics this mixing
is uncoupled and the left-hand side of (13) contains only
a single valence f(,. The right-hand side contains all
nonvalence f'(, , because they are expected to be small
compared to the valence f(,, the iterative procedure
should converge rapidly. The coeKcient of the V4 term is

(K„)'K,"dQ, (14)

which yields A or»= 4(21)/7, A or„= —4(21)/42.
The integral on the right-hand side of (13) is easily
evaluated by writing the Kubic harmonics in terms of
spherical harmonics and by using the mell-known
formula for integrals of three spherical harmonics. The
solution to Eq. (13) is f((= f( ' '+ f(('""' where the
magnitude of the solution to the homogeneous equation
f«h' ' is to be fixed by the condition

We now wish to find the differential equation satisfied

by the f«. Substituting Eq. (12) into the Schrodinger
equation, multiplying through by E'«, and integrating
over the solid angle, one obtains

L
—7„'+l(l+1)/ro+ Vp(r) +A Q(8$, ( V4(r) &—o7f«(r)

P;„(r)=g Q f«(r)K«(r)+P P f(„,(r) 1 („,(r), (12)
l;0

70

fo«
I
prier. (13)

where the bar over the f's indicates that they contain
the proper amplitude factor so that tk(r) is correctly
normalized, and the subscript t represents which partner
of which (k =0) irreducible representation K transforms
like."The reason for using both Kubic and spherical
harmonics in the same expansion will become clear
shortly.

Writing K« =P n(~(V(~, one easily obtains the
f(~(r) =P(a(~(f«(r) which are to be entered" into the
MAPW basis function Xk identical with that given by
Eq. (2), except that the f( are replaced by f( From.
this one calculates the matrix elements to be entered
into the secular equation (6):

Do q ——5(,q ——P (2l+1)I'((cos8o, ) j((kr)j ((k'r)r'dr
0 0

j ((kr p)j ((k'rp)—4~ P Lf( (r)7'r' («V( (k) V( (k'), (16)
0 lm ~0

—(47r)' ~~i & k j&'(krp) f(,„'(rp)
Sk o = ro' Q j((k'rp) j((krp) P — — 1 ( (k') 1 ( *(k),

0 m ( j((krp) f( (rp)

"F. C. Von der Lage and H. Bethe, Phys. Rev. 71, 612 (1947)."IfP is at a general point of the Brillouin zone, all partners of all irreducible representations will contribute to the sum."The fg, (r) of course depend on the point in the Srillouin zone because of the inhomogeneous term in Eq. (13).

(17)
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4x vai-
kj„k'k=„„+V(k—k')—X (k)+1)P (cook )) Vr)j «k' )j,(k ) '«+k' j «k' )j «k ) '«r)

0 0

j &(kro)j k(k'ro) " l(l+1)
Yk *(k)Yk„(k') fk (r) —rkr, '+ +V—,(r) f4 (r)r'dr

lm ro 2
0 r2

(44r)' o . . jo (kro) jo (k'ro)
+ — Q Yo„(k)Yo„(k') fo„(r)fo„(r)V4(r)r'dr — jo(kr)j o(k'r) V4(r)r'dr

~

Q m, ~ —o f,„(ro)f, , (ro) 0

(4)r)o ~ k o j'

X Yo (r)Yo ~ (r)K4(r)dQ+ g P P P P (i)'+'
Q l 3 m l l'=0 re' l' L=4

X (—1)'Yk (k') Y& *(k)
jj (kr,)j—()—j (k ))V ( )j (k' ) '«& "(')& ('))'«(r')«O

~o

jj (k'ro)
+(—1)'Yj *(k)Y) (k') fj (r) j& (k'r)—Vj(r)j j(kr)rkdr Y& (r)Y& ~(r)Kz(r)dQ . (18)

O lm ~0

Once the secular equation is solved for |k=P& A&X&, one
may use the spherical-harmonic expansion of plane
waves to obtain P;„(r) (Eq. 12) and thence the f j.„
which enter Eq. (13).

Many so-called first-principles AP% calculations, in
order to better fit experiment, use a discontinuous
mufFin-tin potential, the constant potential between
spheres being treated as an adjustable parameter. This
is equivalent to a "core shift" in an OP% calculation, 2'

and while it shifts the d levels relative to the s and p,
it has very little eRect on the splitting of the d bands,
which is controlled by the V4 terms in Eqs. (13) and
(18).

~' P. J. Lin and J. C. Phillips, Advan. Phys. 14, 215 {1965}.

After this work was completed we became aware of
Rudge's24 APW calculation for Li with a nonspherical
potential. Rudge calculates his fj (r) from a spherical
potential (so that the m subscript may be dropped),
but then uses the full nonspherical potential to compute
the matrix elements. Ef the potential within the in-
scribed sphere is not too far from spherical, and if only s
and p waves are important (as should be the case for Li),
the small errors introduced into fj(r) by the spherical ap-
proximation should (by the variational principle) lead
to negligible errors in the eigenvalues E„.On the other
hand, the neglect of the V4 term in Eq. (13)will prob-
ably lead to significant errors in the transition metals.

"W. E. Rudge, Phys. Rev. 181, 1033 {1969}.


